S-matrix bootstrap in 3+1 dimensions

Yifei He
ENS Paris
based on 2103.11484 with Martin Kruczenski

2-to-2 S-matrix in 3+1d

maximal analyticity

crossing

$F(s, t, u)=F(s, u, t)=F(u, t, s)$

$$
\pi\left(p_{1}\right)+\pi\left(p_{2}\right) \rightarrow \pi\left(p_{3}\right)+\pi\left(p_{4}\right)
$$

$$
s=\left(p_{1}+p_{2}\right)^{2}
$$

$$
t=\left(p_{1}-p_{3}\right)^{2}
$$

$$
u=\left(p_{1}-p_{4}\right)^{2}
$$

$$
s+t+u=4
$$

$$
m^{2}=1
$$

amplitude $F(s, t, u)$

Modern S-matrix bootstrap

$3+1 d$ needs the dual problem

an example: maximize $F\left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$ for single flavor pion
[Paulos, Penedones, Toledo,
van Rees, Vieira, 2017]
maximum attained by amplitude with a threshold pole

we would like to explore the space without assuming such structures, use the bootstrap to discover them
\square

3+1d primal problem setup

parameters

maximal analyticity + crossing
$F(s, t, u)=\frac{1}{\pi^{2}} \int_{4}^{\infty} d x \int_{4}^{\infty} d y\left[\frac{1}{(x-s)(y-t)}+\frac{1}{(x-s)(y-u)}+\frac{1}{(x-u)(y-t)}+(x \leftrightarrow y)\right] \rho(x, y) \quad$ +subtractions
unitarity

$$
\begin{gathered}
h_{\ell}(s)=\frac{\pi}{4} \sqrt{\frac{s-4}{s}} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) F\left(s^{+}, t, u\right) \\
\left|h_{\ell}(s)\right|^{2} \leq 2 \operatorname{Im} h_{\ell}(s)
\end{gathered}
$$

maximize
$\{\rho(x, y)\}$
$F\left(s_{0}, t_{0}, u_{0}\right)$
$\left(s_{0}, t_{0}, u_{0}\right) \in$

III-posed problem \& regularization

finding ρ given amplitude F constrained by unitarity in the physical region

$$
F=\underbrace{\mathcal{K}_{\rho} \quad \text { Fredholm equation of first kind }} \begin{gathered}
\text { continuous kernel: ill-posed problem }
\end{gathered}
$$

a small error in the data can change the solution drastically
double dispersion:

$$
\mathcal{K}(s, t ; x, y) \sim \frac{1}{(x-s)(y-t)}, y>4
$$

regularization: $\quad\|\rho\| \leq M_{\text {reg }}$

Generalized dispersion relation

$$
\text { analytic function of two variables } \quad G\left(w_{1}, w_{2}\right)=\frac{1}{\pi^{2}} \int_{-\infty}^{+\infty} d x \int_{-\infty}^{+\infty} d y \frac{g(x, y)}{\left(x-w_{1}\right)\left(y-w_{2}\right)}
$$

product of two such analytic functions:

$$
G\left(w_{1}, w_{2}\right)=H\left(w_{1}, w_{2}\right) K\left(w_{1}, w_{2}\right)
$$

amplitude ,

generalized dispersion relation:

$$
\int_{-\infty}^{+\infty} d x \int_{-\infty}^{+\infty} d y\left[\Delta_{12} H(x, y) K\left(x^{-}, y^{+}\right)-H\left(x^{+}, y^{-}\right) \Delta_{12} K(x, y)\right]=0
$$

primal \rightarrow dual

$$
H(s, t)=\frac{1}{\pi^{2}} \int_{4}^{\infty} d x \int_{4}^{\infty} d y \frac{\rho(x, y)}{(x-s)(y-t)}
$$

define dual partial waves:

$$
\begin{array}{cc}
k_{\ell}(s)=\frac{(2 \ell+1)}{\pi^{3}} \sqrt{s(s-4)} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) k(s, t) & \begin{array}{c}
\text { regularization } \\
H\left(s_{0}, t_{0}\right)
\end{array} \\
M_{\operatorname{reg}} \pi^{2} \int_{4} d x \int_{4-x}^{0} d y H\left(x^{+}, y\right) \bar{k}(x, y)-\frac{1}{\pi^{2}} \int_{4}^{\infty} d x \int_{4}^{\infty} d y \rho(x, y) K\left(x^{-}, y^{+}\right) \\
& \sum_{\ell} \int_{4}^{\infty} d s\left(\left|k_{\ell}(s)\right|-\operatorname{Re} k_{\ell}(s)\right)
\end{array}
$$

unitarity

$$
K(s, t)=-\frac{1}{\left(s-s_{0}\right)\left(t-t_{0}\right)}+\frac{i}{\pi^{2}} \int_{4}^{\infty} d x \int_{4-x}^{0} d y \frac{\bar{k}(x, y)}{(s-x)(t-y)}
$$

$$
F\left(s_{0}, t_{0}, u_{0}\right) \leq \sum_{\ell \text { even }} \int_{4}^{\infty} d s\left(\left|k_{\ell}(s)\right|-\operatorname{Re} k_{\ell}(s)\right)+M_{\mathrm{reg}}\|\operatorname{Re} K\|_{*}
$$

Single pion dual problem

$$
\min _{\left\{k_{\ell}(s)\right\}} \mathcal{F}_{D}=\sum_{\ell \text { even }} \int_{4}^{\infty} d s\left(\left|k_{\ell}(s)\right|-\operatorname{Re} k_{\ell}(s)\right)+M_{\mathrm{reg}}| | \operatorname{Re} K \mid \|_{*}
$$

boundary of space of S-matrices

$$
h_{\ell}(s)=-i\left(\frac{k_{\ell}(s)}{\left|k_{\ell}(s)\right|}-1\right)
$$

Conclusions

Dual problem has practical advantages for S-matrix bootstrap

Useful tool to explore the space of S-matrices in 3+1 dimensions

Thank you!

