Open-Closed Correspondence of K-theory and Cobordism

Niccolò Cribiori

Eurostrings 2022 - Lyon 27th April 2022

Based on 2112.07678 with R. Blumenhagen and on 2204.00021 with D. Andriot, N. Carqueville

Introduction

Quantum Gravity and string/M-theory

- Perturbative worldsheet description & spacetime picture
- quantum-mechanically consistent (no anomalies)
- dualities: open/closed strings, weak/strong coupling . . .

However:

- Mathematical formulation?
- Signatures of QG in low energy EFTs?

The two questions can be addressed together!

Mathematical formulation

In quantum gravity topology should fluctuate

 Cobordism: language to classify compact manifolds (closed string backgrounds) without fixing topology

K-theory: proper language for D-branes (open strings)
 [Witten '98]

Q: Is there a "open-closed" correspondence between them?

Quantum Gravity signatures in EFTs or the Swampland program

[Vafa '05]

Not any EFT is consistent with quantum gravity

- Consistent EFTs obey swampland conjectures, which are meant to be QG "principles"
- Examples: no global symmetries [Misner, Wheeler '57; Banks, Dixon '88; Kallosh, Linde, Linde, Susskind '95; Harlow, Ooguri '18], gravity weakest force, . . .
- Recent proposal: cobordism conjecture [McNamara, Vafa '19], generalising no global symmetries

Cobordism conjecture

Cobordism: definition

Consider *n*-dim compact manifolds M and N. A **bordism** is a (n+1)-dim compact manifold W such that

$$\partial W = M \sqcup N$$

Being bordant is an equivalence relation, $[M] \sim [N]$.

Set of equivalence classes is an abelian group, cobordism group

$$\Omega_n = \{\text{compact } n\text{-dim manifolds}\}/\sim$$

Spin and Spin^c structures

Manifolds can be endowed with *structure*. This is inherited by the bordism group Ω_n^{ξ} . We will consider mainly

• Spin structure: $w_2(TM) = 0$

• Spin^c structure: $W_3(TM) = 0$

n	0	1	2	3	4	5	6	7	8	9	10
$\Omega_n^{Spin^c}$	\mathbb{Z}	0	\mathbb{Z}	0	$2\mathbb{Z}$	0	$2\mathbb{Z}$	0	$4\mathbb{Z}$	0	$4\mathbb{Z}$

The cobordism conjecture

[McNamara, Vafa '19]

- String theory on compact n-dim manifold leads to (d-n)-dim EFT consistent with QG.
- Reversing the logic, for **any** (d n)-dim EFT, ask:

Swampland Cobordism Conjecture

 \exists Quantum Gravity structure QG such that

$$\Omega_n^{QG} = 0$$

i.e. the group contains just the trivial element.

• **Motivation**: Non-zero bordism group leads to (d-n-1)-form global symmetry in the (d-n)-dim EFT. However, there are no global symmetries in QG. Therefore, we must have $\Omega_n^{QG}=0$.

How to proceed

[McNamara, Vafa '19]

We do not know QG. Try with educated guess \widetilde{QG} .

Then, if $\Omega_n^{\widetilde{QG}} \neq 0$ we have a global symmetry.

• **Breaking**: ∃ defect with correct charge such that

$$\Omega_n^{\widetilde{QG}} \to \Omega_n^{\widetilde{QG} + \text{defects}} = 0 \qquad \text{killed}$$

$$d * J_{d-n} = \sum_{def \ i} \delta^{n+1}(\Delta_{d-n-1, i}) \neq 0$$

• **Gauging**: Compactification on $[M] = 0 \in \Omega_n^{QG}$. Then, introduce gauge fields

$$0 = \Omega_n^{\widetilde{QG} + \text{gauging}} \to \Omega_n^{\widetilde{QG}}$$
 co-killed

An organising principle

Not clear in general how to get to QG. It seems that following the Whitehead tower helps. [NC, Andriot, Carqueville '22]

Whitehead tower: it organises topological structures according to the degree of "connectedness", while collecting information on the obstruction in lifting them.

Climbing the tower, cobordism groups generally become smaller

K-theory and open strings

Intuitive picture

[Witten '98]

• Consider n $D9-\overline{D9}$ branes with U(n) bundles E and F

$$(E,F)=E-F$$

 Creation/annihilation of m pairs with same bundle H leaves (E,F) invariant

$$(E \oplus H, F \oplus H) \sim (E, F)$$

• The set of equivalence classes is the (reduced) K-theory group

$$K(X) = \{ \text{vector bundles over } X \} / \sim$$

D-branes and K theory

D-branes are classified by K-theory. [Witten '98] Dp-branes on \mathbb{R}^{10} with p=9-n are classified by

• **Type I**: real (reduced) K-theory $\widetilde{KO}(S^n)$

• **Type II**: complex (reduced) K-theory $\widetilde{K}(S^n)$

n	0	1	2	3	4	5	6	7	8	9
$\widetilde{K}(S^n)$	\mathbb{Z}	0								
D-brane	D9	-	D7/D8	-	D5/D6	-	D3/D4	-	D1/D2	-

Cobordism vs K-theory

n	Ω_n^{Spin}	$\widetilde{KO}(S^n)$	$\Omega_n^{{ m Spin}^c}$	$\widetilde{K}(S^n)$
0	\mathbb{Z}	\mathbb{Z}	$\overline{\mathbb{Z}}$	\mathbb{Z}
1	\mathbb{Z}_2	\mathbb{Z}_2	0	0
2	\mathbb{Z}_2	\mathbb{Z}_2	${\mathbb Z}$	$\mathbb Z$
3	0	0	0	0
4	$\mathbb Z$	$\mathbb Z$	$-2\mathbb{Z}^{-1}$	\mathbb{Z}^-
5	0	0	0	0
6	0	0	$2\mathbb{Z}$	$\mathbb Z$
7	0	0	0	0
8	$-2\mathbb{Z}^{-}$	\mathbb{Z}^{-}	$4\mathbb{Z}$	$\mathbb Z$

Atiyah-Bott-Shapiro orientation

The existence of a relation between cobordism and K-theory dates back to the **ABS-orientation** [Atiyah, Bott, Shapiro '64]

$$\alpha: \Omega_n^{\text{Spin}} \to \widetilde{KO}(S^n)$$

 $\alpha^c: \Omega_n^{\text{Spin}^c} \to \widetilde{K}(S^n)$

Explicitly, they are given by the refined A-roof and Todd genus (see also [Hitchin '74])

$$\alpha_n([M]) = \begin{cases} \hat{A}(M) & n = 8k \\ \frac{1}{2}\hat{A}(M) & n = 8k + 4 \\ \dim H \mod 2 & n = 8k + 1 \\ \dim H^+ \mod 2 & n = 8k + 2 \\ 0 & \text{otherwise} \end{cases} \qquad \alpha_n^c([M]) = \mathrm{Td}(M)$$

This is the starting point to prove theorem by [Hopkins, Hovey '92], see also [Conner, Floyd '66; Landweber '76]

Physical consequences

Cobordism and K-theory charges talk to each others.
 They must undergo the same fate in QG (see also [Uranga '00; Blumenhagen, Brinkmann, Makridou '19])

• Defects can carry K-theory charge

• The **combination** of cobordism and K-theory charge should be either gauged or broken. Schematically

$$cobordism + K-theory = 0$$

closed strings
$$+$$
 open strings $=$ 0

Application: tadpoles from bottom-up

[Blumenhagen, NC '21]

Gauging cobordism

- [McNamara, Vafa '19] mainly focused on breaking the cobordism symmetry. Gauging is less explored.
- In [NC, Blumenhagen '21] it is shown that gauging cobordism can lead to string theory tadpoles.
- **Tadpole:** integrated Bianchi identity of F_n . It means that the total charge on a compact manifold should vanish

$$0 = \int_{M} dF_{n-1} = \int_{M} J_{n}$$

Tadpoles from bottom-up

The map α is a natural candidate for the (integrated) current

$$0 = \int_{M} dF_{n-1} = \alpha_n(M) + \dots$$

however there can be additional contributions.

 $oldsymbol{0}$ If α is surjective, we can also add the kernel

$$0 = \int_{M} dF_{n-1} = \alpha_n(M) + \ker \alpha_n(M) + \dots$$

2 There might be defects: branes classified by $\tilde{K}(S^n)$.

Thus we get a combination of cobordism and K-theory

$$0 = \int_{[M]} dF_{n-1} = a_1 \alpha_n([M]) + a_2 \ker \alpha_n([M]) + \sum_i \int_{[M]} Q_i \delta^n(\Delta_{10-n,i})$$

An example: gauging $\Omega_6^{\mathrm{Spin^c}}$

• We have $\Omega_6^{\mathrm{Spin}^{\mathrm{c}}} = \mathbb{Z} \oplus \mathbb{Z}$ generated by

$$\alpha_6 = td_6 = \frac{1}{24}c_1c_2, \qquad \ker \alpha_6 = \frac{1}{2}c_1^3$$

- ullet This is a 5-form global symmetry, which can be gauged by C_4
- $\tilde{K}(S^6)$ classifies D3 branes

Putting everything together we get

$$\int_{B} \sum_{i} Q_{i} \, \delta^{(6)}(\Delta_{4,i}) = \int_{B} \left(\frac{a_{1}}{24} \, c_{2}(B) \, c_{1}(B) + \frac{a_{2}}{2} \, c_{1}^{3}(B) \right) \equiv \frac{\chi(Y)}{24}$$

This matches with the known D3-brane tadpole cancellation in F-theory for $a_1=12$ and $a_2=30$. [Sethi, Vafa, Witten '96] Notice that c_3 cannot appear since it is not cobordism invariant.

21 / 24

Conclusion

- The absence of global symmetries seems to be a fact of QG.
 It holds true also when enlarging notion of symmetry, such as to include cobordism
- Cobordism and K-theory are closed-open string versions of global symmetries
- Their combination must be either broken or gauged
- This statement has predictive power.
 [Montero, Vafa '20; Dierigl, Heckmann '20; Hamada, Vafa, '21]

Outlook

- Clarify origin of tadpoles from bottom-up
- Cobordism groups with more structure (gauge fields, compact manifolds, . . .)
 [Blumenhagen, NC, Kneißl, Makridou, to appear]
- Look at differential K-theory groups
- Is cobordism conjecture combined with K-theory enough to reconstruct tadpoles of string theory (SLP)?

Thank you!