KU LEUVEN

Large N topologically twisted indices, holography, and black holes

Valentin Reys Eurostrings 2022, ENS Lyon 25-04-2022 Based on [arXiv:2203.14981] and work in progress with **Nikolay Bobev** & **Junho Hong**.

Motivation

AdS/CFT provides a gauge theory description of string/M-theory on asymptotically locally AdS backgrounds:

$$Z_{\mathsf{CFT}}[J] = Z_{\mathsf{string}/\mathsf{M}}[\phi]$$
 .

Motivation

AdS/CFT provides a gauge theory description of string/M-theory on asymptotically locally AdS backgrounds:

$$Z_{\mathsf{CFT}}[J] = Z_{\mathsf{string}/\mathsf{M}}[\phi]$$
 .

- ightharpoonup Tested thoroughly at the classical level, corresponding to the planar or large N limit in the gauge theory.
- $ightharpoonup Z_{CFT} = Z_{string}$ is meant to be valid beyond the planar limit!

Motivation

AdS/CFT provides a gauge theory description of string/M-theory on asymptotically locally AdS backgrounds:

$$Z_{\mathsf{CFT}}[J] = Z_{\mathsf{string}/\mathsf{M}}[\phi]$$
 .

- ► Tested thoroughly at the classical level, corresponding to the planar or large N limit in the gauge theory.
- $ightharpoonup Z_{CFT} = Z_{string}$ is meant to be valid beyond the planar limit!
- Supersymmetric localization can be used to compute susy observables in SCFTs exactly.
- Provides a new handle on AdS vacua of string/M-theory with non-trivial fluxes, including AdS black holes.

Outline

- **1** ABJM theory on S^3

AdS₄/CFT₃ dual pairs from M2 branes

▶ Consider 3d SCFTs with $N \ge 2$ decribing the low energy limit of N M2 branes probing a conical singularity.

Superconformal Chern-Simons theories coupled to matter can be used to describe M-theory on $AdS_4 \times X_7$ backgrounds.

Focus on $X_7 = S^7/\mathbb{Z}_k$ corresponding to ABJM theory (ask me about other X_7).

ABJM theory

 $igwedge U(N)_k imes U(N)_{-k}$ with two pairs of bifundamental chirals and superpotential $W = {
m Tr}(A_1B_1A_2B_2 - A_1B_2A_2B_1)$.

▶ For k > 2, $\mathcal{N} = 6$ susy and $SU(4)_R \times U(1)_T$ global symmetry.

ABJM theory

 $V(N)_k \times U(N)_{-k}$ with two pairs of bifundamental chirals and superpotential $W = \operatorname{Tr}(A_1B_1A_2B_2 - A_1B_2A_2B_1)$.

- ▶ For k > 2, $\mathcal{N} = 6$ susy and $SU(4)_R \times U(1)_T$ global symmetry.
- The partition function on S^3 can be computed by localization and yields a matrix model. [Kapustin, Willett, Yaakov'09]
- $igstar{}{} Z_{S^3}(N,k)$ can be studied at large N and fixed k.

[Herzog, Klebanov, Pufu, Tesileanu'10; Mariño, Putrov'11]

The sphere partition function

► The perturbative part is an Airy function:

[Mariño, Putrov'11; Fuji, Hirano, Moriyama'11]

$$Z_{S^3}(N,k) = e^{A(k)} C^{-\frac{1}{3}} \operatorname{Ai} \left[C^{-\frac{1}{3}}(N-B) \right] + \mathcal{O}(e^{-\sqrt{N}}),$$

where $C = \frac{2}{\pi^2 k}$ and $B = \frac{k}{24} + \frac{1}{3k}$ controls a shift in N.

The function A(k) is also known in closed form.

The sphere partition function

► The perturbative part is an Airy function:

[Mariño, Putrov'11; Fuji, Hirano, Moriyama'11]

$$Z_{S^3}(N,k) = e^{\mathcal{A}(k)} C^{-\frac{1}{3}} \operatorname{Ai} \left[C^{-\frac{1}{3}}(N-B) \right] + \mathcal{O}(e^{-\sqrt{N}}),$$

where $C = \frac{2}{\pi^2 k}$ and $B = \frac{k}{24} + \frac{1}{3k}$ controls a shift in N.

The function A(k) is also known in closed form.

lacksquare Systematic large N expansion of the free energy $F_{S^3} = -\log Z_{S^3}$,

$$F_{S^3} = \frac{2}{3\sqrt{C}} N^{\frac{3}{2}} - \frac{B}{\sqrt{C}} N^{\frac{1}{2}} + \frac{1}{4} \log N - \mathcal{A}(k) + \frac{1}{4} \log \frac{32}{k} + \mathcal{O}(N^{-\frac{1}{2}}).$$

The sphere partition function

The perturbative part is an Airy function:

[Mariño, Putrov'11; Fuji, Hirano, Moriyama'11]

$$Z_{S^3}(N,k) = e^{\mathcal{A}(k)} C^{-\frac{1}{3}} \operatorname{Ai} \left[C^{-\frac{1}{3}}(N-B) \right] + \mathcal{O}(e^{-\sqrt{N}}),$$

where $C=\frac{2}{\pi^2 k}$ and $B=\frac{k}{24}+\frac{1}{3k}$ controls a shift in N. The function A(k) is also known in closed form.

lacktriangle Systematic large N expansion of the free energy $F_{S^3} = -\log Z_{S^3}$,

$$F_{S^3} = \frac{2}{3\sqrt{C}} N^{\frac{3}{2}} - \frac{B}{\sqrt{C}} N^{\frac{1}{2}} + \frac{1}{4} \log N - \mathcal{A}(k) + \frac{1}{4} \log \frac{32}{k} + \mathcal{O}(N^{-\frac{1}{2}}).$$

In the bulk, reproduced by two-derivative and four-derivative supergravity regularized on-shell actions and loop corrections.

[Emparan, Johnson, Myers'99; Bobev, Charles, Hristov, VR'21]

[Bhattacharyya, Grassi, Mariño, Sen'12]

An Airy tale

- Deformations that preserve susy and break conformal invariance:
 - Put the theory on squashed S_b^3 with $U(1) \times U(1)$ isometry.
 - Turn on real masses $m_{1,2,3}$ in the Cartan of the flavor group.

An Airy tale

- Deformations that preserve susy and break conformal invariance:
 - Put the theory on squashed S_h^3 with $U(1) \times U(1)$ isometry.
 - Turn on real masses $m_{1,2,3}$ in the Cartan of the flavor group.
- Conjecture: the partition function is again an Airy function! [Bobev, Hong, VR'22; Hristov'22]

$$Z_{S^3_b}(N,k,\Delta) = e^{\mathcal{A}(k,b,\Delta)} C_{\Delta}^{-\frac{1}{3}} \operatorname{Ai} \left[C_{\Delta}^{-\frac{1}{3}} (N-B_{\Delta}) \right] + \mathcal{O}(e^{-\sqrt{N}})$$

$$C_{\Delta} = \frac{2}{\pi^2 k} \frac{(b+b^{-1})^{-4}}{\prod_a \Delta_a} \,, \quad B_{\Delta} = \frac{k}{24} - \frac{\sum_a \Delta_a^{-1}}{12k} + \frac{1 - \frac{1}{4} \sum_a \Delta_a^2}{3k(b+b^{-1})^2 \prod_a \Delta_a} \,.$$

An Airy tale

- Deformations that preserve susy and break conformal invariance:
 - Put the theory on squashed S_b^3 with $U(1) \times U(1)$ isometry.
 - Turn on real masses $m_{1,2,3}$ in the Cartan of the flavor group.
- Conjecture: the partition function is again an Airy function! [Bobev, Hong, VR'22; Hristov'22]

$$Z_{S^3_b}(N,k,\Delta) = e^{\mathcal{A}(k,b,\Delta)} C_{\Delta}^{-\frac{1}{3}} \operatorname{Ai} \left[C_{\Delta}^{-\frac{1}{3}}(N-B_{\Delta}) \right] + \mathcal{O}(e^{-\sqrt{N}})$$

$$C_{\Delta} = \frac{2}{\pi^2 k} \frac{(b+b^{-1})^{-4}}{\prod_a \Delta_a} , \quad B_{\Delta} = \frac{k}{24} - \frac{\sum_a \Delta_a^{-1}}{12k} + \frac{1 - \frac{1}{4} \sum_a \Delta_a^2}{3k(b+b^{-1})^2 \prod_a \Delta_a} .$$

Written in terms of parameters $\Delta_a(b,m_i)$ such that $\sum_{a=1}^4 \Delta_a = 2$. Setting b=1 and $\Delta_a=\frac{1}{2}$ recovers the round sphere above.

▶ In agreement with known results in various limits for (b, m_i) .

[Nosaka'15; Hatsuda'16; Chester, Kalloor, Sharon'21]

- In agreement with known results in various limits for (b, m_i) .

 [Nosaka'15; Hatsuda'16; Chester, Kalloor, Sharon'21]
- $\partial_b^2 F_{S_b^3}|_{b=1,\Delta_a=rac{1}{2}}$ matches the known dynamical coefficient of the stress tensor two-point function. [Chester,Kalloor,Sharon'20] [Closset,Dumitrescu,Festuccia,Komargodski'12]

$$F_{S_b^3} = \frac{\pi\sqrt{2k}}{12}(b+b^{-1})^2 N^{\frac{3}{2}} - \frac{\pi\sqrt{2k}}{12} \left(\frac{k^2 - 16}{16k}(b+b^{-1})^2 + \frac{6}{k}\right) N^{\frac{1}{2}} + \dots$$

- In agreement with known results in various limits for (b, m_i) .

 [Nosaka'15; Hatsuda'16; Chester, Kalloor, Sharon'21]
- $\partial_b^2 F_{S_b^3}|_{b=1,\Delta_a=rac{1}{2}}$ matches the known dynamical coefficient of the stress tensor two-point function. [Chester, Kalloor, Sharon '20] [Closset, Dumitrescu, Festuccia, Komargodski '12]

$$F_{S_b^3} = \frac{\pi\sqrt{2k}}{12}(b+b^{-1})^2 N^{\frac{3}{2}} - \frac{\pi\sqrt{2k}}{12} \left(\frac{k^2 - 16}{16k}(b+b^{-1})^2 + \frac{6}{k}\right) N^{\frac{1}{2}} + \dots$$

Leading and subleading terms obtained in supergravity from two-derivative and four-derivative regularized on-shell actions.

[Martelli, Passias, Sparks'11; Bobev, Charles, Hristov, VR'21]

- In agreement with known results in various limits for (b, m_i) .

 [Nosaka'15; Hatsuda'16; Chester, Kalloor, Sharon'21]
- $\partial_b^2 F_{S_b^3}|_{b=1,\Delta_a=\frac{1}{2}} \text{ matches the known dynamical coefficient of the stress tensor two-point function.} \\ \text{[Chester,Kalloor,Sharon'20]}$

$$F_{S_b^3} = \frac{\pi\sqrt{2k}}{12}(b+b^{-1})^2 N^{\frac{3}{2}} - \frac{\pi\sqrt{2k}}{12} \left(\frac{k^2 - 16}{16k}(b+b^{-1})^2 + \frac{6}{k}\right) N^{\frac{1}{2}} + \dots$$

 Leading and subleading terms obtained in supergravity from two-derivative and four-derivative regularized on-shell actions.

[Martelli, Passias, Sparks'11; Bobev, Charles, Hristov, VR'21]

 \blacktriangleright Airy encodes integrated correlation functions of ABJM on S^3 \rightarrow can give access to graviton scattering in M-theory.

[Chester, Pufu, Yin'18; Binder, Chester, Pufu'18]

[Closset, Dumitrescu, Festuccia, Komargodski'12]

Outline

- **1** ABJM theory on S^3
- **2** ABJM theory on $S^1 \times \Sigma_{\mathfrak{g}}$
- 3 Holography and black holes
- 4 Summary and outlook

- ▶ The TTI is a partition function of 3d $\mathcal{N}=2$ SCFTs on $S^1 \times \Sigma_{\mathfrak{g}}$.
- ▶ Susy is preserved by a topological twist on the Riemann surface.

- lacksquare The TTI is a partition function of 3d $\mathcal{N}=2$ SCFTs on $S^1 imes \Sigma_{\mathfrak{g}}.$
- Susy is preserved by a topological twist on the Riemann surface.
- ► Localization reduces the path-integral to a matrix model.

 [Benini, Zaffaroni'15; Closset, Kim'16]
- The result depends on (N,k) and on four magnetic charges \mathfrak{n}_a and four electric chemical potentials Δ_a (mixed ensemble). Satisfy susy constraints $\sum_{a=1}^4 \mathfrak{n}_a = 2(1-\mathfrak{g})$ and $\sum_{a=1}^4 \Delta_a = 2$.

- ▶ The TTI is a partition function of 3d $\mathcal{N}=2$ SCFTs on $S^1\times\Sigma_{\mathfrak{g}}$.
- Susy is preserved by a topological twist on the Riemann surface.
- Localization reduces the path-integral to a matrix model. [Benini, Zaffaroni'15; Closset, Kim'16]
- ightharpoonup The result depends on (N,k) and on four magnetic charges \mathfrak{n}_a and four electric chemical potentials Δ_a (mixed ensemble). Satisfy susy constraints $\sum_{a=1}^{4} \mathfrak{n}_a = 2(1-\mathfrak{g})$ and $\sum_{a=1}^{4} \Delta_a = 2$.
- Picking up residues, the TTI can be recast as a sum over solutions to a complicated set of transcendental equations that resemble Bethe Ansatz Equations (BAE).

- lacksquare The TTI is a partition function of 3d $\mathcal{N}=2$ SCFTs on $S^1 imes \Sigma_{\mathfrak{g}}.$
- Susy is preserved by a topological twist on the Riemann surface.
- ► Localization reduces the path-integral to a matrix model.

```
[Benini, Zaffaroni'15; Closset, Kim'16]
```

- The result depends on (N,k) and on four magnetic charges \mathfrak{n}_a and four electric chemical potentials Δ_a (mixed ensemble). Satisfy susy constraints $\sum_{a=1}^4 \mathfrak{n}_a = 2(1-\mathfrak{g})$ and $\sum_{a=1}^4 \Delta_a = 2$.
- Picking up residues, the TTI can be recast as a sum over solutions to a complicated set of transcendental equations that resemble Bethe Ansatz Equations (BAE).
- Strategy: use the large N solution of the BAE as a starting point to numerically evaluate the TTI to high order in 1/N.

[Benini, Hristov, Zaffaroni'15; Liu, Pando Zayas, Rathee, Zhao'17]

The large N expansion of the TTI

The numerics are very precise and allow us to propose an analytic expression! It is naturally written in terms of a shifted N,

$$\hat{N}_{\Delta} = N - \frac{k}{24} + \frac{1}{12k} \sum_{a=1}^{4} \Delta_a^{-1}$$
.

The large N expansion of the TTI

► The numerics are very precise and allow us to propose an analytic expression! It is naturally written in terms of a shifted N,

$$\hat{N}_{\Delta} = N - \frac{k}{24} + \frac{1}{12k} \sum_{a=1}^{4} \Delta_a^{-1}$$
.

▶ The TTI to all orders in a 1/N expansion:

$$F_{S^1 \times \Sigma_{\mathfrak{g}}} = \frac{\pi \sqrt{2k \prod_{a} \Delta_{a}}}{3} \sum_{a=1}^{4} \frac{\mathfrak{n}_{a}}{\Delta_{a}} \left(\hat{N}_{\Delta}^{\frac{3}{2}} - \frac{d_{a}}{k} \, \hat{N}_{\Delta}^{\frac{1}{2}} \right) + \frac{1 - \mathfrak{g}}{2} \log \hat{N}_{\Delta} + f(k, \Delta, \mathfrak{n}) + \mathcal{O}(e^{-\sqrt{N}})$$

with
$$d_a = (2 - \Delta_a) \prod_{b \neq a} (\Delta_a + \Delta_b) (8 \prod_b \Delta_b)^{-1}$$
.

The large N expansion of the TTI

► The numerics are very precise and allow us to propose an analytic expression! It is naturally written in terms of a shifted N,

$$\hat{N}_{\Delta} = N - \frac{k}{24} + \frac{1}{12k} \sum_{a=1}^{4} \Delta_a^{-1}$$
.

▶ The TTI to all orders in a 1/N expansion:

$$\begin{split} F_{S^1 \times \Sigma_{\mathfrak{g}}} &= \frac{\pi \sqrt{2k \prod_{a} \Delta_{a}}}{3} \sum_{a=1}^{4} \frac{\mathfrak{n}_{a}}{\Delta_{a}} \Big(\hat{N}_{\Delta}^{\frac{3}{2}} - \frac{d_{a}}{k} \, \hat{N}_{\Delta}^{\frac{1}{2}} \Big) \\ &+ \frac{1 - \mathfrak{g}}{2} \log \hat{N}_{\Delta} + f(k, \Delta, \mathfrak{n}) + \mathcal{O}(e^{-\sqrt{N}}) \end{split}$$

with
$$d_a = (2 - \Delta_a) \prod_{b \neq a} (\Delta_a + \Delta_b) (8 \prod_b \Delta_b)^{-1}$$
.

Expand at large N to recover the $N^{\frac{3}{2}}$, $N^{\frac{1}{2}}$ and $\log N$ terms.

Outline

- 3 Holography and black holes

Our field theory results give predictions for the path-integral of M-theory on asymptotically $AdS_4 \times S^7/\mathbb{Z}_k$ backgrounds.

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $AdS_4 \times S^7/\mathbb{Z}_k$ backgrounds.
- ➤ Susy Euclidean "black saddle" solutions in the 4d STU model that uplift to 11d with 4-form flux, [Bobev,Charles,Min'20]

 [Azizi,Godazgar,Godazgar,Pope'16]

$$\begin{split} ds_4^2 &= e^{f_1(r)} d\tau^2 + e^{f_2(r)} dr^2 + e^{f_3(r)} ds_{\Sigma_{\mathfrak{g}}}^2 \,, \quad A^I = e^I(r) d\tau + p^I \omega_{\Sigma_{\mathfrak{g}}} \,, \\ z_\alpha(r) \,, \quad \tilde{z}_\alpha(r) \,, \qquad \text{where} \ \alpha = 1, 2, 3 \ \text{and} \ I = 0, 1, 2, 3. \end{split}$$

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $AdS_4 \times S^7/\mathbb{Z}_k$ backgrounds.
- ➤ Susy Euclidean "black saddle" solutions in the 4d STU model that uplift to 11d with 4-form flux, [Bobev,Charles,Min'20]

[Azizi, Godazgar, Godazgar, Pope'16]

$$\begin{split} ds_4^2 &= e^{f_1(r)} d\tau^2 + e^{f_2(r)} dr^2 + e^{f_3(r)} ds_{\Sigma_{\mathfrak{g}}}^2 \,, \quad A^I = e^I(r) d\tau + p^I \omega_{\Sigma_{\mathfrak{g}}} \,, \\ z_\alpha(r) \,, \quad \tilde{z}_\alpha(r) \,, \qquad \text{where } \alpha = 1, 2, 3 \ \text{and} \ I = 0, 1, 2, 3. \end{split}$$

For some values of parameters, black saddles have a Lorentzian interpretation as static BPS black holes with $AdS_2 \times \Sigma_{\mathfrak{g}}$ NHG.

[Gauntlett, Kim, Pakis, Waldram'01; Cacciatori, Klemm'09]

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $AdS_4 \times S^7/\mathbb{Z}_k$ backgrounds.
- Susy Euclidean "black saddle" solutions in the 4d STU model that uplift to 11d with 4-form flux, [Bobev, Charles, Min'20] [Azizi, Godazgar, Godazgar, Pope'16]

 $ds_4^2 = e^{f_1(r)}d\tau^2 + e^{f_2(r)}dr^2 + e^{f_3(r)}ds_{\Sigma_a}^2, \quad A^I = e^I(r)d\tau + p^I\omega_{\Sigma_a},$

$$\begin{split} ds_4^2 &= e^{j_1(r)} d\tau^2 + e^{j_2(r)} dr^2 + e^{j_3(r)} ds_{\Sigma_{\mathfrak{g}}}^2 \,, \quad A^I = e^I(r) d\tau + p^I \omega_{\Sigma_{\mathfrak{g}}} \\ z_\alpha(r) \,, \quad \tilde{z}_\alpha(r) \,, \qquad \text{where } \alpha = 1, 2, 3 \text{ and } I = 0, 1, 2, 3. \end{split}$$

For some values of parameters, black saddles have a Lorentzian interpretation as static BPS black holes with $AdS_2 \times \Sigma_{\mathfrak{a}}$ NHG.

```
[Gauntlett, Kim, Pakis, Waldram'01; Cacciatori, Klemm'09]
```

 Our proposed analytic TTI encodes their quantum entropy to all orders in the parameter N of the microscopic theory!

Outline

- **1** ABJM theory on S^3
- **2** ABJM theory on $S^1 \times \Sigma_{\mathfrak{g}}$
- 3 Holography and black holes
- 4 Summary and outlook

Summary and outlook

- Presented pertubatively exact results at large N and fixed k for the partition function of ABJM theory on S_b^3 and $S^1 \times \Sigma_{\mathfrak{g}}$.
- Discussed implications for holography and black holes.
- Similar results are available for other quiver gauge theories corresponding to different X_7 internal manifolds.

Summary and outlook

- Presented pertubatively exact results at large N and fixed k for the partition function of ABJM theory on S_b^3 and $S^1 \times \Sigma_{\mathfrak{g}}$.
- Discussed implications for holography and black holes.
- Similar results are available for other quiver gauge theories corresponding to different X_7 internal manifolds.
- ▶ Understand the results in terms of the relation $Z_{S^3} = \langle \mathcal{F} \rangle_{S^1 \times S^2}$? Study other 3-manifolds (e.g. Seifert)? [Closset,Kim,Willett'17]
- Analytic derivation of the TTI from the matrix model?

Summary and outlook

- Presented pertubatively exact results at large N and fixed k for the partition function of ABJM theory on S_b^3 and $S^1 \times \Sigma_{\mathfrak{g}}$.
- Discussed implications for holography and black holes.
- Similar results are available for other quiver gauge theories corresponding to different X_7 internal manifolds.
- Understand the results in terms of the relation $Z_{S^3} = \langle \mathcal{F} \rangle_{S^1 \times S^2}$? Study other 3-manifolds (e.g. Seifert)? [Closset,Kim,Willett'17]
- Analytic derivation of the TTI from the matrix model?
- Highlighted available match for leading, subleading, and log terms from supergravity. Can we go beyond?
- Localization in supergravity looks very promising...

 [Dabholkar, Drukker, Gomes' 14: Hristov, Lodato, VR' 17-18: Hristov' 21-22]

Thank you for your attention!

The TTI of various 3d SCFTs

 \blacktriangleright 3d $\mathcal{N}=3$ SCFT with $X_7=N^{0,1,0}$: $\hat{N}_{\Delta_a=\frac{1}{2}}=N+\frac{k}{12}+\frac{1}{3k}$ and

$$\frac{F_{S^1 \times \Sigma_{\mathfrak{g}}}}{1 - \mathfrak{g}} = \frac{4\pi\sqrt{k}}{3\sqrt{3}} \Big(\hat{N}^{\frac{3}{2}} - \Big(\frac{k}{4} + \frac{5}{4k} \Big) \hat{N}^{\frac{1}{2}} \Big) + \frac{1}{2} \log \hat{N} + f_0(k) \,.$$

lacksquare 3d $\mathcal{N}=2$ SCFT with $X_7=V^{5,2}:\,\hat{N}_{\Delta_a=rac{1}{2}}=N+rac{k}{6}+rac{1}{4k}$ and

$$\frac{F_{S^1 \times \Sigma_{\mathfrak{g}}}}{1-\mathfrak{g}} = \frac{16\pi\sqrt{k}}{27} \Big(\hat{N}^{\frac{3}{2}} - \Big(\frac{9k}{16} + \frac{27}{16k} \Big) \hat{N}^{\frac{1}{2}} \Big) + \frac{1}{2} \log \hat{N} + f_0(k) \,.$$

 \blacktriangleright 3d $\mathcal{N}=2$ SCFT with $X_7=Q^{1,1,1}$: $\hat{N}_{\Delta_a=\frac{1}{2}}=N+\frac{k}{6}$ and

$$\frac{F_{S^1 \times \Sigma_{\mathfrak{g}}}}{1 - \mathfrak{g}} = \frac{4\pi\sqrt{k}}{3\sqrt{3}} \left(\hat{N}^{\frac{3}{2}} - \left(\frac{k}{4} + \frac{3}{4k} \right) \hat{N}^{\frac{1}{2}} \right) + \frac{1}{2} \log \hat{N} + f_0(k) \,.$$

The universal black hole

Susy Euclidean solution of 4d $\mathcal{N}=2$ gauged supergravity:

[Romans'92; Bobev, Charles, Min'20]

$$\begin{split} ds_4^2 &= U(r)d\tau^2 + \frac{dr^2}{U(r)} + r^2 ds_{\Sigma_{\mathfrak{g}}}^2 \,, \quad F = \frac{q}{r^2} d\tau \wedge dr - \frac{\kappa}{g} \mathrm{vol}(\Sigma_{\mathfrak{g}}) \,, \\ U(r) &= \left(\sqrt{2}gr + \frac{\kappa}{2\sqrt{2}qr}\right)^2 - \frac{q^2}{8r^2} \,, \qquad \kappa = \{1,0,-1\} \,. \end{split}$$

Smooth for $g|q|>\kappa$ with Euclidean periodicity $\beta_{\tau}=\frac{\pi\sqrt{g|q|-\kappa}}{a^2|q|}.$

- ▶ Regular Lorentzian black hole obtained by taking $|q| \rightarrow 0$. Only exists for $\kappa = -1$, i.e. hyperbolic horizon.
- ▶ Euclidean regularized on-shell action I is independent of β_{τ} . For the Lorentzian black hole, leads to the usual

$$S_{\mathsf{BH}} = -I$$
.

The universal TTI

Our proposed TTI with $\mathfrak{n}_a = \frac{1-\mathfrak{g}}{2}$ and $\Delta_a = \frac{1}{2}$ accounts for the entropy of the black hole to all orders in the 1/N expansion!

$$\frac{F_{S^1 \times \Sigma_{\mathfrak{g}}}}{1-\mathfrak{g}} = \frac{\pi \sqrt{2k}}{3} \left(N^{\frac{3}{2}} - \frac{k^2 + 32}{16k} N^{\frac{1}{2}} \right) + \frac{1}{2} \frac{\log N}{N} + \mathcal{O}(N^0) \,.$$

Leading term reproduced from two-derivative supergravity regularized on-shell action. [Benini, Hristov, Zaffaroni'15]

[Azzurli, Bobev, Crichigno, Min, Zaffaroni'17]

- Subleading term from four-derivative supergravity regularized on-shell action. [Bobev,Charles,Hristov,VR'21]
- Log term from one-loop contributions of the KK modes in 11d.

[Liu, Pando Zayas, Rathee, Zhao'17]