A NEW QUANTUM SPECTRAL CURVE FOR ADS3/CFT2

EUROSTRINGS 202ん, LYON
Andrea Cavaglià
Based on joint work with N. Gromov, B. Stefañski, jr. and Alessandro Torrielli

Work with three great collaborators:

Alessandro Torrielli, Univ. Surrey

Bogdan Stefański, jr., City Univ. London

Nikolay Gromov, King's Coll. London
> "Quantum spectral curve for AdS/CFT: a proposal"
> (hep-th/2109.05500)

Same results obtained independently by
Dmytro Volin and Simon Ekhammar (Uppsala Univ.). Check out their paper too!
"Monodromy bootstrap for $\operatorname{SU}(2 \mid 2)$ quantum spectral curves: from Hubbard model to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ "
(hep-th/2109.06164) (same day)

What $\mathbf{A d S}_{3} / \mathrm{CFT}_{2}$ are we studying?

String theory on $A d S_{3} \times S^{3} \times T^{4}$ with purely R-R flux 16 super symmetries

Unknown dual CFT:

IR limit of world volume theory of D1-D5 system

Parameters: $\quad g_{s}$ in my talk will be 0 ("planar limit")

$$
\frac{\alpha^{\prime}}{r_{A d S}^{\prime}}(\text { "coupling constant") finite }
$$

This is the "polar opposite" to the NSNS case on which much progress was made
[Eberhardt, Gaberdiel, Gopakumar '18]
For RR, worldsheet CFT approach is much more complicated if not impossible

Can we solve the theory with integrability?

We propose a tool to solve the full non-protected planar spectrum (in the sector with no winding/momentum on the torus)

"Worldsheet" integrability

Conjectured for important AdS/CFT dualities
[Babichenko, Stefanski, Zarembo '09]
[Borsato, Ohlsson-Sax, Sfondrini, Stefanski '14] + Torrielli '13,'16]

$$
\begin{gathered}
A d S_{4} \times C P^{3} \leftrightarrow \mathrm{ABJM} \\
\mathrm{AdS}_{4} / \mathrm{CFT}_{3}
\end{gathered}
$$

$$
\mathrm{AdS}_{3} / \mathrm{CFT}_{2}
$$

for backgrounds

$$
\begin{aligned}
& A d S_{3} \times S^{3} \times T^{4} \\
& A d S_{3} \times S^{3} \times S^{3} \times S^{1}
\end{aligned}
$$

Integrability lives on the worldsheet / planar Feynman diagrams Compatible with higher dimensions and chaos in spacetime!

All string amplitudes / local correlation functions should be solvable at finite coupling α^{\prime}, even order by order in g_{s}
e.g. [Basso, Komatsu, Vieira '15],[Bargheer, Caetano, Fleury, Komatsu, Vieira '17]

$\langle\widehat{O}(x) \bar{O}(y)\rangle \propto \frac{1}{} \quad$ Exact spectrum described by the
$\frac{1}{|x-y|^{2 \Delta_{\mathcal{O}}(g)}}$ Quantum Spectral Curve
$\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ [Gromov, Kazakov, Leurent, Volin '13] $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ [AC, Fioravanti, Gromov, Tateo '14]
What is it?
A complex analysis problem for " Q -functions" $Q_{i}(u)$
spectral parameter

Global charges (incl. Δ)
$\mathbf{Q}_{i}(u) \sim u^{\hat{M}_{i}}, u \sim \infty$
$\frac{R_{A d s}^{2}}{4 \pi \alpha^{\prime}} \equiv g \simeq$ position of branch points

Precision spectroscopy with the QSC

We can answer almost any question on the spectrum, many applications! Some examples...

Analytic continuation in Spin and
Regge trajectories
[Gromov, Levkovich-Maslyuk, Sizov '15]

Above: spectrum of defect CFT on a Wilson line
[AC, Julius, Gromov, Preti '21]

$$
\begin{aligned}
\Delta= & 4+12 g^{2}-48 g^{4}+336 g^{6}+g^{8}\left(-2496+576 \zeta_{3}-1440 \zeta_{5}\right) \\
& +g^{10}\left(15168+6912 \zeta_{3}-5184 \zeta_{3}^{2}-8640 \zeta_{5}+30240 \zeta_{7}\right) \\
& +g^{12}\left(-7680-262656 \zeta_{3}-20736 \zeta_{3}^{2}+112320 \zeta_{5}+155520 \zeta_{3} \zeta_{5}+75600 \zeta_{7}-489888 \zeta_{9}\right) \\
& +g^{14}\left(-2135040+5230080 \zeta_{3}-421632 \zeta_{3}^{2}+124416 \zeta_{3}^{3}-229248 \zeta_{5}+411264 \zeta_{3} \zeta_{5}\right. \\
& \left.\quad-993600 \zeta_{5}^{2}-1254960 \zeta_{7}-1935360 \zeta_{3} \zeta_{7}-835488 \zeta_{9}+7318080 \zeta_{11}\right) \\
+ & g^{16}\left(54408192-83496960 \zeta_{3}+7934976 \zeta_{3}^{2}+1990656 \zeta_{3}^{3}-19678464 \zeta_{5}-4354560 \zeta_{3} \zeta_{5}\right. \\
& \quad-3255552 \zeta_{3}^{2} \zeta_{5}+2384640 \zeta_{5}^{2}+21868704 \zeta_{7}-6229440 \zeta_{3} \zeta_{7}+22256640 \zeta_{5} \zeta_{7} \\
& \left.+9327744 \zeta_{9}+23224320 \zeta_{3} \zeta_{9}+\frac{65929248}{-} \zeta_{11}-106007616 \zeta_{13}-\frac{684288}{-} Z_{11}^{(2)}\right)
\end{aligned}
$$

Solve analytically at weak coupling (and other limits)
[Marboe, Volin '14]

The QSC is also at the center of some approaches to compute correlators

Moreover there is evidence the Q-functions can be used to build correlators through the Separation of Variables

$$
\simeq C_{123}^{\circ \bullet \circ} \propto \frac{\int_{\mid} Q_{1} Q_{2} e^{-\phi_{3} u \frac{d u}{2 \pi i u}}}{\sqrt{\int_{\mid} Q_{1} Q_{1} \frac{d u}{2 \pi i u}} \sqrt{\int_{\mid} Q_{2} Q_{2} \frac{d u}{2 \pi i u}}}
$$

The string in uniform lightcone gauge is a non-relativistic, integrable theory.
Understood in detail in large volume

Dispersion relation of elementary excitations:

$$
\begin{gathered}
E(p)=\sqrt{m^{2}+4 h^{2}\left(\alpha^{\prime}\right) \sin ^{2} \frac{p}{2}} \longleftarrow \begin{array}{c}
\text { Expect a redefined } \\
\text { integrability coupling, } \\
\text { (depending also on moduli) }
\end{array} \\
m= \pm 1 \text { (massive), or } m=0 \text { (massless, new feature!) }
\end{gathered}
$$

Worldsheet S-matrix bootstrapped at finite coupling!
assuming integrability

Asymptotic Bethe Ansatz (ABA) - interacting gas of particles in large volume

$$
\prod_{i \neq j} \hat{S}\left(p_{i}, p_{j}\right)=e^{i p_{i} L}
$$

constraint on "Bethe roots" (\simeq quantised momenta)
anomalous dimension:

$$
\delta \Delta=\sum_{i=1} E\left(p_{i}\right)+O\left(e^{-M_{g a p} L}\right)
$$

In a general sector with massless modes,
corrections are $O\left(\frac{1}{L}\right) \quad$ [Abbott, Aniceto '15]

Finite L is encoded in Thermodynamic Bethe Ansatz, for AdS3 written recently [Frolov, Sfondrini ' 21] Expected to be related to QSC, but much more complicated

Previous route in AdS_{5} and AdS_{4} :

worldsheet S-matrix \longrightarrow QSC (through TBA)
Very involved!

Now:

QSC from general principles

Could lead to discovery of many new cases!

QSC = Symmetry + Analyticity

Symmetry

AdS3: $p s u(1,1 \mid 2)_{L} \oplus p s u(1,1 \mid 2)_{R}$, two copies of a well-understood case

$$
16+16 \text { Q-functions }
$$

They satisfy functional "QQ-relations" reflecting the symmetry algebra

Example (details not important)

$$
\begin{aligned}
& Q_{1 \mid 1}\left(u+\frac{i}{2}\right) Q_{2 \mid 1}\left(u-\frac{i}{2}\right)-Q_{1 \mid 1}\left(u-\frac{i}{2}\right) Q_{2 \mid 1}\left(u+\frac{i}{2}\right) \\
& \quad=\mathbf{Q}_{1}(u) \mathbf{Q}^{2}(u)
\end{aligned}
$$

Some Q-functions play a special role.
In the classical limit, $\left(\mathbf{Q}_{1}(u), \mathbf{Q}_{2}(u) \mid \mathbf{P}_{1}(u), \mathbf{P}_{2}(u)\right)$ parametrise motion in AdSS_{3} or $\mathbf{S}^{\mathbf{3}}$

Inspired by the other QSC's we postulate the cut structure:

No other singularities on these sheets

QQ-relations + analyticity have some tension...
To resolve it we need to impose some gluing of Riemann sheets
In pictures, that's it!

In AdS4 and AdS5: infinitely many branch points, infinitely many sheets, but branch points were quadratic

In AdS3 they each have infinite order

$$
\gamma \neq \gamma^{-1}, \quad \gamma^{n} \neq 1
$$

QSC practitioner

We think this is a signature of massless modes. We have to make friends with it!

What evidence do we have?

We can solve the QSC equations at large volume (in the massive sector)

$$
J \rightarrow \infty \quad \Delta \sim J+O(1)
$$

[AC, Gromov, Stefanski, Torrielli '21]
[Ekhammar, Volin '21]

Explicit solution in the limit

Blocks of the worldsheet S-matrix appear in this solution, and constraints which reproduce the Asymptotic Bethe Ansatz.
i.e., the QSC "knows" the worldsheet S-matrix, including the dressing phases
(should resolve ambiguities in the S-matrix bootstrap)

Good indications this extends to include massless modes (but limit is subtle)
[AC, Ekhammar, Gromov, Stefanski, Torrielli, Volin in progress]

Encouraging preliminary numerics at finite quantum numbers, finite coupling: indicating the QSC has discrete solutions
[Ekhammar, Gromov, Ryan]
Need to develop new techniques due to non-quadratic branch points.

Conclusions and Outlook

New example of QSC proposed for string theory on $A d S_{3} \times S^{3} \times T^{4}$
New tool for quantitative, non-perturbative studies of non-protected states.

For the first time, this comes from a classification-type approach.
Can we use the to deduce further QSC's?
(e.g. other $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ dualities, defect setups...)

Hopefully soon there will be plots of the spectrum...
[Ekhammar, Gromov, Ryan et al] [in progress]
... and new explorations of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ will become possible! Stay tuned!

Thank you!

Asymptotic Bethe Ansatz: what it looks like

$$
\begin{aligned}
& 1=\prod_{j=1}^{K_{2}} \frac{y_{1, k}-x_{j}^{+}}{y_{1, k}-x_{j}^{-}} \prod_{j=1}^{K_{\overline{2}}} \frac{1-\frac{1}{y_{1, k} \bar{x}_{j}^{-}}}{1-\frac{1}{y_{1, k} \bar{x}_{j}^{+}}}, \\
& \left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{j \neq k}^{K_{2}} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}} \frac{1-\frac{1}{x_{k}^{+} x_{j}^{-}}}{1-\frac{1}{x_{k}^{-} x_{j}^{+}}} \sigma^{2}\left(x_{k}, x_{j}\right) \prod_{j=1}^{K_{1}} \frac{x_{k}^{-}-y_{1, j}}{x_{k}^{+}-y_{1, j}} \prod_{j=1}^{K_{3}} \frac{x_{k}^{-}-y_{3, j}}{x_{k}^{+}-y_{3, j}} \\
& \times \prod_{j=1}^{K_{\overline{2}}} \frac{1-\frac{1}{x_{k}^{+} \bar{x}_{j}^{+}}}{1-\frac{1}{x_{k}^{-} \bar{x}_{j}^{-}}} \frac{1-\frac{1}{x_{k}^{+} \bar{x}_{j}^{-}}}{1-\frac{1}{x_{k}^{-} \bar{x}_{j}^{+}}} \tilde{\sigma}^{2}\left(x_{k}, \bar{x}_{j}\right) \prod_{j=1}^{K_{\overline{1}}} \frac{1-\frac{1}{x_{k}^{-} y_{\overline{1}, j}}}{1-\frac{1}{x_{k}^{+} y_{\overline{1}, j}}} \prod_{j=1}^{K_{\overline{3}}} \frac{1-\frac{1}{x_{k}^{-} y_{\overline{3}, j}}}{1-\frac{1}{x_{k}^{+} y_{\overline{3}, j}}}, \\
& 1=\prod_{j=1}^{K_{2}} \frac{y_{3, k}-x_{j}^{+}}{y_{3, k}-x_{j}^{-}} \prod_{j=1}^{K_{2}} \frac{1-\frac{1}{y_{3, k} \bar{x}_{\bar{j}}^{-}}}{1-\frac{1}{y_{3, k} \bar{x}_{j}^{+}}}, \\
& 1=\prod_{j=1}^{K_{\overline{2}}} \frac{y_{\overline{1}, k}-\bar{x}_{j}^{-}}{y_{\overline{1}, k}-\bar{x}_{j}^{+}} \prod_{j=1}^{K_{2}} \frac{1-\frac{1}{y_{\overline{1}, k} x_{j}^{+}}}{1-\frac{1}{y_{\overline{1}, k} x_{j}^{-}}}, \\
& \left(\frac{\bar{x}_{k}^{+}}{\bar{x}_{k}^{-}}\right)^{L}=\prod_{j \neq k}^{K_{\overline{2}}} \frac{\bar{x}_{k}^{-}-\bar{x}_{j}^{+}}{\bar{x}_{k}^{+}-\bar{x}_{j}^{-}} \frac{1-\frac{1}{\bar{x}_{k}^{+} \bar{x}_{j}^{-}}}{1-\frac{1}{\bar{x}_{k}^{-}} \bar{x}_{j}^{+}} \sigma^{2}\left(\bar{x}_{k}, \bar{x}_{j}\right) \prod_{j=1}^{K_{\overline{1}}} \frac{\bar{x}_{k}^{+}-y_{\overline{1}, j}}{\bar{x}_{k}^{-}-y_{\overline{1}, j}} \prod_{j=1}^{K_{\overline{3}}} \frac{\bar{x}_{k}^{+}-y_{\overline{3}, j}}{\bar{x}_{k}^{-}-y_{\overline{3}, j}}
\end{aligned}
$$

$$
\begin{aligned}
& 1=\prod_{j=1}^{K_{\overline{2}}} \frac{y_{\overline{3}, k}-\bar{x}_{j}^{-}}{y_{\overline{\overline{3}}, k}-\bar{x}_{j}^{+}} \prod_{j=1}^{K_{2}} \frac{1-\frac{1}{y_{\overline{3}, k} x_{j}^{+}}}{1-\frac{1}{y_{\overline{3}, k} x_{j}^{-}}} . \\
& \text {Dressing phases } \\
& \text { (complicated functions) }
\end{aligned}
$$

Reported here: massive sector equations.

