D-instantons in string compactifications

Sergei Alexandrov

Laboratoire Charles Coulomb, CNRS, Montpellier

S.A., A.Sen, B.Stefanski arXiv:2108.04265 N=2,Type IIA arXiv:2110.06949 N=2,Type IIB

S.A., A.Firat, M.Kim, A.Sen, B.Stefanski arXiv:2204.02981 N=1

Eurostrings 2022 April 28

Motivation

Instantons in string theory – *Euclidean branes* wrapped on non-trivial cycles of compactification manifold

Although exponentially suppressed in small g_s limit, they play important role for various reasons:

 crucial for non-perturbative dualities and for going beyond the perturbative formulation

- in N=2, contain information on numerical invariants of compactification manifold *entropy of BPS black holes*
- in N=1, essential for moduli stabilization

But in contrast to gauge theories, until 2020, *no direct computation* of instanton effects in string theory was possible!!!

Breakthrough: understanding infrared and zero mode divergences through string field theory [A.Sen]

Goals: 1) apply these ideas in the context of Calabi-Yau compactifications of type II string theory to compare with results based on dualities \rightarrow perfect match

2) apply them for orientifold compactifications to get new results

instanton induced superpotential

Instanton corrections in CY compactifications

The effective action of Type II string theory on a CY threefold is determined by the metric on the moduli space

• D-instanton corrections have been found *exactly* in terms of a *holomorphic contact structure* on the *twistor space* over \mathcal{M}_{HM} [S.A.,Pioline,Saueressig,Vandoren '08]

• The metric has been evaluated explicitly in [S.A., Banerjee '14]

Small string coupling limit

The leading corrections in the small g_s limit

$$\begin{aligned} ds_{\text{inst}}^{2} &= \sum_{\gamma} \frac{\Omega_{\gamma} e^{(5\phi - \mathcal{K})/4}}{64\pi \sqrt{|Z_{\gamma}|}} \left(\sum_{k=1}^{\infty} k^{-1/2} e^{-kT_{\gamma}} \right) \left(\mathcal{A}^{2} + (\cdots) dT_{\gamma} \right) \\ \text{where} & \text{such terms will} \\ \mathcal{T}_{\gamma} &= 8\pi e^{(\mathcal{K} - \phi)/2} |Z_{\gamma}| + 2\pi \mathrm{i}\Theta_{\gamma} - \mathrm{instanton \ action} & \mathrm{be \ ignored} \\ \gamma &= (p^{\Lambda}, q_{\Lambda}) & -\mathrm{D-brane \ charge} & \Omega_{\gamma} - \mathrm{Donaldson-Thomas \ invariant} \\ Z_{\gamma} &= q_{\Lambda} z^{\Lambda} - p^{\Lambda} F_{\Lambda} - \mathrm{central \ charge} & \Theta_{\gamma} &= q_{\lambda} \zeta^{\Lambda} - p^{\Lambda} \tilde{\zeta}_{\Lambda} - \mathrm{axionic \ coupling} \\ \begin{pmatrix} \mathrm{dilaton} \\ (e^{\phi} \sim g_{s}^{2}) \end{pmatrix} & \mathsf{NS-axion} \\ \mathcal{A} &= |Z_{\gamma}| e^{(\mathcal{K} + \phi)/2} \left(\mathrm{d}\sigma + \tilde{\zeta}_{\Lambda} \mathrm{d}\zeta^{\Lambda} - \zeta^{\Lambda} \mathrm{d}\tilde{\zeta}_{\Lambda} + 8e^{-\phi} \mathrm{Im}\partial \log(e^{\mathcal{K}} Z_{\gamma}) \right) \\ + 2\mathrm{i}(\mathrm{Im} F)^{\Lambda \Sigma} \left(q_{\Lambda} - \mathrm{Re} F_{\Lambda \Xi} p^{\Xi} \right) \left(\mathrm{d}\tilde{\zeta}_{\Sigma} - \mathrm{Re} F_{\Sigma \Theta} \mathrm{d}\zeta^{\Theta} \right) + 2\mathrm{i}\mathrm{Im} F_{\Lambda \Sigma} p^{\Lambda} \mathrm{d}\zeta^{\Sigma} \\ & \mathsf{holomorphic \ prepotential} \ \mathcal{K} & \mathsf{complex \ structure \ moduli \ (IIA) \\ \mathrm{complexified \ K\"{ahler \ moduli \ (IIB)}} \end{aligned}$$

Instanton corrections to string amplitudes

The leading instanton contribution to n-point function:

$$\left\langle \prod_{i=1}^{n} \mathcal{O}_{i} \right\rangle_{\text{inst}} = e^{-\mathcal{T}} \exp\left[\bigcirc \right] \prod_{i=1}^{n} \bigcirc^{i}$$

But this expression is *not* well-defined because of infrared divergences and the presence of zero modes in the spectrum.

Example: annulus amplitude in type IIB in 10d:

٠

$$\int_0^\infty \frac{dt}{2t} \left[\frac{1}{2} \eta(\mathrm{i}t)^{-12} \left(\vartheta_3(0,\mathrm{i}t)^4 - \vartheta_4(0,\mathrm{i}t)^4 - \vartheta_2(0,\mathrm{i}t)^4 + \vartheta_1(0,\mathrm{i}t)^4 \right) \right] \stackrel{?}{=} 0$$

All divergences can be understood from string field theory [Sen '20]

• the zero modes related to the collective coordinates of the D-instanton should be left unintegrated till the end of calculation

- bosonic zero modes produce the momentum conserving delta-function
- fermionic zero modes require insertion of zero mode vertex operators

• the divergence due to ghost zero modes arises due to the breakdown of the Siegel gauge $b_0 |\Psi\rangle = 0$ used to get the worldsheet formulation, which is cured by working with a gauge invariant path integral

Annulus amplitude from string field theory

For a BPS instanton in CY compactification:

Metric vs. curvature

We are interested in the effective action for massless scalars. For such fields, 2- and 3-point amplitudes vanish \longrightarrow we need *4-point* function

The simplest 4-point function affected by the metric on \mathcal{M}_{HM} is generated by $\int d^4x \, \mathcal{R}_{ijkl}(\chi^i \bar{\chi}^j)(\chi^k \bar{\chi}^l)$ formions from

Symmetric part of (the Sp(n) part of) the curvature on \mathcal{M}_{HM} very complicated! fermions from hypermultiplets

Amplitudes and effective action

Final result

$$\underbrace{\bullet}_{\bullet}^{m} = \mathrm{i} \, a_m \, p_\mu \, \gamma^{\mu}_{\dot{\alpha}\alpha} \, \chi^{\alpha} \chi^{\dot{\alpha}}$$

$$ds_{\text{inst}}^2 = \sum_{\gamma} 2\pi e^{\phi} g_o \Omega_{\gamma} \left(\sum_{k=1}^{\infty} k^{-1/2} e^{-kT_{\gamma}} \right) \left(\sum_m a_m d\lambda^m \right)^2 + \mathcal{O}(dT_{\gamma})$$

Caveat: this procedure is insensitive to the field redefinitions

 $\varphi^{m} \to \varphi^{m} + e^{-\mathcal{T}_{\gamma}} \xi^{m}(\vec{\varphi})$ leading order $d\varphi^{m} \to d\varphi^{m} - e^{-\mathcal{T}_{\gamma}} \xi^{m}(\vec{\varphi}) d\mathcal{T}_{\gamma}$ Terms $\sim d\mathcal{T}_{\gamma}$ cannot be compared

Evaluation of the coefficients a_m (complicated) Perfect match with the instanton corrected metric predicted by dualities both in Type IIA and type IIB!

Compactification on an orientifold

Due to breaking of supersymmetry to N=1, fermions become massive and scalars get a potential

$$-\int d^4x \left[\frac{1}{2} \left(e^{\mathcal{K}/2} (\nabla_I \nabla_J W) \varepsilon_{\alpha\beta} \psi^{I\alpha} \psi^{J\beta} + \text{h.c.} \right) + e^{\mathcal{K}} \left(\mathcal{K}^{I\bar{J}} \nabla_I W \bar{\nabla}_{\bar{J}} \bar{W} - 3|W|^2 \right) \right]$$

holomorphic superpotential
$$\nabla_I W = \partial_I W + (\partial_I \mathcal{K}) W$$

The leading instanton contribution to the fermion mass term:

$$-\frac{1}{2}\int d^{4}x \left(e^{\mathcal{K}/2}(\partial_{I}\mathcal{T}_{\gamma})\left(\partial_{J}\mathcal{T}_{\gamma}\right)W_{\gamma}\varepsilon_{\alpha\beta}\psi^{I\alpha}\psi^{J\beta} + \text{h.c.}\right) \qquad W_{\gamma} = \mathcal{A}_{\gamma} e^{-\mathcal{T}_{\gamma}}$$
for rigid $e^{-\mathcal{T}_{\gamma}} \exp\left[\left(\bigcirc + \bigoplus\right) \left[\left(\bigcirc_{I}^{(\psi)} \bullet\right) \times \left(\bigcirc_{J}^{(\psi)} \bullet\right)\right]\right]$

$$\frac{1}{2}K_{0}\int\prod_{\mu}\frac{d\xi^{\mu}}{\sqrt{2\pi}}\int\prod_{\delta=1}^{2}d\chi^{\delta} -2\pi\mathrm{i}\partial_{I}\mathcal{T}_{\gamma}\varepsilon_{\alpha\beta}\chi^{\beta}$$
Instanton induced superpotential
$$W_{\gamma} = \frac{\kappa_{4}^{3}e^{\mathrm{i}\xi}}{32\pi^{4}g_{o}^{2}}K_{0}e^{-\mathcal{K}/2}e^{-\mathcal{T}_{\gamma}}$$
contribution of massive modes,
complicated (but finite!) integral
$$\xi \in \mathbb{R}$$
 appears due to a change of coordinates.

depending on the moduli

 $\xi \in \mathbb{R}$ appears due to a change of coordinates Its proper choice ensures holomorphicity of W

Conclusions

- String field theory is able to fix all apparent divergences and ambiguities in instanton contributions to string amplitudes
- String amplitudes perfectly reproduce the results predicted by dualities, which provides a highly non-trivial test for both approaches
- The same technique allows to get an instanton induced superpotential in N=1 compactifications where dualities are not powerful enough

Future directions:

- Extend to more general types of instantons in orientifold compactifications
- Include the effect of fluxes
- Get insights about *NS5-brane instantons* in CY compactifications which remain not fully understood
- Go beyond the leading order in the string coupling

