Stability of crystallizing emulsions

Launching event for the publication of the Handbook of Molecular Gastronomy

Thomas A. Vilgis soft matter food physics Max-Planck-Institute for Polymer Research Mainz

12.05.2021

Interface dominated systems

stable for low shear, low tempererature, and sufficient surfactant properties

Droplet density and dynamics

discrete phase oil: aroma release continuous phase water: taste release

Small droplets in a cage: texture, mouthfeel

Different types of emuslifiers

Why does ot work with chocolate

Hot soy milk \rightarrow add chocolate \rightarrow emulsify \rightarrow cool down \rightarrow chocolate becomes solid

but how does the cocoa butter crystallize in emulsion droplets?

Bulk crystallization of cocoa butter

Joshi, B. L., Zielbauer, B. I., & Vilgis, T. A. (2020). Comparative Study on Mixing Behavior of Binary Mixtures of Cocoa Butter/Tristearin (CB/TS) and Cocoa Butter/Coconut Oil (CB/CO). Foods, 9(3), 327.

Physicist: make life simple

More controlled: soy storage proteins + cocoa butter

Jüngling I. (2020) Stability of protein stabilized cocoa butter emulsion under crystallization, Thesis, MPI-P / University Mainz

Soy proteins as surfactants

Storage protein: Glycine, very long protein, effective emulsifers

P04776 GLYG1_SOYBN	1	KAKLVFSLCFLLPSGCERAFSSREDBOONECOICKINAIKPDNRIESEGGLIETHNPNNK	60
P04405 GLYG2_SOYBN	1	MAKLVISLCFLLPSGCEAIREOROONECOICKINAIKPDNRIESEGGFIETHNPNNK	57
P04776 GLYG1_SOYBN	61	PFOCAGVALSRCTINRNALRRFSYTNGBOEIYIOOGRGIFGMIYPGCFSTFEEFOOFOOR	120
P04405 GLYG2_SOYBN	58	PFOCAGVALSRCTINRNALRRFSYTNGBOEIYIOOGNGIFGMIPPGCFSTYOEPCESOOR	117
P04776 GLYG1_SOYBN	121	GOSSREOBRICKIYNFREGDLIAVET GVAWMYNNEDT PVVAVSIIDTNSLENOLDOMFR	180
P04405 GLYG2_SOYBN	118	GRSCREOBRICKHREREGDLIAVET GVAWMYNNEDT PVVAVSIIDTNSLENOLDOMFR	177
P04776 GLYG1_SOYBN	181	RFYLAGNCEGEFLKYQGEGGHOSOKGKHOGEEENEGGSILSGFTLEFLEHAFSVDKOLA	240
P04405 GLYG2_SOYBN	178	RFYLAGNCEGEFLKYQGGOGGSOSOKGKOGEEENEGSNIISGFAFEFLKEAFGYNMOIV	237
P04776 GLYG1_SOYBN	241	KNIGGENEGEDKGATYTYKGGISYIKPPTDECCORBOEDEDEDEDEKBOCKGKDKHGORB	300
P04405 GLYG2_SOYBN	238	RNIGGENEBEDSGATYTYKGGISYTAPANREDOEDDDDDEDEOROGVETDKGCORO	294
P04776 GLYG1_SOYBN	301	RGSOSKSERNGIDETICTHRLEHNIGOTSSEDIYNBOAGSVTTATSLDEPALSWIRISAE	360
P04405 GLYG2_SOYBN	295		350
P04776 GLYG1_SOYBN	361	FGSLRKNAMFVPHYNINANSIIYALNGRALIOUVNCNGERVFDGELOEGRVLIVEONFVV	420
P04405 GLYG2_SOYBN	351	YGSLRKNAMFVPHYTINANSIIYALNGRALVOUVNCNGERVFDGELOEGGVLIVEONFAV	410
P04776 GLYG1_SOYBN	421	AARSOSDNEEYUSEKINDIEMIGILAGANSLINALPEEVIOHTENIKSOOABOIKINNNEE	480
P04405 GLYG2_SOYBN	411	AARSOSDNEEYUSEKINDEESICALAGANSLINALPEEVIOHTENIKSOOAROUKINNEE	470
P04776 GLYG1_SOYBN	481	KELVPBOESOKRAVA	495
P04405 GLYG2_SOYBN	471	SELVPBOESOKRAVA	485

8

Crystallization under the microscope

What is going on an meso / micros scales?

- 1. Secondary heterogenous nucleation \rightarrow secondary crystallization process
- 2. Induce/supports partial coalescence

form particle gel

Result: Phase inversion induced through fat-crystallization

Jüngling I. (2020) Stability of protein stabilized cocoa butter emulsion under crystallization, Thesis, MPI-P / University Mainz.

What can do real soy milk and real chocolate better?

- Cocoa particles, (polyphenols)
- Pickering emulsion
- Funktional surfaces
- Keep soy proteins close to interfaces

Thank you for the invitation

Thank you Mainz – Foodies

