Probing new physics solutions to the B-anomalies at high-energy colliders

Darius Alexander Faroughy

3rd Topical Discussion Session:Interplay of quark and lepton flavour at Belle II and the LHC,3rd June 2021

Institut de Physique de l'Univers

Overview

Introduction

• B-anomalies

Flavor at high-energy pp-collider

• Di-taus • Di-muons • LFV tails

B-anomalies and Leptoquark solutions

• High-pT and low energy complementarity

UV model for the vector leptoquark

Flavor sector of the SM

The SM Lagrangian

$$\begin{aligned} \mathcal{F} &= -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \\ &+ \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \\ &+ \mathcal{F}_{\mu\nu} \mathcal{F}_$$

Yukawa sector:

$$\mathcal{L}_{\text{Yukawa}} = -Y_d^{ij} \bar{Q}^i \Phi d^j - Y_u^{ij} \bar{Q}^i \tilde{\Phi} u^j - Y_e^{ij} \bar{L}^i \Phi e^j \implies U(3)^5$$

- Contains most SM free parameters (fermion masses and mixings) extracted from data

- Lepton flavor universility (LFU) is broken in the SM by the fermion masses
- BSM could introduce new sources of LFU breaking
- Good test for BSM physics in flavor experiments!

The SM Flavor puzzle

Non-generic pattern for the SM fermion masses and mixings

A clear hierarchy suggesting an underlying theory of Flavor!

Th SMEFT

- SM as a low energy effective theory:

$$d = 6 \implies N_{\mathcal{O}} = 59, \quad N_C = 2599$$

- Testing accidental SM symmetries is of fundamental importance!

A Decade of B-meson Anomalies

Artwork by Sandbox Studio, Chicago with Corinne Mucha

- Evidence of **LFU violation** in semi-leptonic B-decays: different experiments / different observables
- All B-anomalies seem compatible with each other!
- No single measurment is statistically relevant to claim discovery... yet...
- Anomalies come and go... Need more data
- Completely unexpected from theory side...

B-meson Anomalies – Neutral currents

 $b \to s \ell \bar{\ell}$

- LFU ratio tau vs light leptons

$$R_{K^{(*)}} = \frac{\operatorname{Br}(B \to K^{(*)} \, \mu \bar{\mu})}{\operatorname{Br}(B \to K^{(*)} \, e \bar{e})}$$

- Other anomalies (muon specific):

 $B_s \to \mu\mu \qquad B \to K\mu\mu$ $B \to \phi\mu\mu \qquad P_5'$

All consistent with each other!

Low energy effective theory - RK(*)

Effective Lagrangian:

$$\mathcal{L}_{b \to s \ell \bar{\ell}} = \frac{4 G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i \mathcal{O}_i^{\ell} + \text{h.c.}$$

- (pseudo) scalar operators very constrained
- Clean observables: R_K , R_{K^*} , $\mathcal{B}(B_s \to \mu^+ \mu^-)$

$$\mathcal{O}_{9}^{\ell} = \frac{\alpha}{4\pi} (\bar{s}_{L} \gamma^{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \ell)$$

$$\mathcal{O}_{10}^{\ell} = \frac{\alpha}{4\pi} (\bar{s}_{L} \gamma^{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \gamma^{5} \ell)$$
LFU in

ר SM

- Completely consitent V-A solution:

 $\delta C_9^{\mu\mu} = -\delta C_{10}^{\mu\mu} = -0.41 \pm 0.09$

NP prefered over SM 4.6σ

$$\sim 30 \,\mathrm{TeV}$$

Large NP scale! (At tree level)

B-meson Anomalies – Charged currents

- LFU ratio tau vs light leptons

$$R_{D^{(*)}} = \frac{\operatorname{Br}(B \to D^{(*)} \tau \bar{\nu})}{\operatorname{Br}(B \to D^{(*)} \ell \bar{\nu})} \Big|_{\ell=e,\mu}$$

Low energy effective theory - RD(*)

$$\mathcal{L}_{b\to c\tau\nu} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L}) \mathcal{O}_{V_L} + g_{V_R} \mathcal{O}_{V_R} + g_{S_L} \mathcal{O}_{S_L} + g_{S_R} \mathcal{O}_{S_R} + g_T \mathcal{O}_T \Big]$$

$$\mathcal{O}_{V_L} = (\bar{c}_L \gamma^\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau) \qquad \mathcal{O}_{S_L} = (\bar{c}_R b_L) (\bar{\tau}_R \nu_\tau) \qquad \mathcal{O}_T = (\bar{c}_R \sigma^{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_\tau)$$

$$\mathcal{O}_{V_R} = (\bar{c}_R \gamma^\mu b_R) (\bar{\tau}_L \gamma^\mu \nu_\tau) \qquad \mathcal{O}_{S_R} = (\bar{c}_L b_R) (\bar{\tau}_R \nu_\tau)$$

- Fit to R_D , R_{D^*} , $\mathcal{B}(B_c \to \tau \nu)$

[Angelescu, Becirevic, DAF, Jaffredo, Sumensari 2103.12504]

- V-A only single operator fiting the anomaly

$$g_{V_L} \in [0.05, 0.09]$$

- 2 operators: Scalar + Tensor solutions are also fine

 $\Lambda \sim 2 \,\mathrm{TeV}$

Strong physics case for High-pT LHC!!

-

- Flavor @ LHC -

Semileptonics: observable Landscape

D. Straub

Framework

- Semi-leptonics at the LHC: Drell-Yan process

- Two sources of flavor in high-energy proton-proton collisions:

$$\sigma(pp \to \ell^{\alpha}\ell^{\beta}) = \mathcal{L} \otimes \mathcal{H}^{\alpha\beta} = \sum_{ij} \int \frac{\mathrm{d}\tau}{\tau} \mathcal{L}_{q_i\bar{q}_j}(\tau) \,\hat{\sigma}^{ij\alpha\beta}(\tau) \qquad \tau \equiv \frac{\hat{s}}{s} = \frac{m_{\ell_{\alpha}\ell_{\beta}}^2}{s}$$
Parton-parton Luminosities
(non-perturbative)

$$\mathcal{L}_{q_i\bar{q}_j}(\tau) = \tau \int_{\tau}^{1} \frac{\mathrm{d}x}{x} \left[f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F) + (q_i \leftrightarrow \bar{q}_j) \right]$$

$$\overset{\text{Hard process}}{\hat{\sigma}^{ij\alpha\beta}} \equiv \hat{\sigma}(q_i\bar{q}_j \to \ell_{\alpha}\ell_{\beta}) = \frac{\hat{s}}{v^4} \sum_{IJ} C_I^{ij\alpha\beta} C_J^{ij\alpha\beta^*} M_{IJ}$$

$$\mathcal{G} = \mathcal{G}_q \otimes \mathcal{G}_\ell$$

- Luminosity functions: source of flavor hierearchies

$$\mathcal{L}_{q_i \bar{q}_j}(\tau) = \tau \int_{\tau}^1 \frac{\mathrm{d}x}{x} \left[f_{q_i}(x, \mu_F) f_{\bar{q}_j}(\tau/x, \mu_F) + (q_i \leftrightarrow \bar{q}_j) \right] \qquad \tau = \hat{s}/s = m_{\ell_\alpha \ell_\beta}^2/s$$

p

"PDF" tensor containing the proton flavor hierarchies

Very hierarchical!

p

'High-pT' Tails

Di-tau tails - RD(*)

- SM EFT (d=6):

$$\begin{aligned} \mathcal{L}_{eff} &\supset C_{lq}^{(3)\ ij\alpha\beta}\ (\bar{Q}^{i}\gamma_{\mu}\sigma^{a}Q^{j})(\bar{L}^{\alpha}\gamma^{\mu}\sigma^{a}L^{\beta}) \\ &+ C_{ledq}^{ij\alpha\beta}\ (\bar{d}^{i}Q^{j})(\bar{L}^{\alpha}e^{\beta}) \\ &+ C_{lequ}^{(1)\ ij\alpha\beta}\ (\bar{Q}_{i}u^{j})i\sigma^{2}(\bar{L}^{\alpha}e^{\beta}) \\ &+ C_{lequ}^{(3)\ ij\alpha\beta}\ (\bar{Q}^{i}\sigma_{\mu\nu}u^{j})(\bar{L}^{\alpha}\sigma_{\mu\nu}e^{\beta}) \end{aligned}$$

- (Minimal) Flavor structure assumptions:
- 1. Alignment with down quarks & charged leptons: $Q_i = (V_{CKM}^{ij*} u_L^j, d_L^i)^T$ $L_i = (U_{PMNS}^{ij*} \nu_L^j, \ell_L^i)^T$ 2. Dominant effects in 3rd generation fermions: $C^{ij\alpha\beta} \approx C \ \delta_{i3}\delta_{j3}\delta_{3\alpha}\delta_{3\beta}$

- Enhanced ditau production $b\bar{b}
ightarrow au au$ compared to mono-tau $b\bar{c}
ightarrow au
u$

- We can probe generic NP solution to RD(*) in **Di-Tau** production at the LHC! $pp \to \tau^+ \tau^- + X$

Di-tau tails - RD(*)

Existing $\tau \tau$ resonance searches @ LHC

71.0	8 TeV	19.5 fb⁻¹
Z' Sequential SM	13 TeV	3.2 fb ⁻¹
MSSM Higgs	13 TeV	36.1 fb ⁻¹
	(13 TeV	139 fb ⁻¹

Recast Z' di-Tau searches:

- Inclusive category $pp \rightarrow \tau^+ \tau^- + X$
- Hadronic mode $au_{had} au_{had}$

 $m_T^{\text{tot}} \equiv \sqrt{m_T^2(\tau_1, \tau_2) + m_T^2(E_T^{\text{miss}}, \tau_1) + m_T^2(E_T^{\text{miss}}, \tau_2)}$

- High-mass tail cut $m_T^{
 m tot}$ > 800 GeV
- Results for EFT limits @ 13 TeV, 3.2 fb⁻¹:

$$\mathcal{L}_{eff} \supset C_{lq}^{(3) \ ij\alpha\beta} \ (\bar{Q}^i \gamma_\mu \sigma^a Q^j) (\bar{L}^\alpha \gamma^\mu \sigma^a L^\beta)$$

- LHC is becoming sensitive to the B-anomaly mass scale!

Di-muons tails - RK(*)

Greljo, Marzocca '17

$$\mathscr{L}^{\text{eff}} \supset \frac{\mathbf{C}_{ij}^{U\mu}}{v^2} (\bar{u}_L^i \gamma_\mu u_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) + \frac{\mathbf{C}_{ij}^{D\mu}}{v^2} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\mu}_L \gamma^\mu \mu_L)$$

LFV tails!

Remarkable LHC / flavor complementarity!

Angelescu, DAF, Sumensari '20

Semileptonics: observables Landscape

B-anomalies: - Leptoquark solutions -

Simplified models - RD(*)

Necessary for reliable high-pT collider studies Less parameters... Paves the way towards UV complete models

Simplified models - RD(*)

Necessary for reliable high-pT collider studies Less parameters... Paves the way towards UV complete models

Color singlet solutions ruled out by ditau searches! [DAF, Greljo, Kamenik 1609.07138]

Leptoquarks

- Quintesential 'semi-leptonic' state!

Hypothetical Scalar / Vector boson

Color triplet,
$$Q_{em} = \{\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{5}{3}\}$$

- Non-resonant Drell-Yan production
- No 4-quark / 4-lepton effective interactions at tree level

LQ •••••

- Induces semi-leptonic tree level LFV $K_L \rightarrow e\mu$
- Some leptoquarks can mediate proton decay...

Leptoquark Bestiary

(SU(3), SU(2), U(1))	Spin	Symbol
$(\overline{3},3,1/3)$	0	S_3
$({f 3},{f 2},7/6)$	0	R_2
$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$
$(\overline{3},1,4/3)$	0	$ ilde{S}_1$
$(\overline{3},1,1/3)$	0	S_1
$(\overline{f 3}, {f 1}, -2/3)$	0	$ar{S}_1$
$({f 3},{f 3},2/3)$	1	U_3
$(\overline{f 3},{f 2},5/6)$	1	V_2
$(\overline{f 3},{f 2},-1/6)$	1	$ ilde{V}_2$
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$
$({f 3},{f 1},2/3)$	1	U_1
(3, 1, -1/3)	1	$ar{U}_1$

Relevant LQs for B-anoamlies

Leptoquarks @ LHC

-21-

0±

QŦ

LQ

LQ pair production $pp
ightarrow {
m LQ}^* {
m LQ}
ightarrow \ell\ell q q$ $\sigma \sim g_*^0$

Decays	Scalar LQ limits	Vector LQ limits	$\mathcal{L}_{\mathrm{int}}$ / Ref.
$jj auar{ au}$	_	_	_
$bar{b} auar{ au}$	$1.0 \ (0.8) \ { m TeV}$	$1.5 (1.3) { m TeV}$	36 fb^{-1} [39]
$tar{t} auar{ au}$	$1.4 (1.2) { m TeV}$	$2.0 (1.8) { m TeV}$	$140 \text{ fb}^{-1} [40]$
$jj\muar\mu$	$1.7 (1.4) { m TeV}$	2.3 (2.1) TeV	140 fb^{-1} [41]
$bar{b}\muar{\mu}$	$1.7 \ (1.5) \ { m TeV}$	$2.3~(2.1)~{\rm TeV}$	$140 \text{ fb}^{-1} [41]$
$tar{t}\muar{\mu}$	$1.5~(1.3)~{\rm TeV}$	$2.0 (1.8) { m TeV}$	$140 \text{ fb}^{-1} [42]$
jj uar u	$1.0 \ (0.6) \ {\rm TeV}$	$1.8 (1.5) { m TeV}$	36 fb^{-1} [43]
$bar{b} uar{ u}$	$1.1 (0.8) {\rm TeV}$	$1.8 (1.5) { m TeV}$	36 fb^{-1} [43]
$t\bar{t} u\bar{ u}$	$1.2 (0.9) { m TeV}$	$1.8 (1.6) { m TeV}$	$140 \text{ fb}^{-1} [44]$

Run 2 pair production limits

BR = 1 (0.5)

Non-resonant Drell-Yan $pp \to \mu\mu, \tau\tau$ $\sigma \sim g_*^4$

9

ą

U₁ Vector LQ

 $U_{1}^{\mu} \sim (\mathbf{3}, \mathbf{1})_{2/3} \qquad \mathcal{L}_{U1} = U_{1}^{\mu} \left[x_{L}^{ij} (\overline{d}_{Li} \gamma_{\mu} \ell_{Lj}) + (V x_{L})^{ij} (\overline{u}_{Li} \gamma_{\mu} \nu_{Lj}) - x_{R}^{ij} (\overline{d}_{Ri} \gamma_{\mu} \ell_{Rj}) \right] + \text{h.c.}$

- This solution can accomodate both anomalies!

Butazzo, Greljo, Isidori, Marzocca [1706.07808]

- This solution has no (tree-level) contribution to $b
ightarrow s
u ar{
u}$

Leptoquark 'catalog' (spring 2021 edition)

S₁ & S₃ (V-A) e.g. Strongly coupled model Marzocca [1803.10972]

Cornering U₁

Can we fully test the U_1 model using tree-level observables?

Complementarity between LFV low-energy and LFC high-pT observables

Observable $m_{U_1} = 1.5 \text{ TeV}$ $m_{U_1} = 1.5 \text{ TeV}$ 3 $m_{U_1} = 1.5 \text{ TeV}$ $b \rightarrow s \mu \mu$ 2 $b \rightarrow c \tau \nu$ $\mathcal{B}(\tau \to \mu \phi)$ $\eta\eta \leftarrow dd$ $\mathcal{B}(B \to \tau \nu)$ $\mathbf{x}_{\mathrm{L}}^{\mathrm{b}\mu}$ xL 0 xL $\mathcal{B}(D_s \to \mu \nu)$ 300 fb⁻ $\mathcal{B}(D_s \to \tau \nu)$ 300 fb $pp \rightarrow \mu\mu$ 36 fb⁻¹ $pp \rightarrow \tau \tau$ 36 fb⁻ 36 fb⁻ $r_K^{e/\mu}$ $r_K^{\tau/\mu}$ -3--3 $R_D^{\mu/e}$ -0.50. 0.5 -1. -0.5-0.5-11. 0. 0.5 -1.50. 0.5 1.5 -1.51. 1.5 -1.1. $x_L^{s\mu}$ $X_L^{S\tau}$ XLST

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

 $g_{V_L} = -rac{v^2}{2m_{I_L}^2} \Big[|x_L^{b au}|^2 + rac{V_{cs}}{V_{ch}} x_L^{s au} (x_L^{b au})^* \Big] \qquad \boxed{x_{s au} = \mathcal{O}(1) \times V_{cb}}$

- LHC di-lep allowed regions at 36/fb (blue) & 300/fb (red)

- U₁- strange - tau coupling must be non-zero!

Fixed mass fit with tree-level observables

-24-

Cornering U₁

Can we fully test the U_1 model using tree-level observables?

Complementarity between LFV low-energy and LFC high-pT observables

- Predictions for LFV low-energy observables for U1

LHC Di-Taus tails push lower bounds on both LFV observables!

Model Potentially within reach at LHCb & Belle 2!

Angelescu, Becirevic, DAF, Jaffredo, Sumensari, [2021]

- a UV model -

'4321' model

Coloron (vector octet) Pati-Salam Leptoquark $U_1^{\mu} \sim ({\bf 3},{\bf 1})_{2/3}$ $U(1)_{V}$ $G^a \qquad U^\alpha$ $(U^\alpha)^* \qquad Z'$ $SU(4) \sim$ $\xrightarrow{SSB} SU(3)_c \times SU(2)_L \times U(1)_Y$ $SU(4) \times SU(3)' \times SU(2)_L \times U(1)_X +U_1, Z', G'$ $SU(3)_c$ [Flavor non-universal] $\langle \Omega_3 \rangle$ SU(3)' $SU(2)_L$ $U(1)_X$ Field SU(4)1/6 $q^i_L \ u^i_R \ d^i_R \ \ell^i_L \ e^i_R \ \chi^i_{L,R}$ 3 2 1 q', Z'2/31 3 1 1 -1/3SM fields 3 1 -1/2 $\mathbf{2}$ 1 1 $\otimes_{\langle \Omega_1 \rangle}$ $\otimes_{\langle \Omega_3 \rangle}$ -1/21 1 1 4 0 $\chi =$ 1 2 H1 2 1/21 -1/2 Ω_1 4 1 1 4321 SSB $\overline{\mathbf{4}}$ Ω_3 3 1/61 scalars 15 Ω_{15} 1 1 0 $\otimes_{\langle \Omega_1 \rangle}$

Coloron search

$$pp \to G' \to t\bar{t}, b\bar{b}$$

- 4321 models have broad resonances
- Recast of ditop/dijet searches

High mass normalized invariant mass distrubtiuon

Best limits on the 4321 model!

Conclusions

- B-anomalies are alive and kicking: LHCb recently anounced evidence of LFUV in R_K
- Combined anomalies in neutral currents are approaching the 5 sigma level.
- B-anomalies opened the doors to explore flavorp physics at high-energy pp-colliders.

$$q_i \bar{q}_j \to \ell_\alpha^\pm \ell_\beta^\mp \qquad q_i \bar{q}_j \to \ell_\alpha^\pm \nu_\beta$$

• We described a remarkable complementarity between high-pT and low energy LFV flavor observables for effective operators.

- High-pT observables are a crucial input for model building efforts \implies Leptoquarks
- Leptoquark solutions exhibit specific **complementary** beteen ditaus and LFV searches:

$$pp \rightarrow \tau^+ \tau^- + X$$
 $B \rightarrow K\mu\tau$ $\tau \rightarrow \mu\phi$
ATLAS/CMS LHCb Belle 2

• UV and simplified models can be efficiently tested at colliders!

- extra slides -

Di-tau tails & colorless mediators

Vector triplet model:

$$\mathcal{L}_{W'} = -\frac{1}{4} W_{\mu\nu}^{'a} W^{'a\mu\nu} + \frac{M_{W'}^2}{2} W^{'a\mu} W_{\mu}^{'a} + W_{\mu}^{'a} J_{W'}^{a\mu}$$
$$J_{W'}^{a\mu} \equiv g_b \ \bar{Q}_3 \gamma_\mu \tau^a Q_3 + g_\tau \ \bar{L}_3 \gamma_\mu \tau^a L_3$$

 $pp \to \tau^+ \tau^- + X$

Recast Di-tau search for Z' with arbitrary width JHEP 1801 055 (2018)

High-pT di-tau searches excludes **colorless** solution to B-anomalies!

See DAF, Greljo, Kamenik Phys .Lett. B 764(2017)126-134

Di-lepton tails - RK(*)

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Search for new phenomena in final states with two leptons and one or no *b*-tagged jets at $\sqrt{s} = 13$ TeV using the ATLAS detector

Figure 1: Representative Feynman diagrams for the decay of a B^+ meson to a K^+ meson in association with two leptons (a) in the SM and (b) in the EFT approach, and for production of two leptons via a $bs\ell\ell$ contact interaction in pp collisions (c) without and (d) with a b-jet in the final state.

Di-lepton SMEFT

Greljo, Marzocca '17

$$\mathscr{L}^{\text{eff}} \supset \frac{\mathbf{C}_{ij}^{U\mu}}{v^2} (\bar{u}_L^i \gamma_\mu u_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) + \frac{\mathbf{C}_{ij}^{D\mu}}{v^2} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) \qquad \mathbf{C}_{ij}^{D\mu} = \begin{pmatrix} C_{d\mu} & 0 & 0\\ 0 & C_{s\mu} & C_{bs\mu}^*\\ 0 & C_{bs\mu} & C_{b\mu} \end{pmatrix}$$

Minimal Flavor Violation (MFV) for $\,R_{K^{(*)}}\,$

Scenario excluded by dileptons!

Di-lepton tails - LFV

Four relevant LFV low energy experiments:

1) $\mu
ightarrow e~$ conversion rate in Nuclei

[Only relevant for valence quarks...]

 $V \to \ell_{\alpha} \ell_{\beta}$

$$\mathcal{B}(V \to \ell_{\alpha}^{-} \ell_{\beta}^{+}) = \frac{\tau_{V} m_{V}^{3} f_{V}^{2}}{24 \pi v^{4}} \left(1 - \frac{m_{\ell_{\beta}}^{2}}{m_{V}^{2}}\right)^{2} \times \left\{ \left[|\mathcal{C}_{VL}|^{2} + |\mathcal{C}_{VR}|^{2} \right] \left(1 + \frac{m_{\ell_{\beta}}^{2}}{2m_{V}^{2}}\right) + 6 \frac{f_{V}^{T}}{f_{V}} \frac{m_{\ell_{\beta}}}{m_{V}} \operatorname{Re}\left(\mathcal{C}_{T} \mathcal{C}_{VR}^{*} + \widehat{\mathcal{C}}_{T} \mathcal{C}_{VL}^{*}\right) + 2 \left(\frac{f_{V}^{T}}{f_{V}}\right)^{2} \left[|\mathcal{C}_{T}|^{2} + |\widehat{\mathcal{C}}_{T}|^{2} \right] \left(1 + \frac{2m_{\ell_{\beta}}^{2}}{m_{V}^{2}}\right) \right\}$$

3) FCNC Pseudo-scalar meson decays:

[Helicity suppression]

4) LFV tau decays: $\tau \to P\ell_{\alpha}, \ \tau \to V\ell_{\alpha}$

LHC vs Flavor $e\mu$

Decay mode	Exp. limit
$K_L \to \mu^{\mp} e^{\pm}$	6.1×10^{-12}
$K^+ \to \pi^+ \mu^+ e^-$	1.7×10^{-11}
$\phi \to \mu^{\pm} e^{\mp}$	2.6×10^{-6}
$D o \mu^{\pm} e^{\mp}$	1.6×10^{-8}
$J/\psi o \mu^{\pm} e^{\mp}$	2.1×10^{-7}
$B_d \to \mu^{\mp} e^{\pm}$	1.3×10^{-9}
$B^+ \to \pi^+ \mu^\mp e^\pm$	2.2×10^{-7}
$B_s \to \mu^{\mp} e^{\pm}$	$6.3 imes 10^{-9}$
$B^+ \to K^+ \mu^+ e^-$	$8.8 imes 10^{-9}$
$B^0 \to K^* \mu^\mp e^\pm$	2.3×10^{-7}

Selected LHC limits (left-handed scenario)		
Decay mode	Current (36 fb^{-1}) Future (3 ab^{-1})	
$\phi \to \mu^\pm e^\mp$	6.2×10^{-18}	1.4×10^{-18}
$D^0 \to \mu^\pm e^\mp$	2.8×10^{-9}	5.0×10^{-10}
$J/\psi \to \mu^\pm e^\mp$	7.1×10^{-12}	1.6×10^{-12}
$B_d \to \mu^{\mp} e^{\pm}$	$7.8 imes 10^{-8}$	1.4×10^{-9}
$B^+ \to \pi^+ \mu^\mp e^\pm$	$3.5 imes 10^{-5}$	6.4×10^{-6}
$B_s \to \mu^{\mp} e^{\pm}$	6.4×10^{-7}	1.4×10^{-7}
$B^+ \to K^+ \mu^{\mp} e^{\pm}$	2.8×10^{-4}	6.2×10^{-5}
$B^0 \to K^* \mu^{\mp} e^{\pm}$	5.8×10^{-4}	1.3×10^{-4}
$\Upsilon(3S) \to \mu^\pm e^\mp$	5.6×10^{-9}	1.3×10^{-9}

LHC vs Flavor $e\tau$

Decay mode	Exp. limit
$\tau \to e \rho$	2.3×10^{-8}
$\tau \to e K^*$	4.2×10^{-8}
$\tau \to e\phi$	4.0×10^{-8}
$J/\psi \to \tau^{\pm} e^{\mp}$	1.1×10^{-5}
$B_d \to \tau^{\pm} e^{\mp}$	$3.6 imes 10^{-5}$
$B^+ \to \pi^+ \tau^\pm e^\mp$	9.7×10^{-5}
$B^+ \to K^+ \tau^\pm e^\mp$	$3.9 imes 10^{-5}$
$\Upsilon(3S) \to \tau^{\pm} e^{\mp}$	5.4×10^{-6}

Selected LHC limits (left-handed scenario)			
Decay mode	Current (36 fb^{-1}) Future (3 ab^{-1})		
$D^0 \to \tau^{\pm} e^{\mp}$	5.1×10^{-8}	6.8×10^{-9}	
$J/\psi o \tau^{\pm} e^{\mp}$	2.6×10^{-11}	4.9×10^{-12}	
$B_d \to \tau^{\pm} e^{\mp}$	1.2×10^{-4}	1.9×10^{-5}	
$B^+ \to \pi^+ \tau^\pm e^\mp$	1.6×10^{-4}	2.5×10^{-5}	
$B_s \to \tau^{\mp} e^{\pm}$	1.1×10^{-3}	2.0×10^{-4}	
$B^+ \to K^+ \tau^\pm e^\mp$	1.4×10^{-3}	2.5×10^{-4}	
$B^0 \to K^* \tau^{\pm} e^{\mp}$	2.4×10^{-3}	4.2×10^{-4}	
$\Upsilon(3S) \to \tau^{\pm} e^{\mp}$	3.4×10^{-8}	7.0×10^{-9}	

S₃ Scalar Triplet

$$S_{3} \sim (\bar{\mathbf{3}}, \mathbf{3})_{1/3} \qquad \mathcal{L}_{S_{3}} = -y_{L}^{ij} d_{L\,i}^{\bar{c}} \nu_{L\,j} S_{3}^{(1/3)} - \sqrt{2} y_{L}^{ij} d_{L\,i}^{\bar{c}} \ell_{L\,j} S_{3}^{(4/3)} + \sqrt{2} (V^{*}y_{L})_{ij} u_{L\,i}^{\bar{c}} \nu_{L\,j} S_{3}^{(-2/3)} - (V^{*}y_{L})_{ij} u_{L\,i}^{\bar{c}} \ell_{L\,j} S_{3}^{(1/3)} + \text{h.c.}$$

S₃ Scalar Triplet

$$S_{3} \sim (\bar{\mathbf{3}}, \mathbf{3})_{1/3} \qquad \mathcal{L}_{S_{3}} = \underbrace{-y_{L}^{ij} d_{L\,i}^{\bar{c}} \nu_{L\,j} S_{3}^{(1/3)}}_{+\sqrt{2} (V^{*} y_{L})_{ij} u_{L\,i}^{\bar{c}} \nu_{L\,j} S_{3}^{(-2/3)}}_{+\sqrt{2} (V^{*} y_{L})_{ij} u_{L\,i}^{\bar{c}} \nu_{L\,j} S_{3}^{(-2/3)}} - \underbrace{(V^{*} y_{L})_{ij} u_{L\,i}^{\bar{c}} \ell_{L\,j} S_{3}^{(1/3)}}_{+ \text{h.c.}} + \text{h.c.}$$

B-anomalies: R₂ scalar leptoquark

$$R_{2} \sim (\mathbf{3}, \mathbf{2})_{7/6} \qquad \qquad \mathcal{L}_{R_{2}} = y_{R}^{ij} (\overline{u}_{Li} \ell_{Rj}) R_{2}^{(5/3)} + y_{R}^{ij} (d_{Li} \ell_{Rj}) R_{2}^{(2/3)} + y_{L}^{ij} (\overline{u}_{Ri} \nu_{Lj}) R_{2}^{(2/3)} - y_{L}^{ij} (u_{Ri} \ell_{Lj}) R_{2}^{(5/3)}$$

R₂ Scalar LQ

 $R_2 \sim$

$$(\mathbf{3}, \mathbf{2})_{7/6} \qquad \qquad \mathcal{L}_{R_2} = y_R^{ij}(\overline{u}_{Li}\ell_{Rj})R_2^{(5/3)} + y_R^{ij}(d_{Li}\ell_{Rj})R_2^{(2/3)} + y_L^{ij}(\overline{u}_{Ri}\nu_{Lj})R_2^{(2/3)} - y_L^{ij}(u_{Ri}\ell_{Lj})R_2^{(5/3)}$$

R₂ Scalar LQ

$$R_{2} \sim (\mathbf{3}, \mathbf{2})_{7/6} \qquad \qquad \mathcal{L}_{R_{2}} = y_{R}^{ij} (\overline{u}_{Li} \ell_{Rj}) R_{2}^{(5/3)} + y_{R}^{ij} (d_{Li} \ell_{Rj}) R_{2}^{(2/3)} + y_{L}^{ij} (\overline{u}_{Ri} \nu_{Lj}) R_{2}^{(2/3)} - y_{L}^{ij} (u_{Ri} \ell_{Lj}) R_{2}^{(5/3)}$$

 $y_L^{c au} \in \mathbb{R} \quad y_L^{b au} \in \mathbb{C}$

Scalar + Tensor solution!

Becirevic, Dorsner, Fajfer, DAF, Kosnik, Sumensari [1808.08179]

Non-V-A solution to anomaly!

- Predictions for LFV low-energy observables for U_1

Angelescu, Becirevic, DAF, Jaffredo, Sumensari, [2021]

LHC Di-Taus tails push lower bounds on both LFV observables! Model Potentially within reach at LHCb & Belle 2!

[Cornella et al., 2103.16558]

ت 5.0

GUT-inspired leptoquarks

Flavor obs. & high-p_T di-Taus

GUT Leptoquarks:

DAF, Kosnik, Sumensari

[1808.08179]

 $R_2 \sim (3,2)_{7/6}$ and $S_3 \sim (3,3)_{-1/3}$ Becirevic, Dorsner, Fajfer, for $R_{K^{(*)}}$ for R_{D(*)}

Good Benchmark:

 R_{2} with ~O(1) Yukawa couplings Couples to both charm and bottom m_e ~ 800 GeV

LHC 13 TeV, 100 fb⁻¹ $b \overline{b}, c \overline{c} \rightarrow \tau \overline{\tau}$ $t \bar{t} \tau \bar{\tau}$ bbrit Flavor fit $c \overline{c} v \overline{v}$ 0.00.2 1.2 0.00.40.6 0.8 1.0 1.4 $y_L^{c\tau}$

 $pp \to \tau\nu + X$

Greljo, Camalich, Ruiz-Alvarez '18

LFV low-energy observables for other LQ models:

-21-