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Einstein theory of gravity is the main paradigm for understanding
the structure and dynamic of our observable Universe

Black holes, compact stars and gravitational waves are amongst the most
spectacular predictions of general relativity and natural probes of the
fundamental principles of Einstein’s theory and its extension, e.g.
▶ The activation of scalar fields
▶ Gravitational leakage into large extra dimensions
▶ Variability of Newton’s constant
▶ Propagation of gravitational waves
▶ gravitational Lorentz violation
▶ strong equivalence principle
▶ Higher-derivative corrections, . . .
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Classical gravity from quantum amplitudes

p1, m1, S1

p2, m2, S2

p′
1, m1, S1

p′
2, m2, S2

Analytic expressions for the classical gravitational two-body interactions
are obtained using techniques from quantum scattering amplitudes
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Classical physics from quantum loops
p1, m1, S1
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In the limit  h, q2 → 0 with q = q
 h fixed at each loop order of the quantum

amplitude has the Laurent expansion1 γ = p1·p2
m1m2

and q2 = (p1 − p ′
1)

2

ML(γ, q2,  h) =
M

(−L−1)
L (γ, q2)

 hL+1|q|
L(4−D)

2 +2
+ · · ·+

M
(−1)
L (γ, q2)

 h|q|
L(4−D)

2 +2−L
+ O( h0)

▶ The classical amplitude is the contribution of order 1/ h
▶ A classical contribution of order 1/ h from all loop orders
▶ classical gravity physics contributions are determined by the unitarity

of the quantum scattering amplitudes
1

[Iwasaki; Holstein, Donoghue; Bjerrum-Bohr, Damgaard, Planté, Vanhove; Kosower, Maybee, O’Connell]
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One graviton exchange : tree-level amplitude

M1 = −16πGN  h
[2(p1 · p2)

2 − m2
1m2

2 − | hq⃗ |2(p1 · p2)]

| hq⃗ |2

The  h expansion of the tree-level amplitude

M1 =
M

(−1)
1 (p1 · p2)

 h|q|2
+  h4πGNp1 · p2

The higher order in q2 are quantum with powers of  h
The classical potential is obtained by taking the 3d Fourier transform

Ei =
√

p2
i + m2

i

V1(p1 · p2, r) =
∫ d3q⃗
(2π)3

M
(−1)
1 (⃗q) ei⃗q·⃗r

4E1E2
=

GN

E1E2

m2
1m2

2 − 2(p1 · p2)
2

r
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Exponentiation of the S-matrix

Using an exponential representation of the Ŝ matrix2

Ŝ = I+
i
 h

T̂ = exp

(
iN̂
 h

)

doing the Dyson expansion with the conservative and radiation part

T̂ = GN

∑
L⩾0

GL
N T̂L+G

1
2
N

∑
l⩾0

GL
N T̂ rad

L , N̂ = GN

∑
L⩾0

GL
NN̂L+G

1
2
N

∑
l⩾0

GL
NN̂rad

L

The classical radial action N̂classical does not have any  h. The higher power of
1/ h more singular than the classical are needed for the consistency of the
full quantum amplitude and the correct exponentiation of the amplitude

ML(γ, q2,  h) =
M

(−L−1)
L (γ, q2)

 hL+1|q|
L(4−D)

2 +2
+ · · ·+

M
(−1)
L (γ, q2)

 h|q|
L(4−D)

2 +2−L
+ O( h0)

2
[Damgaard, Planté, Vanhove]
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Velocity cuts and classical radial action

At L-loop the classical part arises from imposing L-delta functions on the
massive propagators

ML(γ, |q|2)
∣∣∣
classical

=
1
 h

M
(L−2)
L (γ, D)

|q|2−(D−3)L =⇒ Nclassical
L (γ, D)

−→

In practice, we need only evaluate matrix elements in the soft q2-expansion,
this means that we expand genuine unitarity cuts around the velocity cuts
introduced recently3

3
[Bjerrum-Bohr, Damgaard, Planté, Vanhove]
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Classical black hole metric from quantum amplitudes
PHYSICAL RE VIEW D VOLUME 7, NUMBER 8 15 APRIL 1973

Quantum Tree Graphs and the Schwarzschild Solution
M. Z. Duff*

Physics Department, Imperial College, London SR'7, England
(Received 7 July 1972)

It is verified explicitly to second order in Newton's constant, G, that the quantum-tree-graph
contribution to the vacuum expectation value of the gravitational field produced by a spherical-
ly symmetric c-number source correctly reproduces the classical Schwarzschild solution. If
the source is taken to be that of a point mass, then even the tree diagrams are divergent, and
it is necessary to use a source of finite extension which, for convenience, is taken to be a per-
fect fluid sphere with uniform density. In this way both the interior and exterior solutions may
be generated. A mass renormalization takes place; the total mass of the source, m, being
related to its bare mass, mo, and invariant radius, e„, by the Newtonian-like formula, m
=ma-3Gmz /5e„+O(G ), and the infinities in the quantum theory are seen to be a manifesta-
tion of the divergent self-energy problem encountered in classical mechanics.

I. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein's equations, the question
naturally arises as to whether the @-0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known, ' i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green's functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit I-0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schmarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.
Whereas in quantum electrodynamics it is a

comparatively simple matter to obtain the Coulomb
potential by means of the single-photon exchange
from a stationary point charge, the analogous
situation in gravidynamics, where the gauge group
is non-Abelian, proves much more difficult. First-
ly, as has been shown by Arnomitt, Deser, and
Misner (henceforth referred to as ADM) the
concept of a strictly pointlike source in generaL
relativity is untenable. There is a minimum in-
variant extension for a particle below which no
solutions of the field equations exist, the space-
time developing an intrinsic singularity at a fi-
nite point in the exterior domain of the particle for

radii less than this minimum. Moreover, the to-
tal mass of the source mould then become negative
and eventually negatively infinite as the point-
mass limit is taken. As we shall see, these dif-
ficulties manifest themselves in the quantum theory
in the guise of divergent tree diagrams when a
point source is used. As a model for the source,
therefore, it is essential to choose a particle of
finite extension.
In their work, ADM pick the simplest model for

such an extended particle, a spherical "shell dis-
tribution" of pressure-free dust for which the
mass density is merely proportional to 5(r —e),
where r denotes the radial coordinate and & the
radius of the shell. From the quantum point of
view, however, another dilemma arises. The
quantum-field-theory calculations are most con-
veniently performed in a manifestly Lorentz-co-
variant gauge by employing, for example, the
harmonic coordinate condition of de Donder, '
[(-g)'~'g""] „=0. Whereas in the canonical
approach ADM are able to carry out their anal-
ysis in a frame for which the metric is continuous
across the shell, in harmonic coordinates the
usual regularity conditions are violated and the
metric is itself discontinuous. This problem has
been discussed in a previous paper. ' One is then
faced with a choice, whether to use the attractive-
ly simple 5-function source and put up with the
attendant problems of discontinuity, or to abandon
the shell in favor of a uniform sphere thus gaining
continuity at the expense of simplicity. In this
paper we shall use the latter.
Finally, there is the question of stability. A

cloud of pressure-free dust for which the inter-
actions are purely gravitational is not a static
configuration. This is clear on physical grounds.
In the absence of phenomenological nongravitational
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I. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein's equations, the question
naturally arises as to whether the @-0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known, ' i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green's functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit I-0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schmarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.
Whereas in quantum electrodynamics it is a

In 1973 Duff asked the question about the
classical limit of quantum gravity.a He
showed how to reproduce the Schwarzschild
back hole metric from quantum tree graphs
to G3

N order

The double expansion in GN and  h give a
new perspective on the classical limit of
gravitational scattering amplitudes

aM. J. Duff, “Quantum Tree Graphs and the
Schwarzschild Solution,” Phys. Rev. D 7 (1973),
2317-2326
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Black hole metric from amplitudes h
(3)
1(r,d)=

8(7d4�63d3+214d2�334d+212)

3(d�3)(d�4)(d�1)3
⇢(r,d)3,

h
(3)
2(r,d)=�8(d�2)2(2d3�13d2+25d�10)

(d�3)(d�4)(d�1)3
⇢(r,d)3.(3.44)

3.4Three-loopamplitude

Thediagramscontributingtotheclassicalcorrectionsatthirdpost-Minkowskianorderof

themetricatthetwo-loopgraphs

M(3)
3(p1,q)=�

p
32⇡GNT(3)µ⌫✏µ⌫,(3.45)

wherethethree-loopstress-tensorisgivenbyfivedistinctdiagrams

T
(3)µ⌫
(a)=,T

(3)µ⌫
(b)=,

T
(3)µ⌫
(c)=,T

(3)µ⌫
(d)=,

T
(3)µ⌫
(e)=.

Asbefore,wepermutetheinternalmomentasuchthatbytakingtheresidueat2ml0i=

i✏fromthemassivepropagators,weextractthenon-analytictermswhichcontributetothe

classicalmetricinthestaticlimit.Aftertakingtheresiduesandincludingthesymmetry

factors

T
(3)µ⌫
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Nm4
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dd~ln
(2⇡)d
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(3.46)
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h
(2)
2(r,d)=

4(d�2)2(3d�2)

(d�4)(d�1)2
⇢(r,d)2,(3.26)

where⇢(r,d)isdefinedin(3.8).

Thisreproducestheexpressiongivenin[21]andtheexpressionin[24,eq.(22)]for

↵=0.

3.3Two-loopamplitude

Thediagramscontributingtotheclassicalcorrectionsatthirdpost-Minkowskianorderof

themetricatthetwo-loopgraphs

M(2)
3(p1,q)=�

p
32⇡GNT(2)µ⌫✏µ⌫,(3.27)

therearefourcontributions

T
(2)µ⌫
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(2)µ⌫
(b)=,

T
(2)µ⌫
(c)=,T

(2)µ⌫
(d)=.

3.3.1Thediagrams(a),(b),(c)

Thesumofthecontributionsfromthediagrams(a),(b),(c)afterappropriatelabellingof

themomenta,canbeexpressedas
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m

Z3Y
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(2⇡)2d
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��·⌧µ⌫
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l21l
2
2l

2
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⇥
 

1
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1

(l2�p2)2�m2
+

1
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1
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Usingtheapproximateformofthetwoscalarsonegravitonvertexin(3.17)and(l1+p1)
2�

m2⇡2ml01andtakingtheresidue2ml0i=i✏,sincefortherestoftheresidueswegeta

zerocontributionatorderO(✏0),weget
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T
(2)µ⌫
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Nm3
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gsA(i)
C
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(4.16}

Using Eq. (4.8) a straightforward calculation gives, in momentum space,
1

F(y~g~(g2 $2~3/3(~gy ~gt ~3) sym g 8 ( 4'qa3a3 i82a&&e38pm ' ~a+ 26~B2qa~ap838pm ~s &~Bpo|38$2Ãg 38g

(4.17)

+@V qPV + +yjLV (4.18}
the Einstein Lagrangian may again be expanded in
a fashion similar to Eq. (4.6),
8 (@}=2"'+MS"'+KZ'g'+ . .

However, the explicit forms for Z~ and 2'~" are
rather complicated and we shall not write them
down. In the de Donder gauge (though not in gen-
eral), the free propagator for Q"" field is the
same as that for Q"". The higher-order vertex
functions, however, are different.
We now turn to the rather delicate problem of

choosing the source term 2~. First of all we de-
fine

(4.19)

J„,=-(-z)'"&„., (4.20)
where T„„is the energy-momentum tensor given
in Eq. (2.27). If we now insert the interior form
of g"" known from the classical theory [Eq.
(3.11)], into the above equation, then to order x',
J„„is simply
J =u(r), Z„=P(v)n„,

where g and P are given by Eqs. (2.10) and (3.9).
Next, we note that if the Einstein equations

(4.21)

The "sym" standing in front of this expression in-
dicates that a symmetrization is to be carried out
on each index pair &,P„o',P» and n,P, . The sym-
bol I', means that a summation is to be performed
over all six permutations of the momentum index
triplets ~i~ikx~ nsPsk» a,P,k, . In the above equa-
tion we have omitted an over-all 5 function ex-
pressing conservation of momentum.
So far, the density 0"' has been chosen as the

interpolating field rather than g"" because 2 ~ and
Zo and hence the 3-point function of (4.17) are
much simpler in this form. " In computing the
VEV of the gravitational field, however, we pre-
fer to use the more familiar g"" for reasons which
will become clear later. Setting

since

5Ac 1
6 „.=p(-g) (4.23b)

yPV pV (4.24)
However, by adding the noncovariant piece S~ to
the Lagrangian the gauge symmetry (general co-
variance) is broken and the above constraint no
longer holds. If we now choose A~ to be

Ai=— d xgu (x)I gx)1
2 (4.25)

and regard J„„asbeing a known classical func-
tion of x [Eq. (4.21)], and no longer a functional
of the metric, then functional differentiation with
respect to g"" yields the correct term in the Ein-
stein equation (4.23a). We may now proceed to
calculate the VEV of the gravitational field in the
presence of the external classical source J„„in
the usual way.
The S matrix is given by the Feynman-Dyson

expression

S =Texp i d xg. , x+g x (4.26)

where 2, describes the self-interaction of the
gravitational field and subscript J reminds us of
the presence of the external source. The VEV of

Unfortunately, in gravity theory (as in all non-
Abelian gauge theories), the introduction of a
purely inert external source is complicated by
the fact that the source itself depends on the field.
The components of the matter tensor T"" are not
all independent but satisfy the divergence condi-
tion

—*(-g)"G„.+-.~„,=o
K

(4.22)
(a) (o) (c)

5A~
PV 2 PV (4.23a}

are to be obtained by functional differentiation of
the action (A~+A~), then we must have FIG. 1. Feynman diagrams for the VEV of the gravi-

tational field in the presence of a c-number source (de-
noted by the circles). The closed loops have been
ignored.

▶ The tree skeleton graphs are the one computed by Duff
▶ Reproduces the Schwarzschild-Tangherlini metric in d ⩾ 4 dimensions4

4
[Mougiakakos, Vanhove]
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The scattering angle

One important observable that allows to analytically continue from the
scattering regime to the bound state regime is the scattering angle

The scattering angle is obtained from the (classical) radial
action

N4PM(γ, |b|) =
∫
R2

eiq·b N4PM(γ, q2)

4m1m2
√
γ2 − 1

d2q
(2π)2

as χ4PM(γ) = −∂N4PM(γ, J)/∂J with the angular
momentum J = m1m2

√
γ2 − 1b/EC.M.

χ

2

∣∣∣
1PM+2PM

=
(2γ2 − 1)
γ2 − 1

(
GNm1m2

J

)

+
3π(m1 + m2)(5γ2 − 1)
8(m2

1 + m2
2 + 2m1m2γ)

(
GNm1m2

J

)2

Angle for a test mass in the Schwarzschild black hole of mass M = m1 + m2.
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The 3PM scattering angle [Bjerrum-Bohr, Damgaard, Planté, Vanhove]

χ

2

∣∣∣
3PM

=

(
GNm1m2

J

)3 √
γ2 − 1

((
64γ6 − 120γ4 + 60γ2 − 5

)

3 (γ2 − 1)2

−
4m1m2

3E2
C.M.

γ
(
14γ2 + 25

)
+

4m1m2(3 + 12γ2 − 4γ4) arccosh(γ)

E2
C.M.

√
γ2 − 1

+
2m1m2(2γ2 − 1)2

E2
C.M.

√
γ2 − 1

(
−

11
3

+
d

dγ

((2γ2 − 1) arccosh(γ)√
γ2 − 1

)

At 3PM (two-loop) new phenomena arise
▶ The conservative part deviates from Schwarzschild as we have

contributions which depends (linearly) on the relative mass5

ν = m1m2
(m1+m2)2

▶ And the important Radiation-reaction terms6

5
[Damour; Bern et al.; di Vecchia et al.;Bjerrum-Bohr et al.]

6
[Damour; di Vecchia et al.;Bjerrum-Bohr et al.]
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Radiation reaction

The problem of radiation reaction has been
one of the fundamental theoretical issues in
general relativity. This is a needed
contribution to match the binary-pulsar
observations.

At 3PM a consistent derivation of radiation-reaction was missing. The
amplitude approach clarified that
▶ The radiation-reaction from the soft region of the amplitude (not in the

potential region of7)
▶ The radiation-reaction is needed for restoring a smooth continuity

between the non-relativitic, relativistic and ultra-relativistic regimes8

The evaluation of the complete classical scattering amplitude gives a
clear-cut unified and unambiguous resolution of these issues9

7
[Bern et al.]

8
[Damour, Veneziano et al.]

9
[Bjerrum-Bohr, Damgaard, Planté, Vanhove]
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Outlook

It is satisfying to be able to embed such classical solutions in the new
understanding of the relation between general relativity and the quantum
theory of gravity

1 The 2-body gravitational scattering amplitude leads to the classical
observables : potential, scattering angle, and radiation

2 The amplitude approach is much simpler that the traditional approach
from solving Einstein’s equation, and analytic relativistic expressions.
The velocity cut method is very efficient in the probe regime

3 This is a very useful framework for studying subtle effects like
radiation-reactions and memory effects where subtle non-linear effects
arise from 5PN order [Blanchet; Damour; ...]

4 The approach applies to any EFT of gravity where one can compute
amplitudes. Therefore this is a power approach to derive new constraints
for modified gravity scenarios.
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