KULEUVEN

Large N topologically twisted indices, holography, and black holes

Valentin Reys
Eurostrings 2022, ENS Lyon
25-04-2022

Based on [arXiv:2203.14981] and work in progress with Nikolay Bobev \& Junho Hong.

Motivation

- AdS/CFT provides a gauge theory description of string/M-theory on asymptotically locally AdS backgrounds:

$$
Z_{\mathrm{CFT}}[J]=Z_{\text {string } / \mathrm{M}}[\phi] .
$$

Motivation

- AdS/CFT provides a gauge theory description of string/M-theory on asymptotically locally AdS backgrounds:

$$
Z_{\mathrm{CFT}}[J]=Z_{\text {string } / \mathrm{M}}[\phi] .
$$

- Tested thoroughly at the classical level, corresponding to the planar or large N limit in the gauge theory.
$-Z_{\mathrm{CFT}}=Z_{\text {string }}$ is meant to be valid beyond the planar limit!

Motivation

- AdS/CFT provides a gauge theory description of string/M-theory on asymptotically locally AdS backgrounds:

$$
Z_{\mathrm{CFT}}[J]=Z_{\text {string } / \mathrm{M}}[\phi]
$$

- Tested thoroughly at the classical level, corresponding to the planar or large N limit in the gauge theory.
- $Z_{\mathrm{CFT}}=Z_{\text {string }}$ is meant to be valid beyond the planar limit!
- Supersymmetric localization can be used to compute susy observables in SCFTs exactly.
- Provides a new handle on AdS vacua of string/M-theory with non-trivial fluxes, including AdS black holes.

Outline

(1) ABJM theory on S^{3}
(2) ABJM theory on $S^{1} \times \Sigma_{\mathfrak{g}}$
(3) Holography and black holes
(4) Summary and outlook

$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual pairs from M2 branes

- Consider 3d SCFTs with $\mathcal{N} \geq 2$ decribing the low energy limit of N M2 branes probing a conical singularity.

Superconformal Chern-Simons theories coupled to matter can be used to describe M-theory on $\mathrm{AdS}_{4} \times X_{7}$ backgrounds.

Focus on $X_{7}=S^{7} / \mathbb{Z}_{k}$ corresponding to ABJM theory (ask me about other X_{7}).

N M2 branes

ABJM theory

- $U(N)_{k} \times U(N)_{-k}$ with two pairs of bifundamental chirals and superpotential $W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right)$.

- For $k>2, \mathcal{N}=6$ susy and $S U(4)_{R} \times U(1)_{T}$ global symmetry.

ABJM theory

- $U(N)_{k} \times U(N)_{-k}$ with two pairs of bifundamental chirals and superpotential $W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right)$.

- For $k>2, \mathcal{N}=6$ susy and $S U(4)_{R} \times U(1)_{T}$ global symmetry.
- The partition function on S^{3} can be computed by localization and yields a matrix model.
[Kapustin, Willett, Yaakov'09]
- $Z_{S^{3}}(N, k)$ can be studied at large N and fixed k.
[Herzog, Klebanov, Pufu, Tesileanu'10; Mariño, Putrov'11]

The sphere partition function

- The perturbative part is an Airy function:
[Mariño,Putrov'11; Fuji,Hirano,Moriyama'11]

$$
Z_{S^{3}}(N, k)=e^{\mathcal{A}(k)} C^{-\frac{1}{3}} \mathrm{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

where $C=\frac{2}{\pi^{2} k}$ and $B=\frac{k}{24}+\frac{1}{3 k}$ controls a shift in N.
The function $\mathcal{A}(k)$ is also known in closed form.

The sphere partition function

- The perturbative part is an Airy function:
[Mariño,Putrov'11; Fuji,Hirano,Moriyama'11]

$$
Z_{S^{3}}(N, k)=e^{\mathcal{A}(k)} C^{-\frac{1}{3}} \mathrm{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right),
$$

where $C=\frac{2}{\pi^{2} k}$ and $B=\frac{k}{24}+\frac{1}{3 k}$ controls a shift in N.
The function $\mathcal{A}(k)$ is also known in closed form.

- Systematic large N expansion of the free energy $F_{S^{3}}=-\log Z_{S^{3}}$,

$$
F_{S^{3}}=\frac{2}{3 \sqrt{C}} N^{\frac{3}{2}}-\frac{B}{\sqrt{C}} N^{\frac{1}{2}}+\frac{1}{4} \log N-\mathcal{A}(k)+\frac{1}{4} \log \frac{32}{k}+\mathcal{O}\left(N^{-\frac{1}{2}}\right)
$$

The sphere partition function

- The perturbative part is an Airy function:
[Mariño,Putrov'11; Fuji, Hirano,Moriyama'11]

$$
Z_{S^{3}}(N, k)=e^{\mathcal{A}(k)} C^{-\frac{1}{3}} \mathrm{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

where $C=\frac{2}{\pi^{2} k}$ and $B=\frac{k}{24}+\frac{1}{3 k}$ controls a shift in N.
The function $\mathcal{A}(k)$ is also known in closed form.

- Systematic large N expansion of the free energy $F_{S^{3}}=-\log Z_{S^{3}}$,

$$
F_{S^{3}}=\frac{2}{3 \sqrt{C}} N^{\frac{3}{2}}-\frac{B}{\sqrt{C}} N^{\frac{1}{2}}+\frac{1}{4} \log N-\mathcal{A}(k)+\frac{1}{4} \log \frac{32}{k}+\mathcal{O}\left(N^{-\frac{1}{2}}\right)
$$

- In the bulk, reproduced by two-derivative and four-derivative supergravity regularized on-shell actions and loop corrections.
[Emparan, Johnson, Myers'99; Bobev, Charles, Hristov, VR‘21]
[Bhattacharyya, Grassi, Mariño,Sen' 12]

An Airy tale

- Deformations that preserve susy and break conformal invariance:
- Put the theory on squashed S_{b}^{3} with $U(1) \times U(1)$ isometry.
- Turn on real masses $m_{1,2,3}$ in the Cartan of the flavor group.

An Airy tale

- Deformations that preserve susy and break conformal invariance:
- Put the theory on squashed S_{b}^{3} with $U(1) \times U(1)$ isometry.
- Turn on real masses $m_{1,2,3}$ in the Cartan of the flavor group.
- Conjecture: the partition function is again an Airy function!
[Bobev, Hong, VR‘22; Hristov'22]

$$
Z_{S_{b}^{3}}(N, k, \Delta)=e^{\mathcal{A}(k, b, \Delta)} C_{\Delta}^{-\frac{1}{3}} \mathrm{Ai}\left[C_{\Delta}^{-\frac{1}{3}}\left(N-B_{\Delta}\right)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

$$
C_{\Delta}=\frac{2}{\pi^{2} k} \frac{\left(b+b^{-1}\right)^{-4}}{\prod_{a} \Delta_{a}}, \quad B_{\Delta}=\frac{k}{24}-\frac{\sum_{a} \Delta_{a}^{-1}}{12 k}+\frac{1-\frac{1}{4} \sum_{a} \Delta_{a}^{2}}{3 k\left(b+b^{-1}\right)^{2} \prod_{a} \Delta_{a}} .
$$

An Airy tale

- Deformations that preserve susy and break conformal invariance:
- Put the theory on squashed S_{b}^{3} with $U(1) \times U(1)$ isometry.
- Turn on real masses $m_{1,2,3}$ in the Cartan of the flavor group.
- Conjecture: the partition function is again an Airy function!
[Bobev, Hong, VR‘22; Hristov'22]

$$
Z_{S_{b}^{3}}(N, k, \Delta)=e^{\mathcal{A}(k, b, \Delta)} C_{\Delta}^{-\frac{1}{3}} \mathrm{Ai}\left[C_{\Delta}^{-\frac{1}{3}}\left(N-B_{\Delta}\right)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

$$
C_{\Delta}=\frac{2}{\pi^{2} k} \frac{\left(b+b^{-1}\right)^{-4}}{\prod_{a} \Delta_{a}}, \quad B_{\Delta}=\frac{k}{24}-\frac{\sum_{a} \Delta_{a}^{-1}}{12 k}+\frac{1-\frac{1}{4} \sum_{a} \Delta_{a}^{2}}{3 k\left(b+b^{-1}\right)^{2} \prod_{a} \Delta_{a}}
$$

- Written in terms of parameters $\Delta_{a}\left(b, m_{i}\right)$ such that $\sum_{a=1}^{4} \Delta_{a}=2$. Setting $b=1$ and $\Delta_{a}=\frac{1}{2}$ recovers the round sphere above.

Evidence and predictions

- In agreement with known results in various limits for $\left(b, m_{i}\right)$.
[Nosaka'15; Hatsuda'16; Chester,Kalloor,Sharon'21]

Evidence and predictions

- In agreement with known results in various limits for $\left(b, m_{i}\right)$.
[Nosaka'15; Hatsuda'16; Chester,Kalloor, Sharon'21]
- $\left.\partial_{b}^{2} F_{S_{b}^{3}}\right|_{b=1, \Delta_{a}=\frac{1}{2}}$ matches the known dynamical coefficient of the stress tensor two-point function. [Chester, Kalloor, Sharon'20]
[Closset, Dumitrescu,Festuccia,Komargodski'12]

$$
F_{S_{b}^{3}}=\frac{\pi \sqrt{2 k}}{12}\left(b+b^{-1}\right)^{2} N^{\frac{3}{2}}-\frac{\pi \sqrt{2 k}}{12}\left(\frac{k^{2}-16}{16 k}\left(b+b^{-1}\right)^{2}+\frac{6}{k}\right) N^{\frac{1}{2}}+\ldots
$$

Evidence and predictions

- In agreement with known results in various limits for $\left(b, m_{i}\right)$.
[Nosaka'15; Hatsuda'16; Chester,Kalloor,Sharon'21]
- $\left.\partial_{b}^{2} F_{S_{b}^{3}}\right|_{b=1, \Delta_{a}=\frac{1}{2}}$ matches the known dynamical coefficient of the stress tensor two-point function. [Chester, Kalloor, Sharon' 20]
[Closset,Dumitrescu,Festuccia,Komargodski'12]

$$
F_{S_{b}^{3}}=\frac{\pi \sqrt{2 k}}{12}\left(b+b^{-1}\right)^{2} N^{\frac{3}{2}}-\frac{\pi \sqrt{2 k}}{12}\left(\frac{k^{2}-16}{16 k}\left(b+b^{-1}\right)^{2}+\frac{6}{k}\right) N^{\frac{1}{2}}+\ldots
$$

- Leading and subleading terms obtained in supergravity from two-derivative and four-derivative regularized on-shell actions.
[Martelli, Passias, Sparks'11; Bobev, Charles, Hristov, VR'21]

Evidence and predictions

- In agreement with known results in various limits for $\left(b, m_{i}\right)$.

> [Nosaka'15; Hatsuda'16; Chester,Kalloor,Sharon'21]

- $\left.\partial_{b}^{2} F_{S_{b}^{3}}\right|_{b=1, \Delta_{a}=\frac{1}{2}}$ matches the known dynamical coefficient of the stress tensor two-point function. [Chester, Kalloor, Sharon'20]
[Closset, Dumitrescu,Festuccia,Komargodski'12]

$$
F_{S_{b}^{3}}=\frac{\pi \sqrt{2 k}}{12}\left(b+b^{-1}\right)^{2} N^{\frac{3}{2}}-\frac{\pi \sqrt{2 k}}{12}\left(\frac{k^{2}-16}{16 k}\left(b+b^{-1}\right)^{2}+\frac{6}{k}\right) N^{\frac{1}{2}}+\ldots
$$

- Leading and subleading terms obtained in supergravity from two-derivative and four-derivative regularized on-shell actions.
[Martelli, Passias, Sparks'11; Bobev, Charles,Hristov, VR‘21]
- Airy encodes integrated correlation functions of ABJM on S^{3}
\rightarrow can give access to graviton scattering in M-theory.
[Chester, Pufu,Yin'18; Binder, Chester, Pufu'18]

Outline

(1) ABJM theory on S^{3}
(2) ABJM theory on $S^{1} \times \Sigma_{\mathfrak{g}}$
(3) Holography and black holes
(4) Summary and outlook

The topologically twisted index (TTI)

- The TTI is a partition function of $3 \mathrm{~d} \mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Susy is preserved by a topological twist on the Riemann surface.

The topologically twisted index (TTI)

- The TTI is a partition function of $3 \mathrm{~d} \mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Susy is preserved by a topological twist on the Riemann surface.
- Localization reduces the path-integral to a matrix model.
[Benini,Zaffaroni'15; Closset,Kim'16]
- The result depends on (N, k) and on four magnetic charges \mathfrak{n}_{a} and four electric chemical potentials Δ_{a} (mixed ensemble). Satisfy susy constraints $\sum_{a=1}^{4} \mathfrak{n}_{a}=2(1-\mathfrak{g})$ and $\sum_{a=1}^{4} \Delta_{a}=2$.

The topologically twisted index (TTI)

- The TTI is a partition function of $3 \mathrm{~d} \mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Susy is preserved by a topological twist on the Riemann surface.
- Localization reduces the path-integral to a matrix model.
[Benini,Zaffaroni'15; Closset,Kim'16]
- The result depends on (N, k) and on four magnetic charges \mathfrak{n}_{a} and four electric chemical potentials Δ_{a} (mixed ensemble). Satisfy susy constraints $\sum_{a=1}^{4} \mathfrak{n}_{a}=2(1-\mathfrak{g})$ and $\sum_{a=1}^{4} \Delta_{a}=2$.
- Picking up residues, the TTI can be recast as a sum over solutions to a complicated set of transcendental equations that resemble Bethe Ansatz Equations (BAE).

The topologically twisted index (TTI)

- The TTI is a partition function of $3 \mathrm{~d} \mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Susy is preserved by a topological twist on the Riemann surface.
- Localization reduces the path-integral to a matrix model.
[Benini,Zaffaroni'15; Closset,Kim'16]
- The result depends on (N, k) and on four magnetic charges \mathfrak{n}_{a} and four electric chemical potentials Δ_{a} (mixed ensemble). Satisfy susy constraints $\sum_{a=1}^{4} \mathfrak{n}_{a}=2(1-\mathfrak{g})$ and $\sum_{a=1}^{4} \Delta_{a}=2$.
- Picking up residues, the TTI can be recast as a sum over solutions to a complicated set of transcendental equations that resemble Bethe Ansatz Equations (BAE).
- Strategy: use the large N solution of the BAE as a starting point to numerically evaluate the TTI to high order in $1 / N$.
[Benini, Hristov, Zaffaroni'15; Liu, Pando Zayas, Rathee, Zhao'17]

The large N expansion of the TTI

- The numerics are very precise and allow us to propose an analytic expression! It is naturally written in terms of a shifted N,

$$
\hat{N}_{\Delta}=N-\frac{k}{24}+\frac{1}{12 k} \sum_{a=1}^{4} \Delta_{a}^{-1}
$$

The large N expansion of the TTI

- The numerics are very precise and allow us to propose an analytic expression! It is naturally written in terms of a shifted N,

$$
\hat{N}_{\Delta}=N-\frac{k}{24}+\frac{1}{12 k} \sum_{a=1}^{4} \Delta_{a}^{-1}
$$

- The TTI to all orders in a $1 / N$ expansion:

$$
\begin{aligned}
F_{S^{1} \times \Sigma_{\mathfrak{g}}}= & \frac{\pi \sqrt{2 k \prod_{a} \Delta_{a}}}{3} \sum_{a=1}^{4} \frac{\mathfrak{n}_{a}}{\Delta_{a}}\left(\hat{N}_{\Delta}^{\frac{3}{2}}-\frac{d_{a}}{k} \hat{N}_{\Delta}^{\frac{1}{2}}\right) \\
& +\frac{1-\mathfrak{g}}{2} \log \hat{N}_{\Delta}+f(k, \Delta, \mathfrak{n})+\mathcal{O}\left(e^{-\sqrt{N}}\right)
\end{aligned}
$$

with $d_{a}=\left(2-\Delta_{a}\right) \prod_{b \neq a}\left(\Delta_{a}+\Delta_{b}\right)\left(8 \prod_{b} \Delta_{b}\right)^{-1}$.

The large N expansion of the TTI

- The numerics are very precise and allow us to propose an analytic expression! It is naturally written in terms of a shifted N,

$$
\hat{N}_{\Delta}=N-\frac{k}{24}+\frac{1}{12 k} \sum_{a=1}^{4} \Delta_{a}^{-1}
$$

- The TTI to all orders in a $1 / N$ expansion:

$$
\begin{aligned}
F_{S^{1} \times \Sigma_{\mathfrak{g}}}= & \frac{\pi \sqrt{2 k \prod_{a} \Delta_{a}}}{3} \sum_{a=1}^{4} \frac{\mathfrak{n}_{a}}{\Delta_{a}}\left(\hat{N}_{\Delta}^{\frac{3}{2}}-\frac{d_{a}}{k} \hat{N}_{\Delta}^{\frac{1}{2}}\right) \\
& +\frac{1-\mathfrak{g}}{2} \log \hat{N}_{\Delta}+f(k, \Delta, \mathfrak{n})+\mathcal{O}\left(e^{-\sqrt{N}}\right)
\end{aligned}
$$

with $d_{a}=\left(2-\Delta_{a}\right) \prod_{b \neq a}\left(\Delta_{a}+\Delta_{b}\right)\left(8 \prod_{b} \Delta_{b}\right)^{-1}$.

- Expand at large N to recover the $N^{\frac{3}{2}}, N^{\frac{1}{2}}$ and $\log N$ terms.

Outline

(1) ABJM theory on S^{3}
(2) ABJM theory on $S^{1} \times \Sigma_{\mathfrak{g}}$
(3) Holography and black holes
(4) Summary and outlook

Exact black hole entropy

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ backgrounds.

Exact black hole entropy

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ backgrounds.
- Susy Euclidean "black saddle" solutions in the 4d STU model that uplift to 11d with 4-form flux,
[Bobev, Charles, Min'20]
[Azizi, Godazgar, Godazgar, Pope '16]

$$
\begin{aligned}
& d s_{4}^{2}=e^{f_{1}(r)} d \tau^{2}+e^{f_{2}(r)} d r^{2}+e^{f_{3}(r)} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad A^{I}=e^{I}(r) d \tau+p^{I} \omega_{\Sigma_{\mathfrak{g}}} \\
& z_{\alpha}(r), \quad \tilde{z}_{\alpha}(r), \quad \text { where } \alpha=1,2,3 \text { and } I=0,1,2,3 .
\end{aligned}
$$

Exact black hole entropy

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $\operatorname{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ backgrounds.
- Susy Euclidean "black saddle" solutions in the 4d STU model that uplift to 11d with 4-form flux,
[Bobev, Charles, Min'20]
[Azizi,Godazgar,Godazgar,Pope ‘ 16]

$$
\begin{aligned}
& d s_{4}^{2}=e^{f_{1}(r)} d \tau^{2}+e^{f_{2}(r)} d r^{2}+e^{f_{3}(r)} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad A^{I}=e^{I}(r) d \tau+p^{I} \omega_{\Sigma_{\mathfrak{g}}} \\
& z_{\alpha}(r), \quad \tilde{z}_{\alpha}(r), \quad \text { where } \alpha=1,2,3 \text { and } I=0,1,2,3 .
\end{aligned}
$$

- For some values of parameters, black saddles have a Lorentzian interpretation as static BPS black holes with $\mathrm{AdS}_{2} \times \Sigma_{\mathfrak{g}}$ NHG.
[Gauntlett,Kim,Pakis,Waldram‘01; Cacciatori,Klemm‘09]

Exact black hole entropy

- Our field theory results give predictions for the path-integral of M-theory on asymptotically $\operatorname{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ backgrounds.
- Susy Euclidean "black saddle" solutions in the 4d STU model that uplift to 11d with 4-form flux,
[Bobev, Charles, Min'20]
[Azizi,Godazgar,Godazgar,Pope ‘ 16]
$d s_{4}^{2}=e^{f_{1}(r)} d \tau^{2}+e^{f_{2}(r)} d r^{2}+e^{f_{3}(r)} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad A^{I}=e^{I}(r) d \tau+p^{I} \omega_{\Sigma_{\mathfrak{g}}}$, $z_{\alpha}(r), \quad \tilde{z}_{\alpha}(r), \quad$ where $\alpha=1,2,3$ and $I=0,1,2,3$.
- For some values of parameters, black saddles have a Lorentzian interpretation as static BPS black holes with $\mathrm{AdS}_{2} \times \Sigma_{\mathfrak{g}}$ NHG.
[Gauntlett,Kim,Pakis,Waldram‘01; Cacciatori,Klemm‘09]
- Our proposed analytic TTI encodes their quantum entropy to all orders in the parameter N of the microscopic theory!

Outline

(1) ABJM theory on S^{3}
(2) ABJM theory on $S^{1} \times \Sigma_{\mathfrak{g}}$
(3) Holography and black holes
(4) Summary and outlook

Summary and outlook

- Presented pertubatively exact results at large N and fixed k for the partition function of ABJM theory on S_{b}^{3} and $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Discussed implications for holography and black holes.
- Similar results are available for other quiver gauge theories corresponding to different X_{7} internal manifolds.

Summary and outlook

- Presented pertubatively exact results at large N and fixed k for the partition function of ABJM theory on S_{b}^{3} and $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Discussed implications for holography and black holes.
- Similar results are available for other quiver gauge theories corresponding to different X_{7} internal manifolds.
- Understand the results in terms of the relation $Z_{S^{3}}=\langle\mathcal{F}\rangle_{S^{1} \times S^{2}}$? Study other 3-manifolds (e.g. Seifert)?
- Analytic derivation of the TTI from the matrix model?

Summary and outlook

- Presented pertubatively exact results at large N and fixed k for the partition function of ABJM theory on S_{b}^{3} and $S^{1} \times \Sigma_{\mathfrak{g}}$.
- Discussed implications for holography and black holes.
- Similar results are available for other quiver gauge theories corresponding to different X_{7} internal manifolds.
- Understand the results in terms of the relation $Z_{S^{3}}=\langle\mathcal{F}\rangle_{S^{1} \times S^{2}}$? Study other 3-manifolds (e.g. Seifert)?
[Closset,Kim,Willett'17]
- Analytic derivation of the TTI from the matrix model?
- Highlighted available match for leading, subleading, and log terms from supergravity. Can we go beyond?
- Localization in supergravity looks very promising...
[Dabholkar, Drukker, Gomes'14; Hristov,Lodato, VR‘17-18; Hristov‘21-22]

Thank you for your attention!

The TTI of various 3d SCFTs

- 3d $\mathcal{N}=3$ SCFT with $X_{7}=N^{0,1,0}: \hat{N}_{\Delta_{a}=\frac{1}{2}}=N+\frac{k}{12}+\frac{1}{3 k}$ and

$$
\frac{F_{S^{1} \times \Sigma_{\mathfrak{g}}}}{1-\mathfrak{g}}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\hat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{5}{4 k}\right) \hat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \hat{N}+f_{0}(k) .
$$

- 3d $\mathcal{N}=2$ SCFT with $X_{7}=V^{5,2}: \hat{N}_{\Delta_{a}=\frac{1}{2}}=N+\frac{k}{6}+\frac{1}{4 k}$ and

$$
\frac{F_{S^{1} \times \Sigma_{\mathfrak{g}}}}{1-\mathfrak{g}}=\frac{16 \pi \sqrt{k}}{27}\left(\hat{N}^{\frac{3}{2}}-\left(\frac{9 k}{16}+\frac{27}{16 k}\right) \hat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \hat{N}+f_{0}(k) .
$$

- 3d $\mathcal{N}=2$ SCFT with $X_{7}=Q^{1,1,1}: \hat{N}_{\Delta_{a}=\frac{1}{2}}=N+\frac{k}{6}$ and

$$
\frac{F_{S^{1} \times \Sigma_{\mathfrak{g}}}}{1-\mathfrak{g}}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\hat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{3}{4 k}\right) \hat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \hat{N}+f_{0}(k) .
$$

The universal black hole

- Susy Euclidean solution of $4 \mathrm{~d} \mathcal{N}=2$ gauged supergravity:
[Romans'92; Bobev, Charles, Min'20]

$$
\begin{gathered}
d s_{4}^{2}=U(r) d \tau^{2}+\frac{d r^{2}}{U(r)}+r^{2} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad F=\frac{q}{r^{2}} d \tau \wedge d r-\frac{\kappa}{g} \operatorname{vol}\left(\Sigma_{\mathfrak{g}}\right) \\
U(r)=\left(\sqrt{2} g r+\frac{\kappa}{2 \sqrt{2} g r}\right)^{2}-\frac{q^{2}}{8 r^{2}}, \quad \kappa=\{1,0,-1\}
\end{gathered}
$$

Smooth for $g|q|>\kappa$ with Euclidean periodicity $\beta_{\tau}=\frac{\pi \sqrt{g|q|-\kappa}}{g^{2}|q|}$.

- Regular Lorentzian black hole obtained by taking $|q| \rightarrow 0$. Only exists for $\kappa=-1$, i.e. hyperbolic horizon.
- Euclidean regularized on-shell action I is independent of β_{τ}. For the Lorentzian black hole, leads to the usual

$$
S_{\mathrm{BH}}=-I
$$

The universal TTI

- Our proposed TTI with $\mathfrak{n}_{a}=\frac{1-\mathfrak{g}}{2}$ and $\Delta_{a}=\frac{1}{2}$ accounts for the entropy of the black hole to all orders in the $1 / N$ expansion!

$$
\frac{F_{S^{1} \times \Sigma_{\mathfrak{g}}}}{1-\mathfrak{g}}=\frac{\pi \sqrt{2 k}}{3}\left(N^{\frac{3}{2}}-\frac{k^{2}+32}{16 k} N^{\frac{1}{2}}\right)+\frac{1}{2} \log N+\mathcal{O}\left(N^{0}\right) .
$$

- Leading term reproduced from two-derivative supergravity regularized on-shell action. [Benini,Hristov,Zaffaroni'15] [Azzurli, Bobev, Crichigno,Min, Zaffaroni'17]
- Subleading term from four-derivative supergravity regularized on-shell action.
[Bobev, Charles, Hristov, VR‘21]
- Log term from one-loop contributions of the KK modes in 11d.
[Liu, Pando Zayas, Rathee, Zhao'17]

