D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ at $k=1$ and their holographic duals

J. Vošmera
arxiv:2110. 05509 (with M. Gaberdiel and B. Knighton)
Institut für Theoretische Physik, ETH Zürich

Eurostrings 2022

Goal

AdS/CFT correspondence is a proposed strong/weak duality between:

- a theory of quantum gravity in d dimensions
- a gauge theory in $d-1$ dimensions
[Maldacena '97]

Goal

AdS/CFT correspondence is a proposed strong/weak duality between:

- a theory of quantum gravity in d dimensions
- a gauge theory in $d-1$ dimensions
[Maldacena '97]
$\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ at $k=1$ provides setting where amplitudes and correlators are exactly computable on both sides, thus giving a perturbative proof of the duality. [Eberhardt, Gaberdiel, Gopakumar, Knighton, Dei, ...]

Goal

AdS/CFT correspondence is a proposed strong/weak duality between:

- a theory of quantum gravity in d dimensions
- a gauge theory in $d-1$ dimensions
[Maldacena '97]
$\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ at $k=1$ provides setting where amplitudes and correlators are exactly computable on both sides, thus giving a perturbative proof of the duality. [Eberhardt, Gaberdiel, Gopakumar, Knighton, Dei, ...]

Can we extend the duality to cover D-branes in the bulk?

Part I: Introduction and motivation

AdS/CFT holographic dictionary

On-shell closed string states in AdS \Longleftrightarrow single-trace operators in the CFT

AdS/CFT holographic dictionary

On-shell closed string states in AdS \Longleftrightarrow single-trace operators in the CFT
String amplitudes in AdS \Longleftrightarrow Correlators in the CFT

[figures by Bob Knighton]

AdS/CFT holographic dictionary

On-shell closed string states in AdS \Longleftrightarrow single-trace operators in the CFT
String amplitudes in AdS \Longleftrightarrow Correlators in the CFT

[figures by Bob Knighton]
Genus expansion of amps in AdS \Longleftrightarrow loop exp. of CFT correlators

$$
\sum_{\text {genus }} g_{\mathrm{s}}^{2 g-2} \int_{\mathcal{M}_{g, n}} \mathcal{O}_{\mathrm{string}, g, n}=\sum_{\ell} N^{2-2 \ell} \mathcal{O}_{\mathrm{CFT}, \ell, n}
$$

$\Longrightarrow g_{\mathrm{s}} \sim 1 / N$, duality holds order-by-order in g_{s}

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ duality

Consider a superposition of N 1-branes and k 5-branes on a $\mathbb{R}^{1,4} \times \mathrm{S}^{1} \times \mathbb{T}^{4}$

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ duality

Consider a superposition of N 1-branes and k 5-branes on a $\mathbb{R}^{1,4} \times \mathrm{S}^{1} \times \mathbb{T}^{4}$ Branes backreact on the bulk to produce non-trivial geometry bulk theory: superstring on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ duality

Consider a superposition of N 1-branes and k 5-branes on a $\mathbb{R}^{1,4} \times \mathrm{S}^{1} \times \mathbb{T}^{4}$ Branes backreact on the bulk to produce non-trivial geometry bulk theory: superstring on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$

1-branes viewed as SYM instantons within the 5-branes [Seiberg, Witten '99]
2d CFT: sigma-model on the (resolved) ADHM moduli space

A free-field miracle

(Almost) free-field point:

$$
\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right) \equiv\left(\mathbb{T}^{4}\right)^{\otimes N} / S_{N} \quad \Longrightarrow \quad \text { symmetric-product orbifold CFT }
$$

A free-field miracle

(Almost) free-field point:

$$
\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right) \equiv\left(\mathbb{T}^{4}\right)^{\otimes N} / S_{N} \quad \Longrightarrow \quad \text { symmetric-product orbifold CFT }
$$

Dual to $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ with $k=1$ NS5-branes! [Eberhardt, Gaberdiel, Gopakumar '18]

A free-field miracle

(Almost) free-field point:

$$
\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right) \equiv\left(\mathbb{T}^{4}\right)^{\otimes N} / S_{N} \quad \Longrightarrow \quad \text { symmetric-product orbifold CFT }
$$

Dual to $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ with $k=1$ NS5-branes! [Eberhardt, Gaberdiel, Gopakumar '18]
\rightarrow exact worldsheet description (in hybrid formalism)

$$
\mathfrak{p s u}(1,1 \mid 2)_{1} \text { super-WZW } \oplus \text { top. twisted } \mathbb{T}^{4} \oplus \text { ghosts }
$$

A free-field miracle

(Almost) free-field point:

$$
\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right) \equiv\left(\mathbb{T}^{4}\right)^{\otimes N} / S_{N} \quad \Longrightarrow \quad \text { symmetric-product orbifold CFT }
$$

Dual to $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ with $k=1$ NS5-branes! [Eberhardt, Gaberdiel, Gopakumar '18]
\rightarrow exact worldsheet description (in hybrid formalism)

$$
\mathfrak{p s u}(1,1 \mid 2)_{1} \text { super-WZW } \oplus \text { top. twisted } \mathbb{T}^{4} \oplus \text { ghosts }
$$

\rightarrow free-field realisation

$$
\mathfrak{p s u}(1,1 \mid 2)_{1} \sim 4 \text { symplectic bosons } \oplus 4 \text { real fermions }
$$

A free-field miracle

(Almost) free-field point:

$$
\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right) \equiv\left(\mathbb{T}^{4}\right)^{\otimes N} / S_{N} \quad \Longrightarrow \quad \text { symmetric-product orbifold CFT }
$$

Dual to $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ with $k=1$ NS5-branes! [Eberhardt, Gaberdiel, Gopakumar '18]
\rightarrow exact worldsheet description (in hybrid formalism)

$$
\mathfrak{p s u}(1,1 \mid 2)_{1} \text { super-WZW } \oplus \text { top. twisted } \mathbb{T}^{4} \oplus \text { ghosts }
$$

\rightarrow free-field realisation

$$
\mathfrak{p s u}(1,1 \mid 2)_{1} \sim 4 \text { symplectic bosons } \oplus 4 \text { real fermions }
$$

\rightarrow can compute spectra and all correlators on both sides!
[Dei, Eberhardt, Gaberdiel, Gopakumar, Knighton]

Our objectives

Can we construct D-branes in this setup?
\rightarrow boundary states in $\mathfrak{p s u}(1,1 \mid 2)_{1}$

Our objectives

Can we construct D-branes in this setup?
\rightarrow boundary states in $\mathfrak{p s u}(1,1 \mid 2)_{1}$
Can we match them to some dual objects in the $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$ CFT? \rightarrow boundary states? defects?

Part II: Closed strings on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ at $k=1$: a review

$\mathfrak{p s u}(1,1 \mid 2)_{k=1}$ superalgebra and its free-field realisation

Maximal bosonic subalgebra

$$
\underbrace{\mathfrak{s l}(2 ; \mathbb{R})_{1} \quad\left\{J^{a}\right\}}_{\mathrm{AdS}_{3}} \oplus \underbrace{\mathfrak{s u}(2)_{1}\left\{K^{a}\right\}}_{\mathrm{S}^{3}}
$$

$\mathfrak{p s u}(1,1 \mid 2)_{k=1}$ superalgebra and its free-field realisation

Maximal bosonic subalgebra

$$
\underbrace{\mathfrak{s l}(2 ; \mathbb{R})_{1} \quad\left\{J^{a}\right\}}_{\mathrm{AdS}_{3}}
$$

Supercurrents $S^{\alpha \beta \gamma}$ in (2,2)

$\mathfrak{p s u}(1,1 \mid 2)_{k=1}$ superalgebra and its free-field realisation

Maximal bosonic subalgebra

$$
\underbrace{\mathfrak{s l}(2 ; \mathbb{R})_{1} \quad\left\{J^{a}\right\}}_{\mathrm{AdS}_{3}} \oplus \underbrace{\mathfrak{s u}(2)_{1}\left\{K^{a}\right\}}_{\mathrm{S}^{3}}
$$

Supercurrents $S^{\alpha \beta \gamma}$ in (2,2)
Can construct $\left\{J^{a}, K^{a}, S^{\alpha \beta \gamma}\right\}$ as bilinears in terms of 2 pairs of symplectic bosons and complex fermions ($\alpha, \beta= \pm$)

$$
\xi^{\alpha}(z) \eta^{\beta}(w) \sim \frac{\varepsilon^{\alpha \beta}}{z-w}, \quad \psi^{\alpha}(z) \chi^{\beta}(w) \sim \frac{\varepsilon^{\alpha \beta}}{z-w}
$$

Representations of $\mathfrak{p s u}(1,1 \mid 2)_{1}$

At $k=1$ only the short supermultiplets relevant

$$
\mathcal{F}_{\lambda}: \quad\left(\mathfrak{C}_{\lambda+\frac{1}{2}}^{1}, \mathbf{1}\right) \stackrel{(}{\lambda}^{\left(\frac{1}{2}, \mathbf{2}\right)}\left(\mathfrak{C}_{\lambda+\frac{1}{2}}^{0}, \mathbf{1}\right)
$$

Representations of $\mathfrak{p s u}(1,1 \mid 2)_{1}$

At $k=1$ only the short supermultiplets relevant

$$
\mathcal{F}_{\lambda}: \quad\left(\mathfrak{C}_{\lambda+\frac{1}{2}}^{1}, \mathbf{1}\right)^{\left(\mathcal{C}_{\lambda}^{\frac{1}{2}}, \mathbf{2}\right)}\left(\mathcal{C}_{\lambda+\frac{1}{2}}^{0}, \mathbf{1}\right)
$$

where

$$
\begin{array}{ll}
\mathcal{C}_{\lambda}^{j}: & \text { cts reps of } \mathfrak{s l}(2 ; \mathbb{R}), j \in \mathbb{R} \cup\left(\frac{1}{2}+i \mathbb{R}\right) \\
& \text { quadratic Casimir } \mathcal{C}^{\mathfrak{s l}(2 ; \mathbb{R})}=-j(j-1) \\
& \lambda \in[0,1) \cong \mathbb{R} / \mathbb{Z} \text { the fractional part of } J_{0}^{3} \text { eigenvalues } \\
\mathbf{k}: & \mathfrak{s u}(2) \text { reps }
\end{array}
$$

Representations of $\mathfrak{p s u}(1,1 \mid 2)_{1}$

At $k=1$ only the short supermultiplets relevant

$$
\mathcal{F}_{\lambda}: \quad\left(\mathcal{C}_{\lambda+\frac{1}{2}}^{1}, \mathbf{1}\right)^{\left(\mathcal{C}_{\lambda}^{\frac{1}{2}}, \mathbf{2}\right)}\left(\mathcal{C}_{\lambda+\frac{1}{2}}^{0}, \mathbf{1}\right)
$$

where

$$
\begin{array}{ll}
\mathcal{C}_{\lambda}^{j}: & \text { cts reps of } \mathfrak{s l}(2 ; \mathbb{R}), j \in \mathbb{R} \cup\left(\frac{1}{2}+i \mathbb{R}\right) \\
& \text { quadratic Casimir } \mathcal{C}^{\mathfrak{s l}(2 ; \mathbb{R})}=-j(j-1) \\
& \lambda \in[0,1) \cong \mathbb{R} / \mathbb{Z} \text { the fractional part of } J_{0}^{3} \text { eigenvalues } \\
\mathbf{k}: & \mathfrak{s u}(2) \text { reps }
\end{array}
$$

\rightarrow full affine reps generated by acting with negative modes of $\mathfrak{p s u}(1,1 \mid 2)_{1}$

Representations of $\mathfrak{p s u}(1,1 \mid 2)_{1}$

At $k=1$ only the short supermultiplets relevant

$$
\mathcal{F}_{\lambda}: \quad\left(\mathcal{C}_{\lambda+\frac{1}{2}}^{1}, \mathbf{1}\right)^{\left(\mathcal{C}_{\lambda}^{\frac{1}{2}}, \mathbf{2}\right)}\left(\mathcal{C}_{\lambda+\frac{1}{2}}^{0}, \mathbf{1}\right)
$$

where

$$
\begin{array}{ll}
\mathcal{C}_{\lambda}^{j}: & \text { cts reps of } \mathfrak{s l}(2 ; \mathbb{R}), j \in \mathbb{R} \cup\left(\frac{1}{2}+i \mathbb{R}\right) \\
& \text { quadratic Casimir } \mathcal{C}^{\mathfrak{s l}(2 ; \mathbb{R})}=-j(j-1) \\
& \lambda \in[0,1) \cong \mathbb{R} / \mathbb{Z} \text { the fractional part of } J_{0}^{3} \text { eigenvalues } \\
\mathbf{k}: & \mathfrak{s u}(2) \text { reps }
\end{array}
$$

\rightarrow full affine reps generated by acting with negative modes of $\mathfrak{p s u}(1,1 \mid 2)_{1}$
Modular invariant bulk CFT spectrum

$$
\mathcal{H}=\bigoplus_{w \in \mathbb{Z}} \int_{\lambda \in[0,1)} d \lambda \sigma^{w}\left(\mathcal{F}_{\lambda}\right) \otimes \overline{\sigma^{w}\left(\mathcal{F}_{\lambda}\right)}
$$

$\rightarrow \sigma^{w}\left(\mathcal{F}_{\lambda}\right)$ spectrally flowed reps (w-times wound long strings)

Worldsheet partition function

The total worldsheet partition function

$$
Z_{\mathfrak{p s u}(1,1 \mid 2)_{1}} Z_{\mathrm{gh}} Z_{\mathbb{T}^{4}}=\frac{1}{2} \sum_{r, w \in \mathbb{Z}} \delta^{2}(t-w \tau-r)|q|^{w^{2}} Z_{\mathbb{T}^{4}}(t ; \tau)
$$

where
τ... worldsheet-torus modulus
$t \quad \ldots$ spacetime-torus modulus $\left(\mathfrak{s l}(2 ; \mathbb{R})_{1}\right.$ chemical potential)
\rightarrow worldsheet holomorphically covers spacetime!

Worldsheet partition function

The total worldsheet partition function

$$
Z_{\mathfrak{p s u}(1,1 \mid 2)_{1}} Z_{\mathrm{gh}} Z_{\mathbb{T}^{4}}=\frac{1}{2} \sum_{r, w \in \mathbb{Z}} \delta^{2}(t-w \tau-r)|q|^{w^{2}} Z_{\mathbb{T}^{4}}(t ; \tau)
$$

where
$\tau \quad \ldots$ worldsheet-torus modulus
$t \quad \ldots$ spacetime-torus modulus $\left(\mathfrak{s l}(2 ; \mathbb{R})_{1}\right.$ chemical potential)
\rightarrow worldsheet holomorphically covers spacetime!
Impose on-shell condition \& level-matching, end up with on-shell partition function (up to spin structures)

$$
Z_{\text {string }}(t)=\sum_{w=1}^{\infty} x^{\frac{w}{4}} \bar{x}^{\frac{w}{4}} Z_{\mathbb{T}^{4}}\left(0 ; \frac{t}{w}\right)
$$

Worldsheet partition function

The total worldsheet partition function

$$
Z_{\mathfrak{p s u}(1,1 \mid 2)_{1}} Z_{\mathrm{gh}} Z_{\mathbb{T}^{4}}=\frac{1}{2} \sum_{r, w \in \mathbb{Z}} \delta^{2}(t-w \tau-r)|q|^{w^{2}} Z_{\mathbb{T}^{4}}(t ; \tau)
$$

where
$\tau \quad .$. worldsheet-torus modulus
$t \quad \ldots$ spacetime-torus modulus $\left(\mathfrak{s l}(2 ; \mathbb{R})_{1}\right.$ chemical potential)
\rightarrow worldsheet holomorphically covers spacetime!
Impose on-shell condition \& level-matching, end up with on-shell partition function (up to spin structures)

$$
Z_{\text {string }}(t)=\sum_{w=1}^{\infty} x^{\frac{w}{4}} \bar{x}^{\frac{w}{4}} Z_{\mathbb{T}^{4}}\left(0 ; \frac{t}{w}\right)
$$

\rightarrow single-particle partition function of $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Worldsheet partition function

The total worldsheet partition function

$$
Z_{\mathfrak{p s u}(1,1 \mid 2)_{1}} Z_{\mathrm{gh}} Z_{\mathbb{T}^{4}}=\frac{1}{2} \sum_{r, w \in \mathbb{Z}} \delta^{2}(t-w \tau-r)|q|^{w^{2}} Z_{\mathbb{T}^{4}}(t ; \tau)
$$

where
$\tau \quad \ldots$ worldsheet-torus modulus
$t \quad \ldots$ spacetime-torus modulus $\left(\mathfrak{s l}(2 ; \mathbb{R})_{1}\right.$ chemical potential)
\rightarrow worldsheet holomorphically covers spacetime!
Impose on-shell condition \& level-matching, end up with on-shell partition function (up to spin structures)

$$
Z_{\text {string }}(t)=\sum_{w=1}^{\infty} x^{\frac{w}{4}} \bar{x}^{\frac{w}{4}} Z_{\mathbb{T}^{4}}\left(0 ; \frac{t}{w}\right)
$$

\rightarrow single-particle partition function of $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$
\rightarrow on-shell w-wound strings in $\mathrm{AdS}_{3} \Longleftrightarrow w$-cycle twisted states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

On-shell vertex operators and amplitudes

On-shell states given by vertex ops ($J_{0}^{3}, J_{0}^{ \pm} \rightarrow$ global spacetime conf. algebra) [Maldacena, Ooguri '00]

$$
V_{m, j}^{w}(x, z)=e^{-x J_{0}^{+}} V_{m, j}^{w}(z) e^{+x J_{0}^{+}} \quad \ldots \quad x \in \partial \operatorname{AdS}_{3}
$$

On-shell vertex operators and amplitudes

On-shell states given by vertex ops ($J_{0}^{3}, J_{0}^{ \pm} \rightarrow$ global spacetime conf. algebra) [Maldacena, Ooguri '00]

$$
V_{m, j}^{w}(x, z)=e^{-x J_{0}^{+}} V_{m, j}^{w}(z) e^{+x J_{0}^{+}} \quad \ldots \quad x \in \partial \operatorname{AdS}_{3}
$$

String theory n-point, g-loop amplitude (hybrid-formalism PCO insertions W)

$$
\mathcal{A}_{g, n}\left(x_{1}, \ldots, x_{n}\right)=\int_{\mathcal{M}_{g, n}}\left\langle\prod_{a=1}^{n+2 g-2} W\left(u_{a}\right) \prod_{i=1}^{n} V_{m_{i}, j_{i}}^{w_{i}}\left(x_{i}, z_{i}\right)\right\rangle
$$

Worldsheet localisation

For tensionless $\operatorname{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$, the $\mathcal{M}_{g, n}$ integral localises at isolated points in $\mathcal{M}_{g, n}$ where \exists a holomorphic covering map $\Gamma: \Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$

Worldsheet localisation

For tensionless $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$, the $\mathcal{M}_{g, n}$ integral localises at isolated points in $\mathcal{M}_{g, n}$ where \exists a holomorphic covering map $\Gamma: \Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$

\Longrightarrow Lunin-Mathur for S^{2} correlators of w-cycle twisted states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Worldsheet localisation

For tensionless $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$, the $\mathcal{M}_{g, n}$ integral localises at isolated points in $\mathcal{M}_{g, n}$ where \exists a holomorphic covering map $\Gamma: \Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$

\Longrightarrow Lunin-Mathur for S^{2} correlators of w-cycle twisted states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$
How?

Worldsheet localisation

For tensionless $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$, the $\mathcal{M}_{g, n}$ integral localises at isolated points in $\mathcal{M}_{g, n}$ where \exists a holomorphic covering map $\Gamma: \Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$

\Longrightarrow Lunin-Mathur for S^{2} correlators of w-cycle twisted states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$
How?
\rightarrow define meromorphic functions

$$
\omega^{ \pm}(z)=\left\langle\xi^{ \pm}(z) \prod_{a=1}^{n+2 g-2} W\left(u_{a}\right) \prod_{i=1}^{n} V_{m_{i}, j_{i}}^{w_{i}}\left(x_{i}, z_{i}\right)\right\rangle
$$

Worldsheet localisation

For tensionless $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$, the $\mathcal{M}_{g, n}$ integral localises at isolated points in $\mathcal{M}_{g, n}$ where \exists a holomorphic covering map $\Gamma: \Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$

\Longrightarrow Lunin-Mathur for S^{2} correlators of w-cycle twisted states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$
How?
\rightarrow define meromorphic functions

$$
\omega^{ \pm}(z)=\left\langle\xi^{ \pm}(z) \prod_{a=1}^{n+2 g-2} W\left(u_{a}\right) \prod_{i=1}^{n} V_{m_{i}, j_{i}}^{w_{i}}\left(x_{i}, z_{i}\right)\right\rangle
$$

\rightarrow analytic properties imply that $\Gamma(z) \equiv-\omega^{-}(z) / \omega^{+}(z)$ is the holomorphic covering map $\Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$! with ramification indices w_{i}, if it exists

Worldsheet localisation

For tensionless $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$, the $\mathcal{M}_{g, n}$ integral localises at isolated points in $\mathcal{M}_{g, n}$ where \exists a holomorphic covering map $\Gamma: \Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$

\Longrightarrow Lunin-Mathur for S^{2} correlators of w-cycle twisted states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$
How?
\rightarrow define meromorphic functions

$$
\omega^{ \pm}(z)=\left\langle\xi^{ \pm}(z) \prod_{a=1}^{n+2 g-2} W\left(u_{a}\right) \prod_{i=1}^{n} V_{m_{i}, j_{i}}^{w_{i}}\left(x_{i}, z_{i}\right)\right\rangle
$$

\rightarrow analytic properties imply that $\Gamma(z) \equiv-\omega^{-}(z) / \omega^{+}(z)$ is the holomorphic covering map $\Sigma_{g, n} \longrightarrow \partial \mathrm{AdS}_{3} \cong \mathrm{~S}^{2}$! with ramification indices w_{i}, if it exists
\rightarrow if Γ does not exist, then need to have $\omega^{+}(z)=0 \Longrightarrow$ vanishing amplitude!

Part III: D-branes in AdS_{3} and boundary states of the symmetric orbifold

Symmetry-preserving D-branes in AdS_{3}

D-branes in WZW models \Longleftrightarrow (twined) conjugacy classes on the group manifold

Symmetry-preserving D-branes in AdS_{3}

D-branes in WZW models \Longleftrightarrow (twined) conjugacy classes on the group manifold

Two inequivalent D-branes preserving the $\mathfrak{s l}(2 ; \mathbb{R})_{1}$ subalgebra of $\mathfrak{p s u}(1,1 \mid 2)_{1}$: [Bachas, Petropoulos '00; Ponsot, Schomerus '01; Ooguri, Lee, Park '01]

Symmetry-preserving D-branes in AdS_{3}

D-branes in WZW models \Longleftrightarrow (twined) conjugacy classes on the group manifold

Two inequivalent D-branes preserving the $\mathfrak{s l}(2 ; \mathbb{R})_{1}$ subalgebra of $\mathfrak{p s u}(1,1 \mid 2)_{1}$: [Bachas, Petropoulos '00; Ponsot, Schomerus '01; Ooguri, Lee, Park '01]

\rightarrow spherical branes: instantonic H_{2} planes in AdS_{3} (but S^{2} in EAdS_{3})

Symmetry-preserving D-branes in AdS_{3}

D-branes in WZW models \Longleftrightarrow (twined) conjugacy classes on the group manifold

Two inequivalent D-branes preserving the $\mathfrak{s l}(2 ; \mathbb{R})_{1}$ subalgebra of $\mathfrak{p s u}(1,1 \mid 2)_{1}$: [Bachas, Petropoulos '00; Ponsot, Schomerus '01; Ooguri, Lee, Park '01]

\rightarrow spherical branes: instantonic H_{2} planes in AdS_{3} (but S^{2} in EAdS_{3})
$\rightarrow \mathrm{AdS}_{2}$ branes: D-strings stretched between antipodal points on $\partial \mathrm{AdS}_{3}$

Boundary states for $\mathfrak{p s u}(1,1 \mid 2)_{1}$: spherical D-branes

Ishibashi states $|w, \lambda\rangle\rangle$ satisfy

$$
\begin{aligned}
\left.\left(J_{n}^{3}-\bar{J}_{-n}^{3}\right)|w, \lambda\rangle\right\rangle & =0, \\
\left.\left(J_{n}^{ \pm}+\bar{J}_{-n}{ }^{\ddagger}\right)|w, \lambda\rangle\right\rangle & =0,
\end{aligned}
$$

Boundary states for $\mathfrak{p s u}(1,1 \mid 2)_{1}$: spherical D-branes

Ishibashi states $|w, \lambda\rangle\rangle$ satisfy

$$
\begin{aligned}
\left(J_{n}^{3}-\bar{J}_{-n}^{3}\right)|w, \lambda\rangle & =0, \\
\left.\left(J_{n}^{ \pm}+\bar{J}_{-n}^{\mp}\right)|w, \lambda\rangle\right\rangle & =0,
\end{aligned}
$$

\rightarrow compatible with all $\lambda \in[0,1)$ and spectral flow

$$
\left.|w, \lambda\rangle\rangle=\sigma^{w}(|0, \lambda\rangle\rangle\right) \quad \text { for all } w \in \mathbb{Z}
$$

Boundary states for $\mathfrak{p s u}(1,1 \mid 2)_{1}$: spherical D-branes

Ishibashi states $|w, \lambda\rangle\rangle$ satisfy

$$
\begin{aligned}
\left(J_{n}^{3}-\bar{J}_{-n}^{3}\right)|w, \lambda\rangle & =0 \\
\left.\left(J_{n}^{ \pm}+\bar{J}_{-n}^{\mp}\right)|w, \lambda\rangle\right\rangle & =0,
\end{aligned}
$$

\rightarrow compatible with all $\lambda \in[0,1)$ and spectral flow

$$
\left.|w, \lambda\rangle\rangle=\sigma^{w}(|0, \lambda\rangle\rangle\right) \quad \text { for all } w \in \mathbb{Z}
$$

Full boundary states

$$
\left.\| W, \Lambda\rangle\rangle=\sum_{w \in \mathbb{Z}} \int_{0}^{1} d \lambda e^{2 \pi i\left[w\left(\Lambda-\frac{1}{2}\right)+\left(\lambda-\frac{1}{2}\right) W\right]}|w, \lambda\rangle\right\rangle
$$

Boundary states for $\mathfrak{p s u}(1,1 \mid 2)_{1}$: spherical D-branes

Ishibashi states $|w, \lambda\rangle\rangle$ satisfy

$$
\begin{aligned}
\left(J_{n}^{3}-\bar{J}_{-n}^{3}\right)|w, \lambda\rangle & =0 \\
\left.\left(J_{n}^{ \pm}+\bar{J}_{-n}^{\mp}\right)|w, \lambda\rangle\right\rangle & =0,
\end{aligned}
$$

\rightarrow compatible with all $\lambda \in[0,1)$ and spectral flow

$$
\left.|w, \lambda\rangle\rangle=\sigma^{w}(|0, \lambda\rangle\rangle\right) \quad \text { for all } w \in \mathbb{Z}
$$

Full boundary states

$$
\left.\| W, \Lambda\rangle\rangle=\sum_{w \in \mathbb{Z}} \int_{0}^{1} d \lambda e^{2 \pi i\left[w\left(\Lambda-\frac{1}{2}\right)+\left(\lambda-\frac{1}{2}\right) W\right]}|w, \lambda\rangle\right\rangle
$$

$\rightarrow W$: integer shift along AdS_{3} time direction
$\rightarrow \Lambda$: angular Wilson line

Cylinder amplitude for spherical branes

Worldsheet boundary state

$$
\| W, \Lambda, u\rangle\rangle \equiv \underbrace{\| W, \Lambda\rangle\rangle}_{\mathfrak{p s u}(1,1 \mid 2)_{1}} \underbrace{\| u\rangle\rangle}_{\mathbb{T}^{4}} \underbrace{\| g h\rangle\rangle}_{\rho \sigma \text { ghosts }}
$$

Cylinder amplitude for spherical branes

Worldsheet boundary state

$$
\| W, \Lambda, u\rangle\rangle \equiv \underbrace{\| W, \Lambda\rangle\rangle}_{\mathfrak{p s u}(1,1 \mid 2)_{1}} \underbrace{\| u\rangle\rangle}_{\mathbb{T}^{4}} \underbrace{\| \text { gh }\rangle}_{\rho \sigma \text { ghosts }}
$$

Worldsheet cylinder amplitude (J_{0}^{3} generates spacetime cylinder modulus t)

$$
\mathcal{A}_{u \mid v}(t)=\int_{0}^{\infty} d \tau\left\langle\left\langle W, \Lambda, u\left\|e^{2 \pi i \tau\left(L_{0}-\frac{c}{24}\right)} e^{2 \pi i t J_{0}^{3}}\right\| W, \Lambda, v\right\rangle\right\rangle
$$

Localisation

Can manipulate $\mathcal{A}_{u \mid v}$ into (again, up to spin structures)

$$
\mathcal{A}_{u \mid v}=\int_{0}^{\infty} d \tau \sum_{w=1}^{\infty} \frac{x^{\frac{w}{4}}}{w} \delta\left(\frac{t}{w}-\tau\right) \underbrace{\left\langle\left\langle u\left\|e^{2 \pi i \frac{t}{w} J_{0}^{3}}\right\| v\right\rangle\right\rangle}_{\text {overlap of } \mathbb{T}^{4} \text { boundary states }}
$$

Localisation

Can manipulate $\mathcal{A}_{u \mid v}$ into (again, up to spin structures)

$$
\mathcal{A}_{u \mid v}=\int_{0}^{\infty} d \tau \sum_{w=1}^{\infty} \frac{x^{\frac{w}{4}}}{w} \delta\left(\frac{t}{w}-\tau\right) \underbrace{\left\langle\left\langle u\left\|e^{2 \pi i \frac{t}{w} J_{0}^{3}}\right\| v\right\rangle\right\rangle}_{\text {overlap of } \mathbb{T}^{4} \text { boundary states }}
$$

\rightarrow localizes at $\tau=\frac{t}{w}$ for $w \in \mathbb{Z} \Longrightarrow$ unramified covering maps $\Gamma: \mathrm{cyl} \rightarrow \mathrm{cyl}$

Localisation

Can manipulate $\mathcal{A}_{u \mid v}$ into (again, up to spin structures)

$$
\mathcal{A}_{u \mid v}=\int_{0}^{\infty} d \tau \sum_{w=1}^{\infty} \frac{x^{\frac{w}{4}}}{w} \delta\left(\frac{t}{w}-\tau\right) \underbrace{\left\langle\left\langle u\left\|e^{2 \pi i \frac{t}{w} J_{0}^{3}}\right\| v\right\rangle\right\rangle}_{\text {overlap of } \mathbb{T}^{4} \text { boundary states }}
$$

\rightarrow localizes at $\tau=\frac{t}{w}$ for $w \in \mathbb{Z} \Longrightarrow$ unramified covering maps Γ : cyl \rightarrow cyl
To compare with the dual CFT, go to the grandcanonical ensemble by fixing fugacity p for N [Eberhardt '20]

$$
\mathfrak{Z}_{u \mid v}(p ; t)=\exp \left(\sum_{w=1}^{\infty} \frac{p^{w}}{w} \mathbb{T}^{4}\left\langle\left\langle u\left\|e^{2 \pi i \frac{t}{w} J_{0}^{3}}\right\| v\right\rangle\right\rangle_{\mathbb{T}^{4}}\right)
$$

Maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Start with the $\left(\mathbb{T}^{4}\right)^{\otimes N}$ boundary state (works for general seed CFT)

$$
\underbrace{\left.\left.\| u\rangle\rangle_{\mathbb{T}^{4}} \otimes \ldots \otimes \| u\right\rangle\right\rangle_{\mathbb{T}^{4}}}_{N \text { times }}
$$

Maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Start with the $\left(\mathbb{T}^{4}\right)^{\otimes N}$ boundary state (works for general seed CFT)

$$
\underbrace{\left.\| u\rangle\rangle_{\mathbb{T}^{4}} \otimes \ldots \otimes \| u\right\rangle_{\mathbb{T}^{4}}}_{N \text { times }}
$$

Go to a $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$ boundary state by adding all possible twisted sectors [independently derived by Belin, Biswas, Sully '21]

$$
\left.\left.\| u, \rho\rangle\rangle_{\mathrm{Sym}}=\frac{1}{\sqrt{N!}} \sum_{\sigma=\gamma_{1} \gamma_{2} \ldots \in S_{N}} \chi_{\rho}(\sigma) \bigotimes_{r} \| u\right\rangle\right\rangle_{\mathbb{T}^{4}}^{\gamma_{r}}
$$

Maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Start with the $\left(\mathbb{T}^{4}\right)^{\otimes N}$ boundary state (works for general seed CFT)

$$
\underbrace{\left.\| u\rangle_{\mathbb{T}^{4}} \otimes \ldots \otimes \| u\right\rangle_{\mathbb{T}^{4}}}_{N \text { times }}
$$

Go to a $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$ boundary state by adding all possible twisted sectors [independently derived by Belin, Biswas, Sully '21]

$$
\left.\left.\| u, \rho\rangle\rangle_{\mathrm{Sym}}=\frac{1}{\sqrt{N!}} \sum_{\sigma=\gamma_{1} \gamma_{2} \ldots \in S_{N}} \chi_{\rho}(\sigma) \bigotimes_{r} \| u\right\rangle\right\rangle_{\mathbb{T}^{4}}^{\gamma_{r}}
$$

$\rightarrow \gamma_{1}, \gamma_{2}, \ldots$ are disjoint cycles, $\left.\left.\| u\right\rangle\right\rangle_{\mathbb{T}^{4}}^{\gamma_{r}}$ built on top of the γ_{r}-twisted vacuum

Maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Start with the $\left(\mathbb{T}^{4}\right)^{\otimes N}$ boundary state (works for general seed CFT)

$$
\underbrace{\left.\| u\rangle_{\mathbb{T}^{4}} \otimes \cdots \otimes \| u\right\rangle_{\mathbb{T}^{4}}}_{N \text { times }}
$$

Go to a $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$ boundary state by adding all possible twisted sectors [independently derived by Belin, Biswas, Sully '21]

$$
\left.\left.\| u, \rho\rangle\rangle_{\operatorname{Sym}}=\frac{1}{\sqrt{N!}} \sum_{\sigma=\gamma_{1} \gamma_{2} \ldots \in S_{N}} \chi_{\rho}(\sigma) \bigotimes_{r} \| u\right\rangle\right\rangle_{\mathbb{T}^{4}}^{\gamma_{r}}
$$

$\rightarrow \gamma_{1}, \gamma_{2}, \ldots$ are disjoint cycles, $\left.\| u\right\rangle_{\mathbb{T}^{4}}^{\gamma_{r}}$ built on top of the γ_{r}-twisted vacuum
\rightarrow for $\rho=\mathrm{id}$, the cylinder correlator in grandcan. ensemble gives

$$
\sum_{N=0}^{\infty} p^{N}{ }_{\operatorname{Sym}}\left\langle\left\langle u, \mathrm{id}\left\|e^{2 \pi i t\left(L_{0}-\frac{c}{24}\right)}\right\| v, \mathrm{id}\right\rangle\right\rangle_{\mathrm{Sym}}=\ldots=\mathfrak{Z}_{u \mid v}(p ; t)!
$$

Spherical branes: holographic correspondence

spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ at $k=1$
\Longleftrightarrow
maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Spherical branes: holographic correspondence

spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ at $k=1$

maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Also supported by computing the disk amplitudes (see Bob Knighton's poster)

$$
\int\left\langle\prod_{a=1}^{n-1} W\left(u_{a}\right) \prod_{i=1}^{n} V_{m_{i}, j_{i}}^{w_{i}}\left(x_{i}, z_{i}\right)\right\rangle_{\mathbb{H}}
$$

Spherical branes: holographic correspondence

spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathbb{T}^{4}$ at $k=1$
maximally-fractional boundary states in $\operatorname{Sym}_{N}\left(\mathbb{T}^{4}\right)$

Also supported by computing the disk amplitudes (see Bob Knighton's poster)

$$
\int\left\langle\prod_{a=1}^{n-1} W\left(u_{a}\right) \prod_{i=1}^{n} V_{m_{i}, j_{i}}^{w_{i}}\left(x_{i}, z_{i}\right)\right\rangle_{\mathbb{H}}
$$

\rightarrow gives leading contribution to the disk correlators with max.-fractional BCs

Summary and outlook

Take-home messages:

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3 d where both sides of AdS/CFT can be exactly computed

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3 d where both sides of AdS/CFT can be exactly computed
\rightarrow some non-perturbative vacua matched on both sides: spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ identified with maximally fractional boundary states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3d where both sides of AdS/CFT can be exactly computed
\rightarrow some non-perturbative vacua matched on both sides: spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ identified with maximally fractional boundary states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Future directions:

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3d where both sides of AdS/CFT can be exactly computed
\rightarrow some non-perturbative vacua matched on both sides: spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ identified with maximally fractional boundary states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Future directions:
Use the spherical branes to compute worldsheet instanton corrections to AdS_{3} amplitudes [Sen, Alexandrov, Stefanski '20, '21]

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3d where both sides of AdS/CFT can be exactly computed
\rightarrow some non-perturbative vacua matched on both sides: spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ identified with maximally fractional boundary states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Future directions:
Use the spherical branes to compute worldsheet instanton corrections to AdS_{3} amplitudes [Sen, Alexandrov, Stefanski '20, '21]

Explore the duality for other non-perturbative vacua (AdS_{2} branes, symmetry-breaking branes)

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3d where both sides of AdS/CFT can be exactly computed
\rightarrow some non-perturbative vacua matched on both sides: spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ identified with maximally fractional boundary states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Future directions:
Use the spherical branes to compute worldsheet instanton corrections to AdS_{3} amplitudes [Sen, Alexandrov, Stefanski '20, '21]

Explore the duality for other non-perturbative vacua (AdS_{2} branes, symmetry-breaking branes)

Consider orientifolds and crosscap states [Gaberdiel, Knighton, JV: work in progress]

Summary and outlook

Take-home messages:
$\rightarrow \exists$ setup in 3d where both sides of AdS/CFT can be exactly computed
\rightarrow some non-perturbative vacua matched on both sides: spherical D-branes in $\mathrm{AdS}_{3} \times \mathrm{S}_{3} \times \mathbb{T}^{4}$ identified with maximally fractional boundary states in $\operatorname{Sym}\left(\mathbb{T}^{4}\right)$

Future directions:
Use the spherical branes to compute worldsheet instanton corrections to AdS_{3} amplitudes [Sen, Alexandrov, Stefanski '20, '21]

Explore the duality for other non-perturbative vacua (AdS_{2} branes, symmetry-breaking branes)

Consider orientifolds and crosscap states [Gaberdiel, Knighton, JV: work in progress]
Consider D-branes in the analogous $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ setup [Gaberdiel, Gopakumar '21]

Thank you!

