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Goal

AdS/CFT correspondence is a proposed strong/weak duality between:

I a theory of quantum gravity in d dimensions

I a gauge theory in d− 1 dimensions

[Maldacena ’97]

AdS3 × S3 × T4 at k = 1 provides setting where amplitudes and correlators are
exactly computable on both sides, thus giving a perturbative proof of the duality.
[Eberhardt, Gaberdiel, Gopakumar, Knighton, Dei, . . . ]

Can we extend the duality to cover D-branes in the bulk?
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Part I: Introduction and motivation



AdS/CFT holographic dictionary

On-shell closed string states in AdS ⇐⇒ single-trace operators in the CFT

String amplitudes in AdS ⇐⇒ Correlators in the CFT

[figures by Bob Knighton]

Genus expansion of amps in AdS ⇐⇒ loop exp. of CFT correlators∑
genus

g2g−2
s

∫
Mg,n

Ostring,g,n =
∑
`

N2−2`OCFT,`,n

=⇒ gs ∼ 1/N , duality holds order-by-order in gs



AdS/CFT holographic dictionary

On-shell closed string states in AdS ⇐⇒ single-trace operators in the CFT

String amplitudes in AdS ⇐⇒ Correlators in the CFT

[figures by Bob Knighton]

Genus expansion of amps in AdS ⇐⇒ loop exp. of CFT correlators∑
genus

g2g−2
s

∫
Mg,n

Ostring,g,n =
∑
`

N2−2`OCFT,`,n

=⇒ gs ∼ 1/N , duality holds order-by-order in gs



AdS/CFT holographic dictionary

On-shell closed string states in AdS ⇐⇒ single-trace operators in the CFT

String amplitudes in AdS ⇐⇒ Correlators in the CFT

[figures by Bob Knighton]

Genus expansion of amps in AdS ⇐⇒ loop exp. of CFT correlators∑
genus

g2g−2
s

∫
Mg,n

Ostring,g,n =
∑
`

N2−2`OCFT,`,n

=⇒ gs ∼ 1/N , duality holds order-by-order in gs



AdS3/CFT2 duality

Consider a superposition of N 1-branes and k 5-branes on a R1,4 × S1 × T4

Branes backreact on the bulk to produce non-trivial geometry

bulk theory: superstring on AdS3 × S3 × T4

1-branes viewed as SYM instantons within the 5-branes [Seiberg, Witten ’99]

2d CFT: sigma-model on the (resolved) ADHM moduli space
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A free-field miracle

(Almost) free-field point:

SymN (T4) ≡ (T4)⊗N/SN =⇒ symmetric-product orbifold CFT

Dual to AdS3×S3×T4 with k = 1 NS5-branes! [Eberhardt, Gaberdiel, Gopakumar ’18]

→ exact worldsheet description (in hybrid formalism)

psu(1, 1|2)1 super-WZW ⊕ top. twisted T4 ⊕ ghosts

→ free-field realisation

psu(1, 1|2)1 ∼ 4 symplectic bosons⊕ 4 real fermions

→ can compute spectra and all correlators on both sides!
[Dei, Eberhardt, Gaberdiel, Gopakumar, Knighton]
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Our objectives

Can we construct D-branes in this setup?
→ boundary states in psu(1, 1|2)1

Can we match them to some dual objects in the Sym(T4) CFT?
→ boundary states? defects?



Our objectives

Can we construct D-branes in this setup?
→ boundary states in psu(1, 1|2)1

Can we match them to some dual objects in the Sym(T4) CFT?
→ boundary states? defects?



Part II: Closed strings on AdS3 × S3 × T
4 at k = 1: a review



psu(1, 1|2)k=1 superalgebra and its free-field realisation

Maximal bosonic subalgebra

sl(2;R)1 {Ja}︸ ︷︷ ︸
AdS3

⊕ su(2)1 {Ka}︸ ︷︷ ︸
S3

Supercurrents Sαβγ in (2,2)

Can construct {Ja,Ka, Sαβγ} as bilinears in terms of 2 pairs of symplectic
bosons and complex fermions (α, β = ±)

ξα(z) ηβ(w) ∼ εαβ

z − w , ψα(z)χβ(w) ∼ εαβ

z − w
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Representations of psu(1, 1|2)1

At k = 1 only the short supermultiplets relevant

Fλ :
(C

1
2
λ ,2)

(C1
λ+ 1

2
,1) (C0

λ+ 1
2
,1)

where

C
j
λ : cts reps of sl(2;R), j ∈ R ∪ ( 1

2
+ iR)

quadratic Casimir Csl(2;R) = −j(j − 1)
λ ∈ [0, 1) ∼= R/Z the fractional part of J3

0 eigenvalues

k : su(2) reps

→ full affine reps generated by acting with negative modes of psu(1, 1|2)1

Modular invariant bulk CFT spectrum

H =
⊕
w∈Z

∫
λ∈[0,1)

dλ σw(Fλ)⊗ σw(Fλ)

→ σw(Fλ) spectrally flowed reps (w-times wound long strings)
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Worldsheet partition function

The total worldsheet partition function

Zpsu(1,1|2)1 Zgh ZT4 =
1

2

∑
r,w∈Z

δ2(t− wτ − r)|q|w
2

ZT4(t; τ)

where

τ . . . worldsheet-torus modulus
t . . . spacetime-torus modulus (sl(2;R)1 chemical potential)

→ worldsheet holomorphically covers spacetime!

Impose on-shell condition & level-matching, end up with on-shell partition
function (up to spin structures)

Zstring(t) =

∞∑
w=1

x
w
4 x̄

w
4 ZT4(0; t

w
)

→ single-particle partition function of Sym(T4)

→ on-shell w-wound strings in AdS3 ⇐⇒ w-cycle twisted states in Sym(T4)
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On-shell vertex operators and amplitudes

On-shell states given by vertex ops (J3
0 , J

±
0 → global spacetime conf. algebra)

[Maldacena, Ooguri ’00]

V wm,j(x, z) = e−xJ
+
0 V wm,j(z)e

+xJ+
0 . . . x ∈ ∂AdS3

String theory n-point, g-loop amplitude (hybrid-formalism PCO insertions W )

Ag,n(x1, . . . , xn) =

∫
Mg,n

〈 n+2g−2∏
a=1

W (ua)

n∏
i=1

V wi
mi,ji

(xi, zi)
〉
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Worldsheet localisation

For tensionless AdS3 × S3 × T4, the Mg,n integral localises at isolated points in
Mg,n where ∃ a holomorphic covering map Γ : Σg,n −→ ∂AdS3

∼= S2

=⇒ Lunin-Mathur for S2 correlators of w-cycle twisted states in SymN (T4)

How?

→ define meromorphic functions

ω±(z) =
〈
ξ±(z)

n+2g−2∏
a=1

W (ua)

n∏
i=1

V wi
mi,ji

(xi, zi)
〉

→ analytic properties imply that Γ(z) ≡ −ω−(z)/ω+(z) is the holomorphic
covering map Σg,n −→ ∂AdS3

∼= S2! with ramification indices wi, if it exists

→ if Γ does not exist, then need to have ω+(z) = 0 =⇒ vanishing amplitude!
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Part III: D-branes in AdS3 and boundary states of the
symmetric orbifold



Symmetry-preserving D-branes in AdS3

D-branes in WZW models ⇐⇒ (twined) conjugacy classes on the group
manifold

Two inequivalent D-branes preserving the sl(2;R)1 subalgebra of psu(1, 1|2)1:
[Bachas, Petropoulos ’00; Ponsot, Schomerus ’01; Ooguri, Lee, Park ’01]

→ spherical branes: instantonic H2 planes in AdS3 (but S2 in EAdS3)

→ AdS2 branes: D-strings stretched between antipodal points on ∂AdS3
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Boundary states for psu(1, 1|2)1: spherical D-branes

Ishibashi states |w, λ〉〉 satisfy

(J3
n − J̄3

−n)|w, λ〉〉 = 0 ,
(J±n + J̄∓−n)|w, λ〉〉 = 0 ,

→ compatible with all λ ∈ [0, 1) and spectral flow

|w, λ〉〉 = σw(|0, λ〉〉) for all w ∈ Z

Full boundary states

‖W,Λ〉〉 =
∑
w∈Z

∫ 1

0

dλ e2πi[w(Λ− 1
2

)+(λ− 1
2

)W ]|w, λ〉〉

→ W : integer shift along AdS3 time direction

→ Λ: angular Wilson line
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→ compatible with all λ ∈ [0, 1) and spectral flow

|w, λ〉〉 = σw(|0, λ〉〉) for all w ∈ Z
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Cylinder amplitude for spherical branes

Worldsheet boundary state

‖W,Λ, u〉〉 ≡ ‖W,Λ〉〉︸ ︷︷ ︸
psu(1,1|2)1

‖u〉〉︸︷︷︸
T4

‖gh〉〉︸ ︷︷ ︸
ρσ ghosts

Worldsheet cylinder amplitude (J3
0 generates spacetime cylinder modulus t)

Au|v(t) =

∫ ∞
0

dτ 〈〈W,Λ, u‖e2πiτ(L0− c
24

)e2πitJ3
0 ‖W,Λ, v〉〉
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Localisation

Can manipulate Au|v into (again, up to spin structures)

Au|v =

∫ ∞
0

dτ

∞∑
w=1

x
w
4

w
δ( t
w
− τ) 〈〈u‖e2πi t

w
J3
0 ‖v〉〉︸ ︷︷ ︸

overlap of T4 boundary states

→ localizes at τ = t
w

for w ∈ Z =⇒ unramified covering maps Γ : cyl→ cyl

To compare with the dual CFT, go to the grandcanonical ensemble by fixing
fugacity p for N [Eberhardt ’20]

Zu|v(p; t) = exp

( ∞∑
w=1

pw

w T4〈〈u‖e
2πi t

w
J3
0 ‖v〉〉T4

)
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Maximally-fractional boundary states in SymN (T4)

Start with the (T4)⊗N boundary state (works for general seed CFT)

‖u〉〉T4 ⊗ . . .⊗ ‖u〉〉T4︸ ︷︷ ︸
N times

Go to a SymN (T4) boundary state by adding all possible twisted sectors
[independently derived by Belin, Biswas, Sully ’21]

‖u, ρ〉〉Sym =
1√
N !

∑
σ=γ1γ2...∈SN

χρ(σ)
⊗
r

‖u〉〉γr
T4

→ γ1, γ2, . . . are disjoint cycles, ‖u〉〉γr
T4

built on top of the γr-twisted vacuum

→ for ρ = id, the cylinder correlator in grandcan. ensemble gives

∞∑
N=0

pN Sym〈〈u, id‖e2πit(L0− c
24

)‖v, id〉〉Sym = . . . = Zu|v(p; t) !
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Spherical branes: holographic correspondence

spherical D-branes in AdS3 × S3 × T4 at k = 1
⇐⇒

maximally-fractional boundary states in SymN (T4)

Also supported by computing the disk amplitudes (see Bob Knighton‘s poster)∫ 〈 n−1∏
a=1

W (ua)

n∏
i=1

V wi
mi,ji

(xi, zi)
〉
H

→ gives leading contribution to the disk correlators with max.-fractional BCs
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Summary and outlook

Take-home messages:

→ ∃ setup in 3d where both sides of AdS/CFT can be exactly computed

→ some non-perturbative vacua matched on both sides: spherical D-branes in
AdS3×S3×T4 identified with maximally fractional boundary states in Sym(T4)

Future directions:

Use the spherical branes to compute worldsheet instanton corrections to AdS3

amplitudes [Sen, Alexandrov, Stefanski ’20, ’21]

Explore the duality for other non-perturbative vacua (AdS2 branes,
symmetry-breaking branes)

Consider orientifolds and crosscap states [Gaberdiel, Knighton, JV: work in progress]

Consider D-branes in the analogous AdS5 × S5 setup [Gaberdiel, Gopakumar ’21]
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Thank you!


