Islands and Page curves in 4d from Type IIB

Christoph Uhlemann

Eurostrings 2022
Lyon, April 25
arXiv:2105.00008: "Islands and Page curves in 4d from Type IIB" arXiv:2011.10050, arXiv:2112.14648 with Lorenzo Coccia

Information paradox \& entropy of Hawking radiation

black hole in 'box' (AdS) coupled to bath (non-gravitational CFT)

Entropy of Hawking radiation: Page curves from semi-classical gravity. Based on 2d gravity and bottom-up braneworld models.

Today: String theory realization of 4d black holes coupled to bath UV complete, 'microscopic' AdS/CFT duals, Page curves

Outline:

- Islands, braneworlds, double holography
- String theory braneworlds: D3/D5/NS5
- Black holes \& Page curves in Type IIB

Islands, braneworlds, double holography

Islands, braneworlds \& double holography

Radiation entropy in non-gravitating bath with island contributions:
[Penington,Almheiri,Engelhardt,Marolf,Maxfield,Mahajan,Maldacena,Zhao,. ..]

$$
S_{\mathrm{rad}}=\min _{I}\left\{\operatorname{ext}_{I}\left[\frac{\operatorname{Area}(\partial I)}{4 G_{N}}+S_{\mathrm{semi}-\mathrm{cl}}\left[\Sigma_{\mathrm{rad}} \cup I\right]\right]\right\}
$$

Replica wormholes in 2d, quantum extremal surfaces in AdS/CFT, standard R / T surfaces in braneworlds \& double holography ...

Islands, braneworlds \& double holography

Braneworld model for 4d gravity coupled to non-gravitational bath:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}}^{2}}{\sin ^{2} \theta}
$$

Islands, braneworlds \& double holography

Braneworld model for 4d gravity coupled to non-gravitational bath:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}}^{2}}{\sin ^{2} \theta}
$$

Double holography \& 'intermediate' holographic description:
(a) CFT_{4} on half space coupled to CFT_{3} on boundary
\rightarrow (b) AdS_{4} gravity coupled to 'ambient' CFT_{4} on half space (geometrize only 3d boundary d.o.f.)
(c) geometrize full BCFT: AdS_{5} gravity + ETW brane

Islands, braneworlds \& double holography

4d brane black hole coupled to CFT_{4} bath on fixed background:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}}^{2}}{\sin ^{2} \theta}
$$

Islands, braneworlds \& double holography

4d brane black hole coupled to CFT_{4} bath on fixed background:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}-\mathrm{bh}}^{2}}{\sin ^{2} \theta}
$$

eternal AdS_{4} black hole slices

Islands, braneworlds \& double holography

4d brane black hole coupled to CFT_{4} bath on fixed background:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}-\mathrm{bh}}^{2}}{\sin ^{2} \theta}
$$

eternal AdS_{4} black hole slices

Collect Hawking radiation in CFT region R, compute entropy:

Islands, braneworlds \& double holography

4d brane black hole coupled to CFT_{4} bath on fixed background:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}-\mathrm{bh}}^{2}}{\sin ^{2} \theta}
$$

eternal AdS_{4} black hole slices

Collect Hawking radiation in CFT region R, compute entropy:

- HM surface: stretches through horizon, grows in time

Islands, braneworlds \& double holography

4d brane black hole coupled to CFT_{4} bath on fixed background:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}-\mathrm{bh}}^{2}}{\sin ^{2} \theta}
$$

eternal AdS_{4} black hole slices

Collect Hawking radiation in CFT region R, compute entropy:

- HM surface: stretches through horizon, grows in time
- island surface: connects to ETW brane, constant area

Islands, braneworlds \& double holography

4d brane black hole coupled to CFT_{4} bath on fixed background:

$$
d s^{2}=\frac{d \theta^{2}+d s_{\mathrm{AdS}_{4}-\mathrm{bh}}^{2}}{\sin ^{2} \theta}
$$

eternal AdS_{4} black hole slices

Collect Hawking radiation in CFT region R, compute entropy:

- HM surface: stretches through horizon, grows in time
- island surface: connects to ETW brane, constant area

Island surface in 4d intermediate description from R/T in 5d
Competition between island and HM surfaces \rightarrow Page curves

String theory braneworlds

D3/D5/NS5 BCFTs

BPS boundary conditions for $\mathcal{N}=4$ SYM: D3 ending on D5/NS5
[Gaiotto, Witten]

D3/D5/NS5 BCFTs

BPS boundary conditions for $\mathcal{N}=4$ SYM: D3 ending on D5/NS5
[Gaiotto,Witten]

$2 N_{5} K$ semi-infinite D3-branes ending on N_{5} D5 and N_{5} NS5. $R=N_{5} / 2+K$ D3 end on each NS5, $S=N_{5} / 2-K$ on each D5.

D3/D5/NS5 BCFTs

BPS boundary conditions for $\mathcal{N}=4$ SYM: D3 ending on D5/NS5
[Gaiotto,Witten]

$N_{5} \mathrm{NS} 5$
$2 N_{5} K$ semi-infinite D3-branes ending on N_{5} D5 and N_{5} NS5. $R=N_{5} / 2+K$ D3 end on each NS5, $S=N_{5} / 2-K$ on each D5.

D3/D5/NS5 BCFTs

BPS boundary conditions for $\mathcal{N}=4$ SYM: D3 ending on D5/NS5
[Gaiotto,Witten]

$N_{5} \mathrm{NS} 5$
$2 N_{5} K$ semi-infinite D3-branes ending on N_{5} D5 and N_{5} NS5. $R=N_{5} / 2+K$ D3 end on each NS5, $S=N_{5} / 2-K$ on each D5.

$$
\begin{gathered}
U(R)-U(2 R)-\ldots-U\left(R^{2}\right)-\ldots-U\left(2 N_{5} K+S\right)-U \widehat{\left(2 N_{5} K\right)} \\
\mid \\
{\left[N_{5}\right]}
\end{gathered}
$$

4d $U\left(2 N_{5} K\right) \mathcal{N}=4$ SYM on half space, coupled to 3d quiver SCFT with $N_{5}-1$ nodes, for $N_{5}>2 K$ with N_{5} flavors.

Holographic duals for D3/D5/NS5 BCFTs

$\mathrm{AdS}_{4}, S_{1}^{2}, S_{2}^{2}$ warped over Riemann surface Σ [D'Hoker,Estes, Gutperle]

$$
d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4}}^{2}+f_{1}^{2} d s_{S_{1}^{2}}^{2}+f_{2}^{2} d s_{S_{2}^{2}}^{2}+4 \rho^{2} d s_{\Sigma}^{2}
$$

Specified by Σ, harmonic h_{1}, h_{2} : D3/D5/NS5 (multi) Janus, 3d SCFTs [Assel,Bachas], 4d BCFTs [Aharony,Berdichevsky, Berkooz].

Holographic duals for D3/D5/NS5 BCFTs

$\mathrm{AdS}_{4}, S_{1}^{2}, S_{2}^{2}$ warped over Riemann surface Σ [D'Hoker, Estes, Gutperle]

$$
d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4}}^{2}+f_{1}^{2} d s_{S_{1}^{2}}^{2}+f_{2}^{2} d s_{S_{2}^{2}}^{2}+4 \rho^{2} d s_{\Sigma}^{2}
$$

Specified by Σ, harmonic h_{1}, h_{2} : D3/D5/NS5 (multi) Janus, 3d SCFTs [Assel,Bachas], 4d BCFTs [Aharony,Berdichevsky,Berkooz].
$\operatorname{BCFT}\left(N_{5}, K\right):$

$\Sigma=$ strip with D5, NS5 sources on boundary, $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$ at $x \rightarrow \infty$, geometry closes off smoothly on other boundaries.

Connection to braneworld models

ETW brane 'resolved' into geometry + fluxes around 5-branes, $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ region ends smoothly

Connection to braneworld models

ETW brane 'resolved' into geometry + fluxes around 5-branes, $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ region ends smoothly

AdS_{4} at each point on Σ vs. AdS_{4} warped over angular coordinate, fibers joined at 3d boundary.

Connection to braneworld models

ETW brane 'resolved' into geometry + fluxes around 5-branes, AdS $_{5} \times \mathrm{S}^{5}$ region ends smoothly

AdS_{4} at each point on Σ vs. AdS_{4} warped over angular coordinate, fibers joined at 3d boundary. Include Ads_{4} radial coordinate r.

Connection to braneworld models

ETW brane 'resolved' into geometry + fluxes around 5-branes, AdS $_{5} \times \mathrm{S}^{5}$ region ends smoothly

AdS_{4} at each point on Σ vs. AdS_{4} warped over angular coordinate, fibers joined at 3d boundary. Include Ads_{4} radial coordinate r.

4d ambient CFT at $x \rightarrow \infty$. Intermediate holographic description in 10d: dualize 3d quiver SCFT part [details to appear w/ Karch,Sun].

3d, 4d central charges in D3/D5/NS5

In braneworld models, ETW brane angle $\theta_{\star} \sim c_{3 \mathrm{~d}} / c_{4 \mathrm{~d}}$. Here:

- 4d $\mathcal{N}=4 U\left(2 N_{5} K\right)$ SYM: $c_{4 \mathrm{~d}} \sim N_{5}^{2} K^{2}$
- 3d long quivers $L \gg 1$ nodes, ranks $\mathcal{O}\left(L^{2}\right): F_{S^{3}} \sim L^{4}=N_{5}^{4}$ [2011.10050 Coccia,CU], [Van Raamsdonk,Waddell]

3d, 4d central charges in D3/D5/NS5

In braneworld models, ETW brane angle $\theta_{\star} \sim c_{3 \mathrm{~d}} / c_{4 \mathrm{~d}}$. Here:

- 4d $\mathcal{N}=4 U\left(2 N_{5} K\right)$ SYM: $c_{4 \mathrm{~d}} \sim N_{5}^{2} K^{2}$
- 3d long quivers $L \gg 1$ nodes, ranks $\mathcal{O}\left(L^{2}\right): F_{S^{3}} \sim L^{4}=N_{5}^{4}$ [2011.10050 Coccia,CU], [Van Raamsdonk,Waddell]
$\Rightarrow c_{3 \mathrm{~d}} / c_{4 \mathrm{~d}}$ controlled by N_{5} / K.

3d, 4d central charges in D3/D5/NS5

In braneworld models, ETW brane angle $\theta_{\star} \sim c_{3 \mathrm{~d}} / c_{4 \mathrm{~d}}$. Here:

- 4d $\mathcal{N}=4 U\left(2 N_{5} K\right)$ SYM: $c_{4 \mathrm{~d}} \sim N_{5}^{2} K^{2}$
- 3d long quivers $L \gg 1$ nodes, ranks $\mathcal{O}\left(L^{2}\right): F_{S^{3}} \sim L^{4}=N_{5}^{4}$ [2011.10050 Coccia,CU], [Van Raamsdonk,Waddell]
$\Rightarrow c_{3 \mathrm{~d}} / c_{4 \mathrm{~d}}$ controlled by N_{5} / K. Geometrically:

Large rep. Wilson loops in brane setups/supergravity/localization: 'brane coordinates' on $\Sigma \rightarrow$ '3d', '4d' regions [2112.14648 Coccia,CU]

Black holes and Page curves

Black holes and Page curves

Black holes in stringy braneworlds:

$$
d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4}}^{2}+f_{1}^{2} d s_{S_{1}^{2}}^{2}+f_{2}^{2} d s_{S_{2}^{2}}^{2}+4 \rho^{2} d s_{\Sigma}^{2}
$$

Black holes and Page curves

Black holes in stringy braneworlds:

$$
d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4} \mathrm{bh}}^{2}+f_{1}^{2} d s_{S_{1}^{2}}^{2}+f_{2}^{2} d s_{S_{2}^{2}}^{2}+4 \rho^{2} d s_{\Sigma}^{2}
$$

$\mathrm{AdS}_{4} \rightarrow \mathrm{AdS}_{4}$ black hole throughout Σ, solves Type IIB EOM

Black holes and Page curves

Black holes in stringy braneworlds:

$$
d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4} \mathrm{bh}}^{2}+f_{1}^{2} d s_{S_{1}^{2}}^{2}+f_{2}^{2} d s_{S_{2}^{2}}^{2}+4 \rho^{2} d s_{\Sigma}^{2}
$$

$\mathrm{AdS}_{4} \rightarrow \mathrm{AdS}_{4}$ black hole throughout Σ, solves Type IIB EOM

Black holes and Page curves

Black holes in stringy braneworlds:

$$
d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4} \mathrm{bh}}^{2}+f_{1}^{2} d s_{S_{1}^{2}}^{2}+f_{2}^{2} d s_{S_{2}^{2}}^{2}+4 \rho^{2} d s_{\Sigma}^{2}
$$

$\mathrm{AdS}_{4} \rightarrow \mathrm{AdS}_{4}$ black hole throughout Σ, solves Type IIB EOM

AdS_{4} black hole coupled to 4d CFT in intermediate description. Radiation region in ambient 4d CFT geometry at $x=\infty$.

Black holes and Page curves

Radiation entropy: 8d Ryu/Takayanagi surfaces in 10d geometry, wrap $S_{1 / 2}^{2}$, split AdS_{4} at $x=\infty, r=r_{R}$, fixed t, extend along Σ

Black holes and Page curves

Radiation entropy: 8d Ryu/Takayanagi surfaces in 10d geometry, wrap $S_{1 / 2}^{2}$, split AdS_{4} at $x=\infty, r=r_{R}$, fixed t, extend along Σ

Embedding specified by $r(x, y)$: PDE in background with 5-brane singularities, no help from susy \rightarrow numerics.

Black holes and Page curves

Radiation entropy: 8d Ryu/Takayanagi surfaces in 10d geometry, wrap $S_{1 / 2}^{2}$, split AdS_{4} at $x=\infty, r=r_{R}$, fixed t, extend along Σ

Embedding specified by $r(x, y)$: PDE in background with 5-brane singularities, no help from susy \rightarrow numerics.

Boundary conditions on $\partial \Sigma$ from closing off spheres smoothly \Rightarrow analog of "Neumann at ETW brane", derived from regularity

Black holes and Page curves

Radiation entropy: 8d Ryu/Takayanagi surfaces in 10d geometry, wrap $S_{1 / 2}^{2}$, split AdS_{4} at $x=\infty, r=r_{R}$, fixed t, extend along Σ HM surfaces $@ t=0$:

- cross horizon before reaching 'resolved ETW brane region', end in second exterior region \Rightarrow area grows in time

Black holes and Page curves

Radiation entropy: 8d Ryu/Takayanagi surfaces in 10d geometry, wrap $S_{1 / 2}^{2}$, split AdS_{4} at $x=\infty, r=r_{R}$, fixed t, extend along Σ Island surfaces:

- stretch all through Σ to $x=-\infty$, detect D5/NS5
- do not cross horizon \Rightarrow constant area, limit entropy growth

Black holes and Page curves

Radiation entropy: 8d Ryu/Takayanagi surfaces in 10d geometry, wrap $S_{1 / 2}^{2}$, split AdS_{4} at $x=\infty, r=r_{R}$, fixed t, extend along Σ Island surfaces:

- stretch all through Σ to $x=-\infty$, detect D5/NS5
- do not cross horizon \Rightarrow constant area, limit entropy growth Island surfaces preventing unitarity paradoxes for 4d black holes in 10d Type IIB setups engineered to uplift braneworld models

Black holes and Page curves

Entropy curve from competition between island and HM surfaces:
(i) HM dominates initially, island later \rightarrow Page curve
(ii) island dominates right away \rightarrow constant entropy

Black holes and Page curves

Entropy curve from competition between island and HM surfaces:
(i) HM dominates initially, island later \rightarrow Page curve
(ii) island dominates right away \rightarrow constant entropy

Both compatible with unitarity. Phase structure from $\Delta A_{t=0} \ldots$

Black holes and Page curves

Entropy curve from competition between island and HM surfaces:
(i) HM dominates initially, island later \rightarrow Page curve
(ii) island dominates right away \rightarrow constant entropy

Radiation collected far enough in bath \rightarrow non-trivial entropy curve.

Black holes and Page curves

Entropy curve from competition between island and HM surfaces:
(i) HM dominates initially, island later \rightarrow Page curve
(ii) island dominates right away \rightarrow constant entropy

Radiation collected far enough in bath \rightarrow non-trivial entropy curve.

Black holes and Page curves

Entropy curve from competition between island and HM surfaces:
(i) HM dominates initially, island later \rightarrow Page curve
(ii) island dominates right away \rightarrow constant entropy

Radiation collected far enough in bath \rightarrow non-trivial entropy curve.

Black holes and Page curves

Entropy curve from competition between island and HM surfaces:
(i) HM dominates initially, island later \rightarrow Page curve
(ii) island dominates right away \rightarrow constant entropy

Radiation collected far enough in bath \rightarrow non-trivial entropy curve. Consistent results in braneworlds, $N_{5} / K \sim \theta_{\star}$ [Geng et al 2112.09132]

Black holes and Page curves

Critical parameter at $T=0$: islands disappear at $\left(N_{5} / K\right)_{\text {crit }} \approx 4$:

Not an information paradox. Braneworld analog [Chen,Myers et al; Geng, Karch et al], recent 10d study [Demulder,Gnecchi,Lavdas,Lüst].

Gravity in intermediate description massive with non-gravitating bath. D3/D5/NS5 setups for gravitating bath: arXiv:2105.00008.

Conclusion

Conclusion

4d black holes coupled to bath from string theory braneworlds, based on D3/D5/NS5 setups \& $\mathrm{AdS}_{4} \times S^{2} \times S^{2} \times \Sigma$ solutions.

Island surfaces prevent unitarity puzzles, lead to Page curves. Phases, critical parameters consistent with braneworld analyses.

Concrete field theory duals: $\mathcal{N}=4$ SYM BCFTs coupled to 3d long quiver SCFTs. Microscopic, UV complete models.

Thank you!

