

Lepton flavour universality and lepton flavour violation tests at Belle II

"Interplay of quark and lepton flavour at Belle II and the LHC" Institute of the Physics of the Universe, Aix-Marseille Université July 3rd, 2021

Elisa Manoni

Istituto Nazionale di Fisica Nucleare, Sezione di Perugia

S. <u>Tanaka</u> look remarkably similar Parentherically : detector does not (cal), K., m, pu =5 gel Rith/crid (transverse 2 (usually with 25/2x)

Figure 2: First presentation [17] of the boosted- $\Upsilon(4S)$ idea in 1987.

Standard Model is a working theory..

• Two examples:

...but not the ultimate one

- pattern?
- Why matter dominates ove anti-matter?
- What's the origin of dark matter?

• What's the origin of lepton and quark particle mass and mixing angle

...but not the ultimate one

- What's t pattern?
- Why ma
- What's t

.

• Theorists at work

What's beyond?

• Experimentalist at work

The role of indirect searches

 Indirect searches allow to test higher searches

• Indirect searches allow to test higher NP energy scale, complementary to direct

The long way to indirect searches @ at SuperB factory

First generation B factories: where and why

- (JAPAN)
 - pairs, respectively

e.g. KEKB peak luminosity (WR!): 2. 1 x 10³⁴cm⁻²s⁻¹

Much more than just CPV in B system (I)

The BelleII Physics Book, PETP 2019, 123C01 (2019)

(1, 1, 2, 2, 3) = (1, 2) = 1	Physics process	Cross section [nb]
$e \ e \ \Rightarrow c \ c \ (\gamma) = 1.3 \ nb$ (0.91%)	$\Upsilon(4S)$	1.110 ± 0.008
	$uar{u}(\gamma)$	1.61
$\sigma[e^+e^- \rightarrow u\bar{u}(\gamma)] = 1.61 nb$	$dar{d}(\gamma)$	0.40
$\sigma[e^+e^- \rightarrow \gamma \gamma(\gamma)] = 3.3 nb$	$sar{s}(\gamma)$	0.38
(2.31%)	$c\overline{c}(\gamma)$	1.30
	$e^+e^-(\gamma)$	300 ± 3 (MC stat.)
$\sigma[e^+e^- \rightarrow e^+e^-\mu^+\mu^-] = 18.9 nb$ (13.21%)		
(10.2170)	$e^+e^-(\gamma)$	74.4
	$\gamma\gamma(\gamma)$	4.99 ± 0.05 (MC stat.)
	,,,,,,	
$\sigma[e^{+}e^{+}e^{+}e^{+}e^{-}e^{-}]=39.7 \text{ nb}$ (27.74%)	$\gamma\gamma(\gamma)$	3.30
	$\mu^+\mu^-(\gamma)$	1.148
	$\mu^+\mu^-(\gamma)$	0.831
	$\mu^+\mu^-\gamma(\gamma)$	0.242
		0
	$\tau^+\tau^-(\gamma)$	0.919
	$\nu \bar{\nu}(\gamma)$	0.25×10^{-3}
	$\frac{e^+e^-e^+e^-}{e^+e^-}$	39.7 ± 0.1 (MC stat.)
	$e^+e^-\mu^+\mu^-$	18.9 ± 0.1 (MC stat.)
		10.0 ± 0.1 (110 blat.)

Much more than just CPV in B system (II)

They did much more than just measuring CP violation

To: PEPI/BaBar and KEKB/Belle 小林神 2008.10.25

Makoto Kobayashi

Maskawa

• The great success of BaBar and Belle led to the BelleII experiment

IT'S TIME FOR AN UPGRADE!

From B factories to SuperB factories: KEKB - SuperKEKB

- Aim to collect **50ab-1** (~50x Belle) by 2031 reaching ~60 x 10³⁴cm⁻²s⁻¹ (~30x KEKB)
- Can do this without using brute-force! Nanobeam scheme:

$$L = \frac{\gamma_{\pm}}{2 e r_{e}} (1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}) + \frac{\beta_{y}}{\beta_{y\pm}}$$

vertical beta f

- 20x smaller β_{*_V}
- 1.5x higher currents
- price to be paid: higher "machine background"

beam current function at IP

From Belle to Bellell

- Higher luminosity mean higher machine background: from Belle to Bellell detector to maintain or improve detector performances
- "Faster" and more rad hard sub-detectors

Belle II/SuperKEKB @ work

• Bellell is taking data since 2019, data taking continued amid COVID-19 pandemic

Belle II Collaboration Ieri alle 09:15 · 🕥

SuperKEKB reaches Super-B factory class performance levels!

Belle II@SuperKEKB has integrated 12 fb⁻¹ of data in a week - a new world record! By comparison, during the best week at KEKB more than a decade ago, Belle integrated 8 fb⁻¹, while PEP-II Integrated 5 fb⁻¹ for BaBar during its best week. Stay tuned as **#Belle2@SuperKEKB** aims for the long-standing world record of integrated luminosity per month while it accumulates a large data sample to hunt for New Physics in the flavor sector.

...

Flavour anomalies in a nutshell

• Tension between experimental measurement and SM predictions in

\rightarrow sll observables

- Fully reconstructed final states, untagged analysis
- (a) (super)B-factories, both charged and neutral K(*) modes are reconstructed
- Key ingredients: Lepton identification, hadron mis-identification (in particular μ - π)

Partial branching fractions from B factories

- Partial branching fractions measured by BaBar, Belle, and CDF
 - latest Belle measurement, performed separately for electron and muons
 - in agreement with SM expectations, large experimental errors, statistically limited

16

$B \rightarrow K*II$ angular analysis from B factories

• Differential decay rate as a function of 3 angles:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_L + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin^2\theta_K \sin^2\theta_L + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_L + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin^2\theta_K \sin^2\theta_L + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_L + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin^2\theta_L \sin^2\theta_K \sin$$

 $\int 3 \text{ angles}$ $L \cos 2\phi$ $\sin \theta_L \cos \phi$ $\sin \phi$ $\ln \phi$ $\ln^2 \theta_L \sin 2\phi$

• 2.6 σ discrepancy in muon channel

P5' (uncertainty at the **50% level**, dominated by statistics)

R(K(*)): latest measurement from Belle

q^2 in ${ m GeV}^2/c^4$	All modes	• In
[0.045, 1.1]	$0.52^{+0.36}_{-0.26}\pm0.06$	-
[1.1, 6]	$0.96^{+0.45}_{-0.29}\pm0.11$	• /\\
[0.1, 8]	$0.90^{+0.27}_{-0.21}\pm 0.10$	A A
[15, 19]	$1.18^{+0.52}_{-0.32}\pm 0.11$	• /\\
[0.045,]	$0.94^{+0.17}_{-0.14}\pm 0.08$	ре

- easurement **statistically** limited
- ain systematics from lepton ID efficiency and knowledge of aking background

agreement with SM expectations within errors

Toward Bellell measurements (I)

- BelleII performances, some examples: Hadron ID, Leptin ID, neutral reconstruction
 - good understanding of the detector
 - performances comparable to Belle/BaBar in higher machine background environment
 - improvements in algorithms and understanding of the detectors foreseen

FIG. 1: Invariant mass of $\gamma\gamma$ for data phase III. The functions superimposed are the result of a binned ML fit to the data using as signal a Crystal Ball plus a Gauss (with the same mean) and a first order polynomial for background. A clear peak for the decay $\pi^0 \to \gamma \gamma$ is visible. Data corresponds to an integrated luminosity of $2.62 \,\mathrm{fb}^{-1}$ (proc9 hadron skim). The selection criteria are $E_{\gamma} > 120 \text{ MeV}, E_9/E_{21} > 0.9, N_{hits} > 1.5.$

FIG. 10: Example ECL barrel bin for electronID with all measurements, efficiencies and hadronlepton mis-identification rates overlaid. Note that the mis-identification rate has been inflated by a factor 3 for illustration purposes.

Toward Bellell measurements (II)

- Rediscovery of $B \rightarrow K + I + I$, more on $b \rightarrow sII$ to come in the next months
- Signal yield extracted from 2D fit to M_{bc} and ΔE , 2.7 σ significance
 - Nsig = $8.6^{+4.3}_{-3.9}(\text{stat}) \pm 0.4(\text{syst})$

Bellell perspectives

- **R(K(*))**: LHCb with full luminosity (~2035, 300fb⁻¹) will have better precision in the low q² wrt to full Bellell data sample, in the high q² BelleII precision et **few %** level
- **P'5**: will be studied in both e and μ channel at Bellell, **few %** level precision expected with full BelleII statistics

The BelleII Physics Book, PETP 2019, 123C01 (2019)

R(D(*)): analysis strategy

• Measurable:

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

- Search for final states involving neutrinos, two key elements
- One of the KEYS of measurement @ B-factories:
 - beam energy completely transferred to BB pair: $e^+e^- \rightarrow Y(4S) \rightarrow BB$
 - exploit (almost) full reconstruction of one of the B and look for signal or normalisation signature in the rest of the event
 - can compute momentum associated to **missing** particles, e.g. $P_{miss} = P_{e+e} - P_{Btag} - P_{D^*} - P_{\pi}$

R(D(*)): latest Belle measurement

- Tag side reconstructed in semileptonic final state
- τ reconstructed in purely leptonic modes
- Signal extracted from 2D fit to BDT and E_{ECL} :
 - **E**_{ECL} = neutral energy deposited in the calorimeter not associated to signal nor to tag side, key ingredient in analysis with missing energy

$$\mathcal{R}(D) = 0.307 \pm 0.037$$

 $\mathcal{R}(D^*) = 0.283 \pm 0.018$

Most precise measurement to date

FIG. 1. E_{ECL} distributions for the signal, normalization, and background taken from MC simulation. The distributions for all decay modes are summed together and normalized to unity.

R(D(*)): toward Belle II measurement (I)

- Tag side reconstruction with **Full Event** Interpretation (FEI) (Keck et al., Comp. Soft. Big <u>Sci. (2019) 3:6</u>)
 - Multivariate tagging algorithm optimised for Bellell, successor of Belle Full Reconstruction (Feindt et al. Nucl.Instrum.Meth.A 654 (2011) 432-440), can be applied to Belle data
 - hierarchical approach to reconstruct O(200) decay channels via O(104) decay chains

au. D'/D [/0]	SL. B ' / B° [%]
0.28/0.18	0.67/0.63
0.76/0.46	1.80/2.04
	ац. в 76 [%] 0.28/0.18 0.76/0.46

P. Urquijo (BelleII), FPCP2020

BELLE2-NOTE-PL-2020-002

R(D(*)): toward Belle II measurement (II)

• Rediscovery of normalisation channel using hadronic FEI

$$\mathcal{B}(\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_l) =$$

Belle coll., BELLE2-CONF-PH-2020-009

 $(4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_c})\%$

R(D(*)): perspectives at Bellell

- Pletora of τ **/l ratio** measurements from LHCb and Belle
- On **R(D(*))**, (sub)-% level precision can be reached
- Belle, one of the dominant systematics from D** background, can be studied in more detail with Bellell data

Table 49: Composition of the systematic uncertainty in each Belle analysis. Relative uncertainties in percent are shown. The analysis method and the τ decay mode are indicated in the parentheses; their meaning is explained in the caption of Table 48.

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$
$B o D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}\%$

27

Looking for other NP hinks in B and t decays

NP models explaining LFU violation

• G. Isidori (a) Beyond the anomalies II G. Isidori – B-physics anomalies: facts, hopes, dreams, & worries

Beside direct searches, an essential role is still played by low-energy observables \rightarrow many visible BSM effects expected, by consistency, virtually in all models addressing the anomalies

Main message: "super-reach" program for LHCb & Belle-II and other low-energy facilities. This program is essential to confirm/disproof the picture and, if confirmed..., to determine the flavor structure of the new sector.

I. EFT-based (model-independent) correlations on a large class of semi-leptonic processes

 $[b \rightarrow d \mu\mu, b \rightarrow s \tau\tau, b \rightarrow s \tau\mu,$

 $b \rightarrow u \tau v, ...]$

Beyond the anomalies II – Durham, Apr. 2021

II. Model-dependent correlations for UV-sensitive observables

 $[\Delta F=2, b \rightarrow s \nu\nu, \tau \rightarrow \mu\gamma,$ $\tau \rightarrow 3\mu, \ \mu N \rightarrow eN, ...]$

$B \rightarrow K(*)vv$: state of the art prior Moriond2021

- $b \rightarrow s$ transition with neutral leptons in the final state
- SM predictions:

T. Blake,, et al, Prog. Part.Nucl. Phys.92, $BR(B^+ \rightarrow K^+ \nu \bar{\nu})_{SM} = (4.6 \pm 0.5) \times$ $BR(B^+ \to K^{*+} \nu \bar{\nu})_{SM} = (8.4 \pm 1.5) \times$ $F_L^{
m SM} = 0.47 \pm 0.03$, Buras et al, JHEP 02 184 (2015)

 BaBar and Belle key ingredients: tag side reconstruction in hadronic and semi-leptonic modes, usage of event shape variables to reduce contributions from e⁺e⁻ and events and extra neutral energy deposited in the calorimeter

(a) Penguin diagram

(b) Box diagram

, 50 (2017)
10^{-6} ,
10^{-6} ,
2 184 (2015

_	
d	e

	UL @ 90% CL (10⁻₅)	Ref
Β +→ Κ +υυ	1.6	<u>BaBar</u> , HAD+SL TAC 429 fb ⁻¹
Β + →K ∗+υυ	4.0	<u>Belle</u> , HAD TAG, 71 fb-1
В∘→К∘ υυ	2.6	<u>Belle</u> , SL TAG, 711 fb
Β∘→Κ ∗ ∘ υυ	1.8	<u>Belle</u> , SL TAG, 711 fb

$B^+ \rightarrow K^+ vv$ measurement (a) Bellell (I)

• NOVEL INCLUSIVE APPROACH:

signal kaon = highest pt track

- associate all other tracks and clusters to rest of the event
- use multivariate approach based on kinematics, event shape and vertexing variables to suppress background
- extract signal from binned simultaneous ML fit to on-resonance + off- resonance data

Measured signal strength $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst})$ $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

$B^+ \rightarrow K^+ vv$ measurement (a) Bellell (II)

- Leading systematics: background normalisation uncertainty can be also reduced with increasing statistics
- Room for improvement in K+ channel
- Application of inclusive method to other channels under study

Experiment	Year	Observed limit on $BR(B^+ \rightarrow K^+ \nu \bar{\nu})$	Approach	Data
BABAR	2013	< 1.6 × 10 ⁻⁵ [Phys.Rev.D87,112005]	SL + Had tag	42
Belle	2013	< 5.5 × 10 ⁻⁵ [Phys.Rev.D87,111103(R)]	Had tag	71
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tag	71
Belle II preliminary	2021	$< 4.1 \times 10^{-5}$	Inclusive tag	6

$B \rightarrow K(*)vv$ (a) Belle II perspectives

- Extrapolation done on **tagged analysis** only

• To be updated with most recent simulations and adding inclusive analysis

	<u>The Bellell Phys</u>	ics Book, PETP	2019, 123C01 (20
les	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$ K^+ \nu \bar{\nu}) $	< 450%	30%	11%
$K^{*0} u ar{ u})$	< 180%	26%	9.6%
$ K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$K^{*0} u ar{ u})$		_	0.079
$\rightarrow K^{*+}\nu\bar{\nu})$			0.077

 $\mathsf{B} \to \mathsf{K}(*)\tau\tau/\tau\mathsf{I}$

- $b \rightarrow s \tau \tau / \tau$ can be **enhanced** in NP models explains B-anomalies
 - **LFV** decay prohibited in the SM, expectation for $s\tau\tau$ final
 - state: $B(B^+ \rightarrow K^+ \tau^+ \tau^-)_{SM} = (1.22 \pm 0.10) \ 10^{-7}$ $B(B^{0} \rightarrow K^{0} \tau^{+} \tau^{-})_{SM} = (1.13 \pm 0.09) 10^{-7}$ $B(B^+ \rightarrow K^{*+} \tau^+ \tau^-)_{SM} = (0.99 \pm 0.12) 10^{-7}$ $B(B^{0} \rightarrow K^{*0} \tau^{+} \tau^{-})_{SM} = (0.91 \pm 0.11) 10^{-7}$
- Usually searched for with **HAD** or **SL tagging** method
- State of the art and Belle II projections (K* modes also feasible)

LHCb: [JHEP	P 06 (2020) 129]		Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^-$
$\mathscr{B}(E$	$B^+ \to K^+ \tau \mu) < 3.$	9×10^{-5}	$Br(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
BaBar: [Phys.	Rev.D 86 (2012) 0120041		${ m Br}(B^0 o au^+ au^-) \cdot 10^5$	< 140	< 30	< 9.6
	$\mathcal{B}(B \to h \tau \ell)$)(×10 ⁻⁵)	${ m Br}(B^0_s o au^+ au^-) \cdot 10^4$	< 70	< 8.1	_
Mode	Central value	90% C.L. UL	$Br(B^+ \to K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	_	_	< 2.1
$B^+ \rightarrow K^+ \tau \mu$	$0.0^{+2.7}_{-1.4}$	<4.8	$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$	_	_	< 3.3
$B^+ \rightarrow K^+ \tau e$ $B^+ \rightarrow \pi^+ \tau e$	$-0.6^{+1.7}_{-1.4}$	<3.0	$Br(B^0 \to \tau^{\pm} e^{\mp}) \cdot 10^5$	_	_	< 1.6
$B^+ ightarrow \pi^+ au \mu \ B^+ ightarrow \pi^+ au e$	$0.5_{-3.2}^{+3.3}$ $2.3_{-1.7}^{+2.8}$	<7.2	${ m Br}(B^0 o au^\pm \mu^\mp) \cdot 10^5$	_	_	< 1.3

 $\mathsf{B} \to \mathsf{K}(*)\tau\tau/\tau$

- New idea to measure $B(B^+ \rightarrow K^+ \tau I)$: semi-inclusive tagging
- Exploit high BF of $B^- \rightarrow D^{\circ}X: 79\pm4\%$
- $\bullet~$ Reconstruct tag D° and signal's K and I, and τ
- D°X provides the tag-side

Fit
$$m_{\tau}^2 = m_B^2 + m_{Kl}^2 - 2(E_B^* E_{Kl}^* - |\vec{p}_{B_{sig}}^*||\vec{p}_{Kl}^*)$$

 $E_{beam}^* \sqrt{(E_{beam}^*)^2 - m_B^2}$
 θ angle between $\vec{p}_{B_{sig}}^* (= -\vec{p}_{B_{tag}}^*)$

 Work in progress, can be also applied to other missing energy modes.

LFUV in tau decays

• LFU can be tested also in τ system

 $R_{\mu} \equiv \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})} = 0.9796 \pm 0.0016$ (sta

μ
731102
97.3%
0.485%
74.5%
ies:
0.32
0.08
0.08
0.10
0.01
0.04
0.05
0.02
0.36

Bellell:

- syst due to PID correction is partially statistical in origin
- trigger studies ongoing
- preliminary sensitivity studies indicate a higher efficiency can be obtained wrt BaBar
- Work hard to **improve** systematics and add tagging modes to have a competitive measurement with stat < BaBar

LFV in τ decays (I)

- τ system is also ideal to search for LFV processes where NP can enter at tree or loop level
- Many modes to be studied
- Fully reconstructed final states, extract signal using 2 main variables: \mathbf{M}_{τ} and $\Delta \mathbf{E} = \mathbf{E}_{\tau} - \mathbf{E}_{beam}$ (primed quantities: rotation to reduce correlation among the two variables)
- $\mathbf{3}\mu$ final state, almost background free
- irreducible background in $\mu\gamma$

Rotate	ed signal region ($\tau \rightarrow 3\mu$, s
Rotate → -1.66 → -1.68 → -1.72 -1.72 -1.74 -1.76 -1.78 -1.82	ed signal region ($\tau \rightarrow 3\mu$, s Belle II 2020 (preliminal Simulation: $\tau \rightarrow 3\mu (10^4 \text{ events})$

LFV in τ decays (II)

- Search for $\tau \rightarrow \mathbf{I}\alpha$, α being an invisible particle
- Signal manifests as a peak in the τ momentum in pseudo-rest frame:
 - τ boost not known, approximate it using 3prong momentum (ARGUS method) or thrust direction

$$\vec{T} = max \left(\frac{\sum_{i} f_{i}}{\sum_{i} f_{i}} \right)$$

• $\tau \rightarrow evv$ irreducible background.

Argus coll., Z.Phys. C68 (1995) 25-2

<u>BELLE2-NOTE-PL-2020-018</u>

Overview of Bellell potential in LFV in τ decays

The BelleII Physics Book, PETP 2019, 123C01 (2019)

Summary and conclusions

- LFU anomalies growing since 2012: exciting times to explore flavour physics as playground for beyond standard model searches
- Belle II has started taking data in 2019 and foresees to collect 50ab-1 by 2031
 - Accelerators and detector are performing well, improvements foreseen in reconstruction performances thanks to what we are learning while the experiment is running
 - Will play a major role in the flavour sector with strong interplay with LHCb

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in B_{d} , τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

<u>Upgrades</u> Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Summary and conclusions

Summary and conclusions

Belle II - LHCb Comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in $B_{d_r} \tau$ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Observable

CKM precision, new physics in CP $\sin 2\beta/\phi_1 (B \rightarrow J/\psi K_S)$

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

Beauty 2020

+ Important contributions on B and D flavour physics from ATLAS, CMS, BESIII.

Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	LHCb upgrade II (300 fb ⁻¹)			
PViolation									
0.03	0.04	0.012	0.005	0.011	0.002	0.003			
13°	5.4°	4.7°	1.5°	1.5°	0.4°	0.4°			
4°	_	2	0.6°	_	0.3°	_			
4.5%	6%	2%	1%	3%	<1%	1%			
_	49 mrad	_	_	14 mrad	_	4 mrad			
0.08	0	0.03	0.015	0	0.007	0			
0.15	_	0.07	0.04	_	0.02	_			
enguins, LFUV									
0.32	0	0.11	0.035	0	0.015	0			
0.24	0.1	0.09	0.03	0.03	0.01	0.01			
6%	10%	3%	1.5%	3%	<1%	1%			
24%, –	_	9%, 25%	4%, 9%	_	1.7%, 4%	_			
_	90%	_	_	34%		10%			
_	8.5×10-4	_	5.4×10-4	1.7×10-4	2×10-4	0.3×10-4			
1.2%	_	0.5%	0.2%	_	0.1%	_			
<120×10-9	_	<40×10-9	<12×10-9	_	<5×10-9	_			
<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	<5×10-9			
• Possible in similar channels lower precis									

nur channels, lower precision – *Not competitive*.

Phillip URQUIJO

57

Indirect searches: ATLAS

• <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

- <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-009/fig_01.png</u>
- https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-020/fig_23.png

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: March 2021

ATLAS Preliminary $\sqrt{c} = 8.13 \text{ To}/$

Status: March 202	21					$\int f dt - (3.6 - 139) \text{ fb}^{-1}$	$\sqrt{s} = 8.13$ TeV	JUIY 2020				$\sqrt{s} = 13 \text{ TeV}$
Madal	P	a lote:	. Emiss ($C dt [fb^{-1}]$	1 Limit	$\int \mathcal{L} dt = (0.0 - 100) \mathrm{lb}$		Model	Signature ∫£ dt [fb	⁻¹] Mass limit		Reference
ADD $G_{KK} + g/q$	ι, 0 e, μ	$\tau, \gamma = 1 - 4$	<mark>⊢⊤</mark> J^ Yes	139		11.2 TeV <i>n</i> = 2	2102.10874	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2 \ c \end{array} = \begin{array}{ccc} 2 \ c \end{array} = \begin{array}{ccc} e_T & 1 \ c \end{array} = \begin{array}{ccc} 1 \ c \end{array} = \begin{array}{cccc} 1 \ c \end{array} = \begin{array}{ccccc} 1 \ c \end{array} = \begin{array}{cccccc} 1 \ c \end{array} = \begin{array}{cccccccccc} 1 \ c \end{array} = \begin{array}{ccccccccccccccccccccccccccccccccccc$		1.9 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{q}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	ATLAS-CONF-2019-040 1711.03301
ADD non-resonant γ ADD QBH	γ 2	γ – 2j		36.7 37.0	M _S M _{th}	8.6 TeV n = 3 HLZ NLO 8.9 TeV n = 6	1707.04147 1703.09127	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 e, μ 2-6 jets E_T^{miss} 139	ğ ğ Forbidden	$\begin{array}{c} \textbf{2.35} \\ \textbf{1.15-1.95} \\ \end{array} \qquad \begin{array}{c} \textbf{m}(\tilde{\chi}_1^0) {=} 0 \text{ GeV} \\ \textbf{m}(\tilde{\chi}_1^0) {=} 1000 \text{ GeV} \\ \end{array}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
$\frac{6}{5}$ RS1 $G_{KK} \rightarrow \gamma \gamma$	2	$\gamma \geq 3 J$	_	3.6 1 139 0	M _{th} G _{KK} mass4	9.55 TeV $n = 6, M_D = 3$ IeV, rot BH .5 TeV $k/\overline{M}_{Pl} = 0.1$	1512.02586 2102.13405	$\tilde{\mathcal{S}}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e, μ 2-6 jets 139	б g	2.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	ATLAS-CONF-2020-047
Bulk RS $G_{KK} \rightarrow WV$ Bulk RS $G_{KK} \rightarrow WV$	N/ZZ multi-c / → ℓvgg 1 e	nannel , µ 2 j / 1 ,	J Yes	36.1 (139 (G _{KK} mass 2.3 TeV G _{KK} mass 2.0 TeV	$k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$	1808.02380 2004.14636	$ \begin{array}{c} \underbrace{\tilde{g}}_{\tilde{g}}, \tilde{g} \rightarrow q \bar{q}(\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}_{\tilde{u}}, \tilde{g} \rightarrow q \bar{q} W Z \tilde{\chi}_{1}^{0} \end{array} $	$ee, \mu\mu$ 2 jets E_T^{miss} 36.1 0 e, μ 7-11 jets E_T^{miss} 139	ĝ ĝ	1.2 $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$ 1.97 $m(\tilde{\chi}_{1}^{0})<600 \text{ GeV}$	1805.11381 ATLAS-CONF-2020-002
Bulk RS $g_{KK} \rightarrow tt$	1 e 1 e	$\mu \geq 1 \text{ b}, \geq 1$ $\mu \geq 2 \text{ b} \geq 2$	J/2j Yes 3 i Yes	36.1 8	grik mass 3.8	FeV $\Gamma/m = 15\%$ Tier (1.1) $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	1804.10823		SS e, μ 6 jets 139	ž 1.	15 $m(\tilde{g}) - m(\tilde{\chi}_1) = 200 \text{ GeV}$	1909.08457
$\frac{\text{SSM } Z' \rightarrow \ell\ell}{\text{SSM } Z' \rightarrow \tau\tau}$	2 e	,μ – τ –		139 Z	Z' mass 2 42 TeV	5.1 TeV	1903.06248 1709.07242	$\widetilde{g}\widetilde{g}, \ \widetilde{g} \to t t \widetilde{X}_1^0$	$\begin{array}{ccccccc} 0 -1 \ e, \mu & 3 \ b & E_T^{\text{miss}} & 79.8 \\ \text{SS} \ e, \mu & 6 \ \text{jets} & 139 \end{array}$	îg îg	2.25 m($\tilde{\chi}_1^0)$ <200 GeV 1.25 m($\tilde{\chi}_1^0)$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
Leptophobic $Z' \rightarrow b$ Leptophobic $Z' \rightarrow th$	b - t Oe	$\mu = 2 \text{ b}$, $\mu = 2 \text{ b}$, $\geq 2 \text{ b}$	2J Yes	36.1 Z	Z' mass 2.1 TeV Z' mass 4.1	TeV $\Gamma/m = 1.2\%$	1805.09299 2005.05138	$ ilde{b}_1 ilde{b}_1, ilde{b}_1 { ightarrow} b_1 ilde{ar{\lambda}}_1^0/ ilde{ar{\chi}}_1^\pm$	Multiple 36.1 Multiple 139	$ \begin{array}{c c} \tilde{b}_1 & Forbidden & 0.9 \\ \tilde{b}_1 & Forbidden & 0.74 \end{array} $	$m(\tilde{\chi}_1^0)$ =300 GeV, BR $(b\tilde{\chi}_1^0)$ =1 $m(\tilde{\chi}_1^0)$ =200 GeV, $m(\tilde{\chi}_1^+)$ =300 GeV, BR $(t\tilde{\chi}_1^+)$ =1	1708.09266, 1711.03301 1909.08457
SSM $W' \rightarrow \ell \nu$ SSM $W' \rightarrow \tau \nu$ HVT $W' \rightarrow WZ \rightarrow \ell$	1ε 1 <i>εναα</i> model Β 1ε	,μ – τ – .μ 2i/1,	Yes Yes J Yes	139 36.1 139	W' mass W' mass 3.7 W' mass 4	6.0 TeV eV 3 TeV g _V = 3	1906.05609 1801.06992 2004.14636	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{cccccc} 0 \ e, \mu & 6 \ b & E_T^{\text{miss}} & 139 \\ 2 \ \tau & 2 \ b & E_T^{\text{miss}} & 139 \end{array}$	\$\tilde{b}_1\$ Forbidden 0.2 \$\tilde{b}_1\$ 0.13-0.85 0.13-0.85	23-1.35 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031
HVT $Z' \rightarrow ZH$ mode	el B 0-2	e,μ 1-2 b	Yes	139 2	Z' mass 3.2 TeV	$g_V = 3$	ATLAS-CONF-2020-043	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	$0-1 \ e, \mu \ge 1 \ \text{jet} E_T^{\text{miss}} 139$		1.25 $m(\tilde{\chi}_1^0) = 1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
LRSM $W_R \rightarrow tb$	multi-c	nannel	20	36.1	Winnass 3.2 fev Winnass 3.25 Tev		1807.10473	$\begin{array}{c} \mathfrak{G} \\ $	$1 \tau + 1 e, \mu, \tau$ 2 jets/1 b E_T 139 1 τ + 1 e, μ, τ 2 jets/1 b E_T^{miss} 36.1	\tilde{t}_1 0,44-0.59 \tilde{t}_1 1.	16 $m(\tilde{r}_1) = 400 \text{ GeV}$ $m(\tilde{r}_1) = 800 \text{ GeV}$	1803.10178
$\Box RSM W_R \rightarrow \mu N_R$	2	u 1J		37.0	vv _e mass	5.0 IeV $m(N_R) = 0.5 \text{ ieV}, g_L = g_R$	1703.09127	$ \underbrace{\overset{0}{\overleftarrow{0}}}_{\mathbb{R}} \underbrace{\overset{0}{\overleftarrow{0}}}_{\mathbb{R}} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0 $	$0 e, \mu$ $2 c E_T^{miss}$ 36.1	č 0.85	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1805.01649 1805.01649
	2 6	,μ –	_	139	A	35.8 TeV η_{LL}	2006.12946	σ	$0 e, \mu$ mono-jet E_T^{miss} 36.1	$\tilde{t}_1 = 0.43$	$m(\tilde{i}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1711.03301
Cl eebs Cl μμbs	2	e 1b u 1b	_	139 / 139 /	Λ 1.8 TeV Λ 2.0 TeV	$egin{array}{llllllllllllllllllllllllllllllllllll$	ATLAS-CONF-2021-012 ATLAS-CONF-2021-012	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	$1-2 e, \mu$ $1-4 b E_T^{\text{miss}}$ 139	<i>ī</i> ₁ 0.067-1	.18 $m(\tilde{\chi}_2^0) = 500 \text{ GeV}$	SUSY-2018-09
Cl tttt	≥1	$e,\mu \geq 1 b, \geq 1$	1j Yes	36.1 /	۸ 2.57 TeV	$ C_{4t} = 4\pi$	1811.02305	$t_2 t_2, t_2 \rightarrow t_1 + Z$	$3 e, \mu$ $1 b$ E_T^{mass} 139	t ₂ Forbidden 0.86	$m(\chi_1^{\circ})=360 \text{ GeV}, m(\tilde{t}_1)-m(\chi_1^{\circ})=40 \text{ GeV}$	SUSY-2018-09
Axial-vector med. (D > Pseudo-scalar med.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$[, \tau, \gamma 1-4]$ $[, \tau, \gamma 1-4]$	Yes Yes	139 r 139 r	m _{med} 2.1 leV m _{med} 376 GeV	$g_q=0.25, g_{\chi}=1, m(\chi)=1 \text{ GeV}$ $g_q=1, g_{\chi}=1, m(\chi)=1 \text{ GeV}$	2102.10874 2102.10874	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\circ}$ via WZ	$\begin{array}{ccc} 3 \ e, \mu & E_T^{minss} & 139 \\ e e, \mu \mu & \geq 1 \ { m jet} & E_T^{minss} & 139 \end{array}$	$rac{\chi_1^+/\chi_2^0}{\tilde{\chi}_1^+/\tilde{\chi}_2^0}$ 0.205	$ \begin{array}{c} m(\tilde{\chi}_1^{\circ}) = 0 \\ m(\tilde{\chi}_1^{\circ}) = T \cdot m(\tilde{\chi}_1^{\circ}) = T \cdot GeV \end{array} $	ATLAS-CONF-2020-015 1911.12606
Vector med. Z'-2HD Pseudo-scalar med.	M (Dirac DM) 0 e 2HDM+a 0 e	,μ 2b ,μ 2b	Yes Yes	139 r 139 r	m _{med} 3.1 TeV m _{med} 520 GeV	$\tan \beta = 1, g_Z = 0.8, m(\chi) = 100 \text{ GeV}$ $\tan \beta = 1, g_\chi = 1, m(\chi) = 10 \text{ GeV}$	ATLAS-CONF-2021-006 ATLAS-CONF-2021-006	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	$2 e, \mu$ E_{T}^{miss} 139	\tilde{X}_{1}^{\pm} 0.42	$m(\tilde{X}_1^0)=0$	1908.08215
Scalar reson. $\phi \rightarrow t$	γ (Dirac DM) 0-1	e,μ 1 b, 0-1	J Yes	36.1 <mark>'</mark>	^m _φ 3.4 Te	v $y=0.4, \lambda=0.2, m(\chi)=10 \text{ GeV}$	1812.09743	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \text{ via } Wh$ $\tilde{\chi}_{2}^{\pm}\tilde{\chi}_{2}^{\mp} \text{ via } \tilde{\ell}_{\ell}/\tilde{\chi}$	$\begin{array}{cccc} 0-1 \ e, \mu & 2 \ b/2 \ \gamma & E_T^{\text{miss}} & 139 \\ 2 \ e, \mu & & E_T^{\text{miss}} & 139 \end{array}$		$m(\tilde{\chi}_1^0)=70 \text{ GeV}$ $m(\tilde{\ell}_1^0)=0.5(m(\tilde{\ell}_1^0)+m(\tilde{\ell}_1^0))$	2004.10894, 1909.09226 1908.08215
Scalar LQ 1 st gen Scalar LQ 2 nd gen	2	e ≥2j u ≥2j	Yes Yes	139 L 139 L	LQ mass 1.8 TeV LQ mass 1.7 TeV	$egin{array}{c} eta = 1 \ eta = 1 \end{array} \ eta = 1 \end{array}$	2006.05872 2006.05872	$\begin{array}{c} \mathbf{A} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{c}_{L} \\ \mathbf{B} \mathbf{c} \\ \mathbf{c} $	$2\tau \qquad \qquad E_T^{\text{miss}} \qquad 139$	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3 0.12-0.39	$m(\tilde{\chi}_1^0)=0$	1911.06660
Scalar LQ 3 rd gen	1 0 e	τ 2b $\mu > 2i > 2i$	Yes 2 h Ves	139 L	LQ ^u mass 1.2 TeV	$\mathcal{B}(\mathrm{LQ}_{a}^{u} \to b\tau) = 1$ $\mathcal{B}(\mathrm{LQ}_{a}^{u} \to tv) = 1$	ATLAS-CONF-2021-008	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}},\tilde{\ell}{\rightarrow}\ell\tilde{\chi}_1^0$	$2 e, \mu$ 0 jets E_T^{miss} 139 $ee, \mu\mu$ ≥ 1 jet E_T^{miss} 139	 ℓ 0.7 ℓ 0.256 	$m(\tilde{\ell}^{0})=0$ m($\tilde{\ell}^{0}$ -m($\tilde{\ell}^{0}_{1}$)=10 GeV	1908.08215 1911.12606
Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$\geq 2e, \mu$ 0 e, μ	$f_{i}, \geq 1 \tau \geq 1 \text{ j}, \geq 1$ $r_{i}, \geq 1 \tau \geq 1 \text{ j}, \geq 1$ $r_{i} \geq 1 \tau \ 0 - 2 \text{ j}, 2$	1 b – 2 b Yes	139 L 139 L 139 L	LQ ³ mass 1.43 TeV LQ ³ mass 1.26 TeV	$\mathcal{B}(\mathrm{LQ}_3^d o \mathrm{tr}) = 1$ $\mathcal{B}(\mathrm{LQ}_3^d o \mathrm{tr}) = 1$ $\mathcal{B}(\mathrm{LQ}_3^d o \mathrm{bv}) = 1$	2101.11582 2101.12527	$ ilde{H} ilde{H}, ilde{H} ightarrow h ilde{G}/Z ilde{G}$	$\begin{array}{cccc} 0 \ e, \mu & \geq 3 \ b & E_T^{\text{miss}} & 36.1 \\ 4 \ e, \mu & 0 \ \text{jets} & E_T^{\text{miss}} & 139 \end{array}$	Й 0.13-0.23 0.29-0.88 Й 0.55 0.55	$\begin{array}{c} BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 ATLAS-CONF-2020-040
VLQ $TT \rightarrow Ht/Zt/$ VLQ $BB \rightarrow Wt/Zb$	Wb + X multi-c + X multi-c	nannel		36.1 36.1	T mass 1.37 TeV B mass 1.34 TeV	SU(2) doublet SU(2) doublet	1808.02343 1808.02343	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^{miss} 36.1	$ \tilde{\chi}^{\pm}_{1} = 0.15 $	Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
VLQ $Y \rightarrow Wb + X$	$\rightarrow VVt + X = 2(SS)/$	$\geq 3 \; e, \mu \geq 1 \; b, \geq 1 \;$	1 j Yes 1j Yes	36.1 36.1	I 5/3 mass 1.64 TeV Y mass 1.85 TeV	$\mathcal{B}(I_{5/3} \rightarrow Wt) = 1, c(I_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$	1807.11883 1812.07343	Stable g R-hadron	Multiple 36.1	ĝ	2.0	1902.01636,1808.04095
$\begin{array}{c} V L Q \ B \rightarrow Hb + X \\ V L Q \ QQ \rightarrow WqWq \end{array}$	0 e 1 e	$\mu_{\mu} \geq 2 \text{ b}, \geq 2 \text{ j}, \geq 4 \text{ j}$	1j Yes Yes	79.8 E	B mass 1.21 TeV Q mass 690 GeV	singlet, $\kappa_B = 0.5$	ATLAS-CONF-2018-024 1509.04261	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Multiple 36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$	2.05 2.4 m($\tilde{\chi}_1^0$)=100 GeV	1710.04901,1808.04095
Excited quark $q^* \rightarrow$	qg -	2 j	_	139 0	q* mass	6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$	1910.08447	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 , \tilde{\chi}_1^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 <i>e</i> , μ 139	$\tilde{\chi}_{1}^{+}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05	Pure Wino	ATLAS-CONF-2020-009
Excited quark $q^* \rightarrow$ Excited quark $b^* \rightarrow$	qγ 1 bg -	γ 1 j • 1 b, 1	– j –	36.7 c	q* mass 2.6 TeV	5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$	1709.10440 1805.09299	$LFV \ pp \rightarrow v_{\tau} + X, v_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $\tilde{\chi}^{\pm}_{1}\tilde{\chi}^{\mp}_{1}/\tilde{\chi}^{0}_{2} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	$e\mu, e\tau, \mu\tau$ 3.2 4 e, μ 0 jets E_T^{miss} 36.1	$ \begin{array}{c} \nu_{\tau} \\ \tilde{\chi}_{\tau}^{4} / \tilde{\chi}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \end{array} $ 0.82	1.9 $\lambda_{311}^{-1}=0.11, \lambda_{132/133/233}=0.07$ 1.33 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$	1607.08079 1804.03602
Excited lepton ℓ^*	3 e 3 e	$, \mu - \mu, \tau - \mu$		20.3	f* mass 3.0 TeV v* mass 1 6 TeV	$\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1411.2921 1411 2921	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow qqq$	4-5 large- <i>R</i> jets 36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}]$	1.3 1.9 Large $\lambda_{112}^{"}$	1804.03568
Type III Seesaw	1 e	,μ ≥2i	Yes	139	N ⁰ mass 790 GeV		20008.07949	$\widetilde{t}_{i} \widetilde{t} \to t \widetilde{X}_{i}^{0} \widetilde{Y}_{i}^{0} \to ths$	Multiple 36.1	\tilde{t} [λ''_{m} =2e-4, 1e-2] 0.55 1.05	2.0 $m(\mathcal{X}_1)=200$ GeV, bino-like $m(\mathcal{X}_1^0)=200$ GeV bino-like	ATLAS-CONF-2018-003
LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow$	2 ll 2340	μ 2 j μ (SS) –	_	36.1	N _R mass 3.2 TeV	$m(W_R) = 4.1$ TeV, $g_L = g_R$ DY production	1809.11105 1710.09748	$\widetilde{t}\widetilde{t}, \ \widetilde{t} \to b\widetilde{\chi}_{\pm}^{1}, \ \widetilde{\chi}_{\pm}^{1} \to bbs$	$\geq 4b$ 139	Ĩ Forbidden 0.95	$m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2020-016
Higgs triplet $H^{\pm\pm} \rightarrow$	$\ell\tau$ 3 e,	μ, τ –	-	20.3	H ^{±±} mass 400 GeV	DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$	1411.2921	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow a\ell $	2 jets + 2 b 36.7 2 e. μ 2 b 36.1	$\vec{t}_1 [qq, bs] $ 0.42 0.61 \vec{t}_2	0 4-1 45 BR $(\tilde{i}, \rightarrow h\rho/hu) > 20\%$	1710.07171 1710.05544
Magnetic monopoles			_	36.1 r 34.4 r	monopole mass 1.22 IeV	DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1905.10130		1μ DV 136	t_1^{1} [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9] 1.0	1.6 $BR(\tilde{i}_1 \to q\mu) = 100\%, \cos\theta_t = 1$	2003.11956
√s = 8 T	eV √s = 13 T partial da	eV √s = ita full	13 TeV data	L	10 ⁻¹ 1	¹⁰ Mass scale ITeV]					

*Only a selection of the available mass limits on new states or phenomena is shown. *†Small-radius (large-radius) jets are denoted by the letter j (J).*

ATLAS SUSY Searches* - 95% CL Lower Limits July 2020

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on *simplified models, c.f. refs. for the assumptions made.*

Mass scale [TeV]

1

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

 10^{-1}

R(K)

