Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the
nonlinearities of
the charges
Higher

dimensions

Conclusions and comments

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Eurostrings 2022, Lyon
26 April 2022

Introduction

The BMS algebra

Why should one study the asymptotic structure

 of gravity at spatial infinity in the asymptotically flat context?
Introduction

The BMS algebra

Why should one study the asymptotic structure

 of gravity at spatial infinity in the asymptotically flat context?Will give here three reasons.

Introduction

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux

Introduction

Einstein theory in
4 spacetime
First reason
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and comments

Introduction

```
The BMS algebra
at spatial infinity
    ( }D=4\mathrm{ and
        D>4)
Marc Henneaux
```


Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

 comments
First reason

In order to better understand the role of the BMS group (first identified at null infinity) in the quantum theory, where physical states are usually defined on spacelike (Cauchy) hypersurfaces,

Introduction

The BMS algebra

First reason

In order to better understand the role of the BMS group (first identified at null infinity) in the quantum theory, where physical states are usually defined on spacelike (Cauchy) hypersurfaces, it is important to unveil its action on spacelike (Cauchy) hypersurfaces, and thus, at spatial infinity.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$) Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments
(First reason, continued)

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments
(First reason, continued)
This has been done recently in four spacetime dimensions, through a reconsideration of the boundary conditions at spatial infinity.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

(First reason, continued)
This has been done recently in four spacetime dimensions, through a reconsideration of the boundary conditions at spatial infinity.

New, consistent boundary conditions have been proposed, which are invariant under the full infinite-dimensional BMS group,

Introduction

(First reason, continued)
This has been done recently in four spacetime dimensions, through a reconsideration of the boundary conditions at spatial infinity.
New, consistent boundary conditions have been proposed, which are invariant under the full infinite-dimensional BMS group, providing a standard, non-trivial, canonical realization of the BMS symmetry.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

(First reason, continued)
This has been done recently in four spacetime dimensions, through a reconsideration of the boundary conditions at spatial infinity.

New, consistent boundary conditions have been proposed, which are invariant under the full infinite-dimensional BMS group, providing a standard, non-trivial, canonical realization of the BMS symmetry.
This establishes also the important fact that the BMS symmetry is a symmetry of the theory and not just a symmetry at null infinity.

Introduction

The BMS algebra at spatial infinity

Second reason ($D=4$ and $D>4)$ Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and comments

Introduction

The BMS algebra

Second reason
Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-}

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Second reason

Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Second reason
Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.

For instance, one knows that under very general initial conditions, the past limit of the Bondi m_{B} mass along future null infinity is equal to the ADM mass m.

Introduction

The BMS algebra at spatial infinity ($D=4$ and D >4)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Second reason
Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.
For instance, one knows that under very general initial conditions, the past limit of the Bondi m_{B} mass along future null infinity is equal to the ADM mass m.
Similarly, the future limit of the Bondi mass m_{B} along past null infinity is also equal to the ADM mass m,

Introduction

The BMS algebra at spatial infinity ($D=4$ and D >4)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Second reason
Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.
For instance, one knows that under very general initial conditions, the past limit of the Bondi m_{B} mass along future null infinity is equal to the ADM mass m.
Similarly, the future limit of the Bondi mass m_{B} along past null infinity is also equal to the ADM mass m, implying the matching $m_{B}\left(\mathscr{I}_{-}^{+}\right)=m=m_{B}\left(\mathscr{I}_{+}^{-}\right)$.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Second reason
Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.
For instance, one knows that under very general initial conditions, the past limit of the Bondi m_{B} mass along future null infinity is equal to the ADM mass m.
Similarly, the future limit of the Bondi mass m_{B} along past null infinity is also equal to the ADM mass m, implying the matching $m_{B}\left(\mathscr{I}_{-}^{+}\right)=m=m_{B}\left(\mathscr{I}_{+}^{-}\right)$.
But the generator of time translations is only one of the Bondi-Metzner-Sachs (BMS) supertranslation generators.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Second reason
Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.
For instance, one knows that under very general initial conditions, the past limit of the Bondi m_{B} mass along future null infinity is equal to the ADM mass m.
Similarly, the future limit of the Bondi mass m_{B} along past null infinity is also equal to the ADM mass m, implying the matching $m_{B}\left(\mathscr{I}_{-}^{+}\right)=m=m_{B}\left(\mathscr{I}_{+}^{-}\right)$.
But the generator of time translations is only one of the Bondi-Metzner-Sachs (BMS) supertranslation generators.
Can one say more?

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher dimensions comments

Second reason

Another reason for investigating the asymptotic structure at spatial infinity is the need to understand the "matching" conditions of the fields and charges between \mathscr{I}_{-}^{+}and \mathscr{I}_{+}^{-} which clearly involves "going through" spatial infinity i^{0}.
For instance, one knows that under very general initial conditions, the past limit of the Bondi m_{B} mass along future null infinity is equal to the ADM mass m.
Similarly, the future limit of the Bondi mass m_{B} along past null infinity is also equal to the ADM mass m, implying the matching $m_{B}\left(\mathscr{I}_{-}^{+}\right)=m=m_{B}\left(\mathscr{I}_{+}^{-}\right)$.
But the generator of time translations is only one of the Bondi-Metzner-Sachs (BMS) supertranslation generators.
Can one say more?
This requires understanding the action of all the BMS supertranslations at spatial infinity.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Yet another reason :

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in
5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

comments

Introduction

The BMS algebra
$D>4$)
Marc Henneaux

Introduction
Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions
Conclusions and
comments

Yet another reason :

In five dimensions, the definition of null infinity is problematical (as it is in all odd spacetime dimensions).

Introduction

Yet another reason :

In five dimensions, the definition of null infinity is problematical (as it is in all odd spacetime dimensions).
But there exist soft theorems!

Introduction

Introduction

Einstein theory in
4 spacetime
dimensions

Yet another reason :
In five dimensions, the definition of null infinity is problematical (as it is in all odd spacetime dimensions).
But there exist soft theorems!
Of which symmetries are these the Ward identities?

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the

Yet another reason :
In five dimensions, the definition of null infinity is problematical (as it is in all odd spacetime dimensions).

But there exist soft theorems!
Of which symmetries are these the Ward identities?
It turns out that while the answer to this question is not immediate at null infinity, the analysis at spatial infinity raises no conceptual problem

Introduction

Yet another reason :
In five dimensions, the definition of null infinity is problematical (as it is in all odd spacetime dimensions).

But there exist soft theorems!
Of which symmetries are these the Ward identities?
It turns out that while the answer to this question is not immediate at null infinity, the analysis at spatial infinity raises no conceptual problem
and directly leads to the infinite dimensional symmetry " BMS_{5} group",

Introduction

The BMS algebra at spatial infinity ($D=4$ and D >4)

Marc Henneaux

Introduction

Yet another reason :
In five dimensions, the definition of null infinity is problematical (as it is in all odd spacetime dimensions).

But there exist soft theorems!
Of which symmetries are these the Ward identities?
It turns out that while the answer to this question is not immediate at null infinity, the analysis at spatial infinity raises no conceptual problem
and directly leads to the infinite dimensional symmetry " BMS_{5} group",
the realization of which exhibits (somewhat unexpectedly) a very interesting nonlinear structure.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$) Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

 comments
Introduction

The purpose of this talk is to provide the general ideas of the asymptotic analysis at spatial infinity in $D=4$ and $D=5$ spacetime dimensions.

Introduction

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in

4 spacetime
dimensions

The purpose of this talk is to provide the general ideas of the asymptotic analysis at spatial infinity in $D=4$ and $D=5$ spacetime dimensions.
The study will be carried on spacelike hypersurfaces that are asymptotically flat hyperplanes, using Hamiltonian methods.

Introduction

The purpose of this talk is to provide the general ideas of the asymptotic analysis at spatial infinity in $D=4$ and $D=5$ spacetime dimensions.
The study will be carried on spacelike hypersurfaces that are asymptotically flat hyperplanes, using Hamiltonian methods. (Work done in collaboration with Cédric Troessaert, with also Oscar Fuentealba, Sucheta Majumdar, Javier Matulich and Turmoli Neogi who joined more recently)

Canonical action

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux

Introduction
Einstein theory in 4 spacetime dimensions

Einstein theory in

 5 spacetime dimensionsMore on the nonlinearities of the charges

Higher

dimensions

Conclusions and

 comments
Canonical action

The BMS algebra
$D>4$)
Marc Henneaux
Introduction
Einstein theory in 4 spacetime dimensions

Einstein theory in

5 spacetime
dimensions
More on the
dimensions

Conclusions and

comments

A central role in the analysis will be played by the gravitational action

Canonical action

Introduction

Einstein theory in 4 spacetime dimensions

A central role in the analysis will be played by the gravitational action
 which reads, in Hamiltonian form (Dirac, ADM),

Canonical action

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions

A central role in the analysis will be played by the gravitational action
which reads, in Hamiltonian form (Dirac, ADM),

$$
S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{d} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{\text {grav }}-N \mathscr{H}^{\rho g r a v}\right)-B_{\infty}\right\}
$$

Canonical action

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

A central role in the analysis will be played by the gravitational action
which reads, in Hamiltonian form (Dirac, ADM),
$S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{d} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{\text {grav }}-N \mathscr{H}^{g r a v}\right)-B_{\infty}\right\}$
where B_{∞} is a boundary term at infinity and where

Canonical action

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

$$
S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{d} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{g r a v}-N \mathscr{H}^{g r a v}\right)-B_{\infty}\right\}
$$

where B_{∞} is a boundary term at infinity and where

$$
\mathscr{H}^{\text {grav }}=-\sqrt{g} R+\frac{1}{\sqrt{g}}\left(\pi^{i j} \pi_{i j}-\frac{1}{d-1} \pi^{2}\right) \approx 0, \quad \mathscr{H}_{i}^{\text {grav }}=-2 \nabla_{j} \pi_{i}^{j} \approx 0
$$

Canonical action

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in

 4 spacetime dimensionsA central role in the analysis will be played by the gravitational action
which reads, in Hamiltonian form (Dirac, ADM),

$$
S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{d} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{g r a v}-N \mathscr{H}^{g r a v}\right)-B_{\infty}\right\}
$$

where B_{∞} is a boundary term at infinity and where

$$
\mathscr{H}^{\text {grav }}=-\sqrt{g} R+\frac{1}{\sqrt{g}}\left(\pi^{i j} \pi_{i j}-\frac{1}{d-1} \pi^{2}\right) \approx 0, \quad \mathscr{H}_{i}^{\text {grav }}=-2 \nabla_{j} \pi_{i}^{j} \approx 0
$$

The definition of the theory is completed by providing boundary conditions on the dynamical variables (definition of phase space), which are assumed to make the off-shell action finite.

Standard boundary conditions - Parity conditions

Introduction

Einstein theory in

 4 spacetime dimensions
Einstein theory in

5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

comments

Standard boundary conditions - Parity conditions

$D>4$)
Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions
Conctusions and comments

The standard boundary conditions for Einstein gravity in four spacetime dimensions are (Regge-Teitelboim 1974)

Standard boundary conditions - Parity conditions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the

The standard boundary conditions for Einstein gravity in four spacetime dimensions are (Regge-Teitelboim 1974)

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=\frac{\bar{h}_{i j}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad \bar{h}_{i j}\left(-\mathbf{n}^{k}\right)=\bar{h}_{i j}\left(\mathbf{n}^{k}\right)
$$

and

$$
\pi^{i j}=\frac{\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad \bar{\pi}^{i j}\left(-\mathbf{n}^{k}\right)=-\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)
$$

Standard boundary conditions - Parity conditions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the

The standard boundary conditions for Einstein gravity in four spacetime dimensions are (Regge-Teitelboim 1974)

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=\frac{\bar{h}_{i j}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad \bar{h}_{i j}\left(-\mathbf{n}^{k}\right)=\bar{h}_{i j}\left(\mathbf{n}^{k}\right)
$$

and

$$
\pi^{i j}=\frac{\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad \bar{\pi}^{i j}\left(-\mathbf{n}^{k}\right)=-\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)
$$

They involve strict parity conditions under the antipodal map $\mathbf{n}^{k} \rightarrow-\mathbf{n}^{k}$, where \mathbf{n}^{k} is the unit normal to the sphere at infinity

Standard boundary conditions - Parity conditions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

The standard boundary conditions for Einstein gravity in four spacetime dimensions are (Regge-Teitelboim 1974)

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=\frac{\bar{h}_{i j}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad \bar{h}_{i j}\left(-\mathbf{n}^{k}\right)=\bar{h}_{i j}\left(\mathbf{n}^{k}\right)
$$

and

$$
\pi^{i j}=\frac{\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad \bar{\pi}^{i j}\left(-\mathbf{n}^{k}\right)=-\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)
$$

They involve strict parity conditions under the antipodal map $\mathbf{n}^{k} \rightarrow-\mathbf{n}^{k}$, where \mathbf{n}^{k} is the unit normal to the sphere at infinity $\left(f\left(\mathbf{n}^{k}\right) \equiv f(\theta, \varphi)\right)$.

Parity conditions twisted by an improper diffeomorphism

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux

Introduction

Einstein theory in

 4 spacetime dimensions
Einstein theory in

5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

Conctusions and

comments

Parity conditions twisted by an improper diffeomorphism

The BMS algebra at spatial infinity ($D=4$ and $D>4$)
Marc Henneaux
\section*{Introduction}
Einstein theory in 4 spacetime dimensions

To see the full BMS group, one must allow a "parity-twisted component" in the leading orders of the asymptotic metric and momenta.

Parity conditions twisted by an improper diffeomorphism

The BMS algebra

Marc Henneaux

Introduction

Einstein theory in

To see the full BMS group, one must allow a "parity-twisted component" in the leading orders of the asymptotic metric and momenta.

One thus imposes

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=h_{i j}^{R T}+U_{i j}, \quad \pi^{i j}=\pi_{R T}^{i j}+V^{i j}
$$

Parity conditions twisted by an improper diffeomorphism

To see the full BMS group, one must allow a "parity-twisted component" in the leading orders of the asymptotic metric and momenta.
One thus imposes

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=h_{i j}^{R T}+U_{i j}, \quad \pi^{i j}=\pi_{R T}^{i j}+V^{i j}
$$

$U_{i j}$ and $V^{i j}$ are the parity-twisted contributions that take the form of a gauge transformation (rewritten in Hamiltonian form).

Parity conditions twisted by an improper diffeomorphism

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

To see the full BMS group, one must allow a "parity-twisted component" in the leading orders of the asymptotic metric and momenta.

One thus imposes

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=h_{i j}^{R T}+U_{i j}, \quad \pi^{i j}=\pi_{R T}^{i j}+V^{i j}
$$

$U_{i j}$ and $V^{i j}$ are the parity-twisted contributions that take the form of a gauge transformation (rewritten in Hamiltonian form). They are of the same order as the leading terms in $h_{i j}$ and $\pi^{i j}$ $\left(O(1 / r)\right.$ and $O\left(1 / r^{2}\right)$ respectively but have the opposite parity.

Parity conditions twisted by an improper diffeomorphism

To see the full BMS group, one must allow a "parity-twisted component" in the leading orders of the asymptotic metric and momenta.

One thus imposes

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=h_{i j}^{R T}+U_{i j}, \quad \pi^{i j}=\pi_{R T}^{i j}+V^{i j}
$$

$U_{i j}$ and $V^{i j}$ are the parity-twisted contributions that take the form of a gauge transformation (rewritten in Hamiltonian form).
They are of the same order as the leading terms in $h_{i j}$ and $\pi^{i j}$ $\left(O(1 / r)\right.$ and $O\left(1 / r^{2}\right)$ respectively but have the opposite parity.
For a canonical action of the Lorentz boosts, one imposes moreover that $U_{i j}$ be parametrized by an $O(1)$ odd function of the angles $\bar{U}\left(\mathbf{n}^{k}\right)=O(1)=-U\left(-\mathbf{n}^{k}\right)$. Furthermore, $V^{i j}$ is parametrized by an $O(1)$ even function of the angles $V\left(\mathbf{n}^{k}\right)=V\left(-\mathbf{n}^{k}\right)$.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux
Introduction
Einstein theory in 4 spacetime dimensions

Einstein theory in

 5 spacetimedimensions
More on the nonlinearities of the charges

Higher

dimensions

Conclusions and

comments

BMS group at spatial infinity

The BMS algebra
$D>4$)
Marc Henneaux

Introduction
Einstein theory in 4 spacetime dimensions

Einstein theory in

5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Do these relaxed parity conditions involving a twist lead to a consistent description

BMS group at spatial infinity

The BMS algebra

Introduction

Einstein theory in 4 spacetime dimensions

> Do these relaxed parity conditions involving a twist lead to a consistent description (finite symplectic form, well-defined generators)?

BMS group at spatial infinity

The BMS algebra

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions

Do these relaxed parity conditions involving a twist lead to a consistent description
(finite symplectic form, well-defined generators)?
The answer is affirmative and requires some work (even though the idea is elementary).
One finds furthermore that the asymptotic symmetries are given by hypersurface deformations that behave asymptotically as

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher

dimensions

Do these relaxed parity conditions involving a twist lead to a consistent description
(finite symplectic form, well-defined generators)?
The answer is affirmative and requires some work (even though the idea is elementary).
One finds furthermore that the asymptotic symmetries are given by hypersurface deformations that behave asymptotically as

$$
\begin{aligned}
& \xi=b_{i} x^{i}+T(\mathbf{n})+O\left(r^{-1}\right) \\
& \xi^{i}=b_{j}^{i} x^{j}+W_{i}(\mathbf{n})+O\left(r^{-1}\right), \quad b_{i j}=-b_{j i}, \quad W_{i}(\mathbf{n})=\partial_{i}(r W(\mathbf{n}))
\end{aligned}
$$

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Do these relaxed parity conditions involving a twist lead to a consistent description
(finite symplectic form, well-defined generators)?
The answer is affirmative and requires some work (even though the idea is elementary).
One finds furthermore that the asymptotic symmetries are given by hypersurface deformations that behave asymptotically as

$$
\begin{aligned}
& \xi=b_{i} x^{i}+T(\mathbf{n})+O\left(r^{-1}\right) \\
& \xi^{i}=b_{j}^{i}{ }_{j} x^{j}+W_{i}(\mathbf{n})+O\left(r^{-1}\right), \quad b_{i j}=-b_{j i}, \quad W_{i}(\mathbf{n})=\partial_{i}(r W(\mathbf{n})) .
\end{aligned}
$$

where T is even and W is odd.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Do these relaxed parity conditions involving a twist lead to a consistent description
(finite symplectic form, well-defined generators)?
The answer is affirmative and requires some work (even though the idea is elementary).
One finds furthermore that the asymptotic symmetries are given by hypersurface deformations that behave asymptotically as

$$
\begin{aligned}
& \xi=b_{i} x^{i}+T(\mathbf{n})+O\left(r^{-1}\right) \\
& \xi^{i}=b_{j}^{i} x^{j}+W_{i}(\mathbf{n})+O\left(r^{-1}\right), \quad b_{i j}=-b_{j i}, \quad W_{i}(\mathbf{n})=\partial_{i}(r W(\mathbf{n}))
\end{aligned}
$$

where T is even and W is odd.
The terms $b_{i} x^{i}$ and $b^{i}{ }_{j} x^{j}$ describe respectively boosts and spatial rotations.

BMS group at spatial infinity

Do these relaxed parity conditions involving a twist lead to a consistent description
(finite symplectic form, well-defined generators)?
The answer is affirmative and requires some work (even though the idea is elementary).
One finds furthermore that the asymptotic symmetries are given by hypersurface deformations that behave asymptotically as

$$
\begin{aligned}
& \xi=b_{i} x^{i}+T(\mathbf{n})+O\left(r^{-1}\right) \\
& \xi^{i}=b_{j}^{i}{ }_{j} x^{j}+W_{i}(\mathbf{n})+O\left(r^{-1}\right), \quad b_{i j}=-b_{j i}, \quad W_{i}(\mathbf{n})=\partial_{i}(r W(\mathbf{n})) .
\end{aligned}
$$

where T is even and W is odd.
The terms $b_{i} x^{i}$ and $b^{i}{ }_{j} x^{j}$ describe respectively boosts and spatial rotations.
The zero mode of T and the first spherical harmonic component of W describe translations.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux
Introduction
Einstein theory in 4 spacetime dimensions

Einstein theory in

 5 spacetimedimensions
More on the nonlinearities of the charges

Higher

dimensions

Conclusions and

comments

BMS group at spatial infinity

$D>4$)
Marc Henneaux

Introduction

The higher spherical harmonics describe general supertranslations.

Einstein theory in 4 spacetime dimensions

Einstein theory in

5 spacetime
dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

 comments
BMS group at spatial infinity

The higher spherical harmonics describe general supertranslations.
In fact, the even function T and the odd function W combine to form a single arbitrary function of the angles, as in the null infinity description of the supertranslations.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

The higher spherical harmonics describe general supertranslations.
In fact, the even function T and the odd function W combine to form a single arbitrary function of the angles, as in the null infinity description of the supertranslations.

The symmetries are canonical transformations with generators

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions

The higher spherical harmonics describe general supertranslations.
In fact, the even function T and the odd function W combine to form a single arbitrary function of the angles, as in the null infinity description of the supertranslations.

The symmetries are canonical transformations with generators

$$
P_{\xi}\left[g_{i j}, \pi^{i j}\right]=\int d^{3} x\left(\xi \mathscr{H}+\xi^{i} \mathscr{H}_{i}\right)+\mathscr{B}_{\xi}\left[g_{i j}, \pi^{i j}\right]
$$

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

The higher spherical harmonics describe general supertranslations.
In fact, the even function T and the odd function W combine to form a single arbitrary function of the angles, as in the null infinity description of the supertranslations.
The symmetries are canonical transformations with generators
$P_{\xi}\left[g_{i j}, \pi^{i j}\right]=\int d^{3} x\left(\xi \mathscr{H}+\xi^{i} \mathscr{H}_{i}\right)+\mathscr{B}_{\xi}\left[g_{i j}, \pi^{i j}\right]$
where $\mathscr{B}_{\xi}\left[g_{i j}, \pi^{i j}\right]$ is a surface term, the explicit form of which can be found in MH and C. Troessaert.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

The higher spherical harmonics describe general supertranslations.
In fact, the even function T and the odd function W combine to form a single arbitrary function of the angles, as in the null infinity description of the supertranslations.
The symmetries are canonical transformations with generators
$P_{\xi}\left[g_{i j}, \pi^{i j}\right]=\int d^{3} x\left(\xi \mathscr{H}+\xi^{i} \mathscr{H}_{i}\right)+\mathscr{B}_{\xi}\left[g_{i j}, \pi^{i j}\right]$
where $\mathscr{B}_{\xi}\left[g_{i j}, \pi^{i j}\right]$ is a surface term, the explicit form of which can be found in MH and C. Troessaert.
The algebra of the generators can be easily verified to be the BMS algebra.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux
Introduction
Einstein theory in 4 spacetime dimensions

Einstein theory in

 5 spacetimedimensions
More on the nonlinearities of the charges

Higher

dimensions

Conclusions and

comments

BMS group at spatial infinity

$D>4$)
Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in

5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

comments

There is complete agreement with the null infinity results.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the
nonlinearities of
the charges
Higher
dimensions
Conctusions and comments

There is complete agreement with the null infinity results. In particular, the "matching conditions" of Strominger, which involve the antipodal map, are in fact a consequence of the boundary conditions at spatial infinity

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions

There is complete agreement with the null infinity results. In particular, the "matching conditions" of Strominger, which involve the antipodal map, are in fact a consequence of the boundary conditions at spatial infinity
From the BMS point of view, one can say that it is physically illegitimate to impose strict parity conditions as this requires improper gauge transformations,

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the

There is complete agreement with the null infinity results.
In particular, the "matching conditions" of Strominger, which involve the antipodal map, are in fact a consequence of the boundary conditions at spatial infinity
From the BMS point of view, one can say that it is physically illegitimate to impose strict parity conditions as this requires improper gauge transformations, which one cannot use in gauge fixing.

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in
5 spacetime
dimensions
More on the

There is complete agreement with the null infinity results.
In particular, the "matching conditions" of Strominger, which involve the antipodal map, are in fact a consequence of the boundary conditions at spatial infinity
From the BMS point of view, one can say that it is physically illegitimate to impose strict parity conditions as this requires improper gauge transformations, which one cannot use in gauge fixing.
Only "parity up to a gauge transformation" conditions are allowed

BMS group at spatial infinity

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux
Introduction
Einstein theory in 4 spacetime dimensions

There is complete agreement with the null infinity results.
In particular, the "matching conditions" of Strominger, which involve the antipodal map, are in fact a consequence of the boundary conditions at spatial infinity
From the BMS point of view, one can say that it is physically illegitimate to impose strict parity conditions as this requires improper gauge transformations, which one cannot use in gauge fixing.
Only "parity up to a gauge transformation" conditions are allowed
(and these are necessary to avoid log singularities at null infinity).

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

 comments
5 spacetime dimensions

The BMS algebra
$D>4$)
Marc Henneaux

Introduction

Binstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the
nonlinearities of
the charges
Higher
dimensions
Conclusions and
comments

Similar considerations apply also to Einstein gravity in 5 spacetime dimensions.

5 spacetime dimensions

Similar considerations apply also to Einstein gravity in 5 spacetime dimensions.
The computations are cumbersome but the ideas are identical.

5 spacetime dimensions

Similar considerations apply also to Einstein gravity in 5 spacetime dimensions.
The computations are cumbersome but the ideas are identical.
As in 4 dimensions, one must include explicitly the improper gauge symmetries in the asymptotic form of the fields.

5 spacetime dimensions

Similar considerations apply also to Einstein gravity in 5 spacetime dimensions.
The computations are cumbersome but the ideas are identical.
As in 4 dimensions, one must include explicitly the improper gauge symmetries in the asymptotic form of the fields.
A new feature is that improper gauge terms are not at the same order in $\frac{1}{r}$ as the Coulomb part,

5 spacetime dimensions

Similar considerations apply also to Einstein gravity in 5 spacetime dimensions.
The computations are cumbersome but the ideas are identical.
As in 4 dimensions, one must include explicitly the improper gauge symmetries in the asymptotic form of the fields.
A new feature is that improper gauge terms are not at the same order in $\frac{1}{r}$ as the Coulomb part,
while in 4 dimensions, they are at the same order but distinguished by parity conditions.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction
Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

5 spacetime dimensions

The BMS algebra

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D)

5 spacetime dimensions

The BMS algebra

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D) One has schematically:

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher

dimensions

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D) One has schematically :

$$
g_{i j}=\delta_{i j}+\mathscr{G}_{i j}+h_{i j}^{\text {core }}
$$

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D) One has schematically :

$$
g_{i j}=\delta_{i j}+\mathscr{G}_{i j}+h_{i j}^{c o r e}
$$

where $\mathscr{G}_{i j}=\mathscr{O}\left(\frac{1}{r}\right)$ has the form of a diffeomorphism with vector field of order $\mathscr{O}(1)$ and where $h_{i j}^{\text {core }}=\mathscr{O}\left(r^{-2}\right)$.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D) One has schematically:

$$
g_{i j}=\delta_{i j}+\mathscr{G}_{i j}+h_{i j}^{c o r e}
$$

where $\mathscr{G}_{i j}=\mathscr{O}\left(\frac{1}{r}\right)$ has the form of a diffeomorphism with vector field of order $\mathscr{O}(1)$ and where $h_{i j}^{\text {core }}=\mathscr{O}\left(r^{-2}\right)$.
Similarly,

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D) One has schematically :

$$
g_{i j}=\delta_{i j}+\mathscr{G}_{i j}+h_{i j}^{c o r e}
$$

where $\mathscr{G}_{i j}=\mathscr{O}\left(\frac{1}{r}\right)$ has the form of a diffeomorphism with vector field of order $\mathscr{O}(1)$ and where $h_{i j}^{\text {core }}=\mathscr{O}\left(r^{-2}\right)$.
Similarly,

$$
\pi^{i j}=\mathscr{P}^{i j}+\pi_{\text {core }}^{i j}
$$

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

In 5 dimensions, the improper gauge terms are at order $\frac{1}{r}$ (for the metric), corresponding to a diffeomorphism parameter of order $\mathscr{O}(1)$, whereas "the rest" is at order r^{-2} (cf Schwarschild in 5D) One has schematically:

$$
g_{i j}=\delta_{i j}+\mathscr{G}_{i j}+h_{i j}^{\text {core }}
$$

where $\mathscr{G}_{i j}=\mathscr{O}\left(\frac{1}{r}\right)$ has the form of a diffeomorphism with vector field of order $\mathscr{O}(1)$ and where $h_{i j}^{\text {core }}=\mathscr{O}\left(r^{-2}\right)$.
Similarly,

$$
\pi^{i j}=\mathscr{P}^{i j}+\pi_{\text {core }}^{i j}
$$

where $\mathscr{P}^{i j}=\mathscr{O}\left(\frac{1}{r^{2}}\right)$ has the form of a diffeomorphism with vector field of order $\mathscr{O}(1)$ and where $\pi_{\text {core }}^{i j}=\mathscr{O}\left(r^{-3}\right)$.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction
Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

 comments
5 spacetime dimensions

The BMS algebra
$D>4$)
Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the
nonlinearities of
the charges
Higher
dimensions
Conclusions and
comments

Even though the ideas are identical, there are striking new features in 5 dimensions :

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$) Marc Henneaux

Introduction

Binstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conctusions and comments

Even though the ideas are identical, there are striking new features in 5 dimensions :

- The size of BMS_{5} is bigger than expected. More precisely, the supertranslations depend on four functions of the angles.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher dimensions

Even though the ideas are identical, there are striking new features in 5 dimensions :

- The size of BMS_{5} is bigger than expected. More precisely, the supertranslations depend on four functions of the angles.
- Supertranslation charges (including the energy) acquire non-linear contributions.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Even though the ideas are identical, there are striking new features in 5 dimensions :

- The size of BMS_{5} is bigger than expected. More precisely, the supertranslations depend on four functions of the angles.
- Supertranslation charges (including the energy) acquire non-linear contributions.
- The asymptotic symmetry generators form a non-linear algebra. In particular, the brackets of the boosts acquire cubic contributions.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Even though the ideas are identical, there are striking new features in 5 dimensions :

- The size of BMS_{5} is bigger than expected. More precisely, the supertranslations depend on four functions of the angles.
- Supertranslation charges (including the energy) acquire non-linear contributions.
- The asymptotic symmetry generators form a non-linear algebra. In particular, the brackets of the boosts acquire cubic contributions.
- There are central charges among the different types of supertranslation generators.

5 spacetime dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Even though the ideas are identical, there are striking new features in 5 dimensions :

- The size of BMS_{5} is bigger than expected. More precisely, the supertranslations depend on four functions of the angles.
- Supertranslation charges (including the energy) acquire non-linear contributions.
- The asymptotic symmetry generators form a non-linear algebra. In particular, the brackets of the boosts acquire cubic contributions.
- There are central charges among the different types of supertranslation generators.
See O. Fuentealba, M. Henneaux, J. Matulich and C. Troessaert, e-Print : 2111.09664 [hep-th]

Explicit expression of the energy

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux
Introduction
Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

comments

Explicit expression of the energy

The BMS algebra
$D>4$)
Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions
Conctusions and
comments

Contrary to the familiar ADM expression for the energy in 4D,

Explicit expression of the energy

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions

Contrary to the familiar ADM expression for the energy in 4D, the energy in 5D (with our relaxed boundary conditions) acquires nonlinear contributions.

Explicit expression of the energy

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime dimensions

More on the nonlinearities of the charges

Contrary to the familiar ADM expression for the energy in 4D, the energy in 5D (with our relaxed boundary conditions) acquires nonlinear contributions.
Explicitly,

$$
E=2 \oint_{S_{\infty}^{3}} d^{3} x \sqrt{\bar{\gamma}}\left[(1 / 2) \bar{h}_{A}^{A}+D_{A} \bar{\lambda}^{A}+3 \bar{\lambda}-(1 / 8) \theta_{A B} \theta^{A B}\right]
$$

where

$$
\begin{align*}
& g_{r r}=1+\frac{2 \bar{\lambda}}{r^{2}}+\frac{h_{r r}^{(2)}}{r^{3}}+\mathscr{O}\left(r^{-4}\right), \tag{4.1}\\
& g_{r A}=\frac{\bar{\lambda}_{A}}{r}+\frac{h_{r A}^{(2)}}{r^{2}}+\mathscr{O}\left(r^{-3}\right), \tag{4.2}\\
& g_{A B}=r^{2} \bar{g}_{A B}+r \theta_{A B}+\bar{h}_{A B}+\frac{h_{A B}^{(2)}}{r}+\mathscr{O}\left(r^{-2}\right) . \tag{4.3}
\end{align*}
$$

Explicit expression of the energy

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions

Einstein theory in 5 spacetime
dimensions

More on the nonlinearities of the charges

Contrary to the familiar ADM expression for the energy in 4D, the energy in 5D (with our relaxed boundary conditions) acquires nonlinear contributions.

Explicitly,

$$
E=2 \oint_{S_{\infty}^{3}} d^{3} x \sqrt{\bar{\gamma}}\left[(1 / 2) \bar{h}_{A}^{A}+D_{A} \bar{\lambda}^{A}+3 \bar{\lambda}-(1 / 8) \theta_{A B} \theta^{A B}\right]
$$

where

$$
\begin{align*}
& g_{r r}=1+\frac{2 \bar{\lambda}}{r^{2}}+\frac{h_{r r}^{(2)}}{r^{3}}+\mathscr{O}\left(r^{-4}\right), \tag{4.1}\\
& g_{r A}= \tag{4.2}\\
& \frac{\bar{\lambda}_{A}}{r}+\frac{h_{r A}^{(2)}}{r^{2}}+\mathscr{O}\left(r^{-3}\right), \tag{4.3}\\
& g_{A B}=r^{2} \bar{g}_{A B}+r \theta_{A B}+\bar{h}_{A B}+\frac{h_{A B}^{(2)}}{r}+\mathscr{O}\left(r^{-2}\right) .
\end{align*}
$$

as it follows by applying standard canonical methods.

Energy of flat space

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux
Introduction
Einstein theory in
4 spacetime
dimensions
Binstein theory in 5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Energy of flat space

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions
Conclusions and
comments

These nonlinear terms are crucial for understanding the invariance properties of the energy

Energy of flat space

The BMS algebra
$D>4$)
Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions
Conclusions and
comments

These nonlinear terms are crucial for understanding the
invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.

Energy of flat space

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher

dimensions

These nonlinear terms are crucial for understanding the invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.
For instance if we perform the coordinate transformation $r=\rho+c$ on the flat metric $d r^{2}+r^{2} d \Omega^{2}$

Energy of flat space

These nonlinear terms are crucial for understanding the invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.
For instance if we perform the coordinate transformation $r=\rho+c$ on the flat metric $d r^{2}+r^{2} d \Omega^{2}$
(2013 lecture notes on energy by Piotr T. Chruściel, $\alpha=1$)

Energy of flat space

These nonlinear terms are crucial for understanding the invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.
For instance if we perform the coordinate transformation $r=\rho+c$ on the flat metric $d r^{2}+r^{2} d \Omega^{2}$
(2013 lecture notes on energy by Piotr T. Chruściel, $\alpha=1$)
one finds $\bar{h}_{A B}=c^{2} \bar{\gamma}_{A B}, \theta_{A B}=2 c \bar{\gamma}_{A B}, \bar{\lambda}=0, \bar{\lambda}^{A}=0$

Energy of flat space

These nonlinear terms are crucial for understanding the invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.
For instance if we perform the coordinate transformation $r=\rho+c$ on the flat metric $d r^{2}+r^{2} d \Omega^{2}$
(2013 lecture notes on energy by Piotr T. Chruściel, $\alpha=1$)
one finds $\bar{h}_{A B}=c^{2} \bar{\gamma}_{A B}, \theta_{A B}=2 c \bar{\gamma}_{A B}, \bar{\lambda}=0, \bar{\lambda}^{A}=0$ and therefore

Energy of flat space

These nonlinear terms are crucial for understanding the invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.
For instance if we perform the coordinate transformation $r=\rho+c$ on the flat metric $d r^{2}+r^{2} d \Omega^{2}$
(2013 lecture notes on energy by Piotr T. Chruściel, $\alpha=1$)
one finds $\bar{h}_{A B}=c^{2} \bar{\gamma}_{A B}, \theta_{A B}=2 c \bar{\gamma}_{A B}, \bar{\lambda}=0, \bar{\lambda}^{A}=0$ and therefore

$$
E=2 \oint_{S_{\infty}^{3}} d^{3} x \sqrt{\bar{\gamma}}\left(c^{2}-c^{2}\right)=0
$$

Energy of flat space

These nonlinear terms are crucial for understanding the invariance properties of the energy
under coordinate transformations that decay "slowly" at infinity.
For instance if we perform the coordinate transformation $r=\rho+c$ on the flat metric $d r^{2}+r^{2} d \Omega^{2}$
(2013 lecture notes on energy by Piotr T. Chruściel, $\alpha=1$)
one finds $\bar{h}_{A B}=c^{2} \bar{\gamma}_{A B}, \theta_{A B}=2 c \bar{\gamma}_{A B}, \bar{\lambda}=0, \bar{\lambda}^{A}=0$
and therefore

$$
E=2 \oint_{S_{\infty}^{3}} d^{3} x \sqrt{\bar{\gamma}}\left(c^{2}-c^{2}\right)=0
$$

(first term : ADM contribution; second term : nonlinear contribution)

Higher dimensions

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions
Conclusions and comments

Higher dimensions

Introduction

As one increases the dimension, the analysis becomes more and more technically intricate
Binstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

Higher dimensions

As one increases the dimension, the analysis becomes more and more technically intricate
because the gap between the pure (improper) diffeomorphism piece in the expansion of the fields (generated by $O(1)$ vector fields) and the "Coulomb" piece widens by one power of $1 / r$ as one increases the dimension by one.

Higher dimensions

As one increases the dimension, the analysis becomes more and more technically intricate
because the gap between the pure (improper) diffeomorphism piece in the expansion of the fields (generated by $O(1)$ vector fields) and the "Coulomb" piece widens by one power of $1 / r$ as one increases the dimension by one.
Non linearities (of increasing order) then proliferate.

Higher dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux

Introduction

Einstein theory in 4 spacetime dimensions

As one increases the dimension, the analysis becomes more and more technically intricate
because the gap between the pure (improper) diffeomorphism piece in the expansion of the fields (generated by $O(1)$ vector fields) and the "Coulomb" piece widens by one power of $1 / r$ as one increases the dimension by one.
Non linearities (of increasing order) then proliferate.
(Note that these non-linearities are not seen in current null infinity treatments which linearize the theory at infinity)

Higher dimensions

The BMS algebra at spatial infinity ($D=4$ and $D>4$)

Marc Henneaux
Introduction
Einstein theory in 4 spacetime dimensions

As one increases the dimension, the analysis becomes more and more technically intricate
because the gap between the pure (improper) diffeomorphism piece in the expansion of the fields (generated by $O(1)$ vector fields) and the "Coulomb" piece widens by one power of $1 / r$ as one increases the dimension by one.
Non linearities (of increasing order) then proliferate.
(Note that these non-linearities are not seen in current null infinity treatments which linearize the theory at infinity)
Preliminary analysis indicates that the size of the BMS group does not increase because the new terms in the diffeomorphism generators define proper gauge transformations.

Conclusions and comments

The BMS algebra at spatial infinity ($D=4$ and
$D>4$)
Marc Henneaux

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in 5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

Conclusions and

 comments
Conclusions and comments

The BMS algebra

Introduction

Einstein theory in
4 spacetime
dimensions
Einstein theory in
5 spacetime
dimensions
More on the nonlinearities of the charges

Higher
dimensions

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.

Conclusions and comments

The BMS algebra

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.
Such a term cannot be set to zero,

Conclusions and comments

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.
Such a term cannot be set to zero,
because this would require an improper gauge transformation that would change the physical state of the system.

Conclusions and comments

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.
Such a term cannot be set to zero,
because this would require an improper gauge transformation that would change the physical state of the system.
One can then construct a completely consistent canonical formulation of the BMS symmetry,

Conclusions and comments

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.

Such a term cannot be set to zero,
because this would require an improper gauge transformation that would change the physical state of the system.
One can then construct a completely consistent canonical formulation of the BMS symmetry,
not only in four spacetime dimensions where the description is in complete agreement with the null infinity results (providing furthermore new light on the matching conditions),

Conclusions and comments

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.

Such a term cannot be set to zero,
because this would require an improper gauge transformation that would change the physical state of the system.
One can then construct a completely consistent canonical formulation of the BMS symmetry,
not only in four spacetime dimensions where the description is in complete agreement with the null infinity results (providing furthermore new light on the matching conditions), but also in five dimensions where there is currently no null infinity description.

Conclusions and comments

In order to reveal the action of the BMS group at spatial infinity, one needs to include an improper gauge transformation term in the asymptotic conditions.

Such a term cannot be set to zero,
because this would require an improper gauge transformation that would change the physical state of the system.
One can then construct a completely consistent canonical formulation of the BMS symmetry,
not only in four spacetime dimensions where the description is in complete agreement with the null infinity results (providing furthermore new light on the matching conditions), but also in five dimensions where there is currently no null infinity description.

THANK YOU !

