Level Splitting of 10d Conformal Symmetry in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Hynek Paul

based on work with Aprile, Drummond, Santagata: [2012.12092]
and previous papers [1907.00992], [2004.07282]

IRN:QFS kick-off meeting Tours, June 2021

Motivation

- Simplicity and elegance of the VS-amplitude in flat space:

$$
\mathcal{V}=\mathcal{R}^{4} \times \frac{1}{s t u} \frac{\Gamma\left(1-\frac{\alpha^{\prime} s}{4}\right) \Gamma\left(1-\frac{\alpha^{\prime} t}{4}\right) \Gamma\left(1-\frac{\alpha^{\prime} u}{4}\right)}{\Gamma\left(1+\frac{\alpha^{\prime} s}{4}\right) \Gamma\left(1+\frac{\alpha^{\prime} t}{4}\right) \Gamma\left(1+\frac{\alpha^{\prime} u}{4}\right)}
$$

celebrated central object of early days of string theory

Motivation

- Simplicity and elegance of the VS-amplitude in flat space: natural to attempt generalisations:

Can we construct the VS-amplitude in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$?

Motivation

- Simplicity and elegance of the VS-amplitude in flat space: natural to attempt generalisations:

Can we construct the VS-amplitude in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$?

- AdS/CFT is an arena which relates
- theories on curved spacetimes
- QFT's at strong coupling

Motivation

- Simplicity and elegance of the VS-amplitude in flat space: natural to attempt generalisations:

Can we construct the VS-amplitude in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$?

- AdS/CFT is an arena which relates
- theories on curved spacetimes
- QFT's at strong coupling
\rightarrow let us start with tree-level string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

General Setup

AdS/CFT correspondence

$\mathcal{N}=4$ SYM with
gauge group $\operatorname{SU}(N)$

4pt correlation functions

$$
N \rightarrow \infty, \lambda \rightarrow \infty
$$

\Longleftrightarrow
$\Longleftrightarrow \quad$ Type IIB supergravity on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

AdS amplitudes (Witten diagrams)
supergravity limit:

$$
g_{s} \rightarrow 0, \alpha^{\prime} \rightarrow 0
$$

- Interested in corrections to supergravity in AdS_{5} : loop-corrections ($1 / N$) and string-corrections ($1 / \lambda$)

General Setup

4pt-functions of single-particle operators $\mathcal{O}_{p}: \mathcal{H}_{p_{1} p_{2} p_{3} p_{4}}$

Tree-level AdS amplitudes

Tree-level amplitudes are best studied in Mellin space
[Mack,Penedones,Rastelli-Zhou,...]

$$
\mathcal{H}_{\vec{p}}(u, v ; \sigma, \tau)=\oint d s d t u^{s} v^{t} \times \Gamma_{\vec{p}}(s, t) \times \mathcal{M}_{\vec{p}}(s, t ; \sigma, \tau)
$$

Tree-level AdS amplitudes

Tree-level amplitudes are best studied in Mellin space

$$
\mathcal{H}_{\vec{p}}(u, v ; \sigma, \tau)=\oint d s d t u^{s} v^{t} \times \Gamma_{\vec{p}}(s, t) \times \mathcal{M}_{\vec{p}}(s, t ; \sigma, \tau)
$$

Two main advantages:

1. Simplicity: $\mathcal{M}_{\vec{p}}$ is rational (supergravity)
polynomial (string corrections)
2. Direct connection to flat-space amplitudes:

- flat-space limit: $\quad s, t \rightarrow \infty$

Tree-level AdS amplitudes

Tree-level amplitudes are best studied in Mellin space

$$
\mathcal{H}_{\vec{p}}(u, v ; \sigma, \tau)=\oint d s d t u^{s} v^{t} \times \Gamma_{\vec{p}}(s, t) \times \mathcal{M}_{\vec{p}}(s, t ; \sigma, \tau)
$$

Amplitude admits a large N, large λ double-expansion:

$$
\mathcal{M}_{\vec{p}}=\frac{1}{N^{2}}\left(\mathcal{M}_{\vec{p}}^{(0)}+\lambda^{-\frac{3}{2}} \mathcal{M}_{\vec{p}}^{(3)}+\lambda^{-\frac{5}{2}} \mathcal{M}_{\vec{p}}^{(5)}+\ldots\right)+O\left(\frac{1}{N^{4}}\right)
$$

and the set of exchanged double-trace operators $\mathcal{O}_{p q}$

$$
\Delta_{p q}=\Delta^{(0)}+\frac{1}{N^{2}}\left(\eta^{(0)}+\lambda^{-\frac{3}{2}} \eta^{(3)}+\lambda^{-\frac{5}{2}} \eta^{(5)}+\ldots\right)+O\left(\frac{1}{N^{4}}\right)
$$

The supergravity amplitude $\mathcal{M}^{(0)}$

Result for supergravity amplitude

$$
\mathcal{M}_{\vec{p}}^{(0)}=\sum_{i+j+k=d_{34}-2} \frac{a_{i j k} \sigma^{i} \tau^{j}}{\left(s-s_{0}+2 k\right)\left(t-t_{0}+2 j\right)\left(u-u_{0}+2 i\right)}
$$

The supergravity amplitude $\mathcal{M}^{(0)}$

Result for supergravity amplitude

$$
\mathcal{M}_{\vec{p}}^{(0)}=\sum_{i+j+k=d_{34}-2} \frac{a_{i j k} \sigma^{i} \tau^{j}}{\left(s-s_{0}+2 k\right)\left(t-t_{0}+2 j\right)\left(u-u_{0}+2 i\right)}
$$

exhibits a hidden 10d conformal symmetry:

The supergravity amplitude $\mathcal{M}^{(0)}$

Result for supergravity amplitude

$$
\mathcal{M}_{\vec{p}}^{(0)}=\sum_{i+j+k=d_{34}-2} \frac{a_{i j k} \sigma^{i} \tau^{j}}{\left(s-s_{0}+2 k\right)\left(t-t_{0}+2 j\right)\left(u-u_{0}+2 i\right)}
$$

exhibits a hidden 10d conformal symmetry:

1. All correlators descend from the seed-correlator $\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$:

$$
\mathcal{H}_{p_{1} p_{2} p_{3} p_{4}}^{(0)}=\mathcal{D}_{p_{1} p_{2} p_{3} p_{4}} \circ \mathcal{H}_{2222}^{(0)}
$$

2. Predicts residual degeneracies for supergravity anomalous dimensions $\eta^{(0)}$

The supergravity amplitude $\mathcal{M}^{(0)}$

Consider more 'democratic' Mellin transform:

$$
\mathcal{H}_{\vec{p}}(u, v ; \sigma, \tau)=\oint d s d t \oint d \tilde{s} d \tilde{t} u^{s} v^{t} \sigma^{\tilde{s}} \tau^{\tilde{t}} \times \Gamma_{\otimes} \times \mathcal{M}_{\vec{p}}(s, t ; \tilde{s}, \tilde{t})
$$

The supergravity amplitude $\mathcal{M}^{(0)}$

Consider more 'democratic' Mellin transform:

$$
\mathcal{H}_{\vec{p}}(u, v ; \sigma, \tau)=\oint d s d t \oint d \tilde{s} d \tilde{t} u^{s} v^{t} \sigma^{\tilde{s}} \tau^{\tilde{t}} \times \Gamma_{\otimes} \times \mathcal{M}_{\vec{p}}(s, t ; \tilde{s}, \tilde{t})
$$

which makes hidden 10d symmetry manifest:

$$
\mathcal{M}_{\vec{p}}^{(0)}=\frac{1}{(\mathbf{s}+1)(\mathbf{t}+1)(\mathbf{u}+1)}
$$

with '10-dimensional' variables

$$
\mathbf{s}=s+\tilde{s}, \quad \mathbf{t}=t+\tilde{t}, \quad \mathbf{s}+\mathbf{t}+\mathbf{u}=-4
$$

The double-trace spectrum

Need to address the mixing of double-trace operators:

$$
\mathcal{O}_{p q}=\mathcal{O}_{p} \square^{1 / 2(\tau-p-q)} \partial^{\ell} \mathcal{O}_{q}
$$

are degenerate for all $(p, q) \in R_{\vec{\tau}}$.

The double-trace spectrum

Need to address the mixing of double-trace operators:

$$
\mathcal{O}_{p q}=\mathcal{O}_{p} \square^{1 / 2(\tau-p-q)} \partial^{\ell} \mathcal{O}_{q}
$$

are degenerate for all $(p, q) \in R_{\vec{\tau}}$.

The double-trace spectrum

Need to address the mixing of double-trace operators:

$$
\mathcal{O}_{p q}=\mathcal{O}_{p} \square^{1 / 2(\tau-p-q)} \partial^{\ell} \mathcal{O}_{q}
$$

Tedious computation... leads to a remarkably simple solution!

$$
\eta^{(0)}=-2 \frac{M_{t} M_{t+\ell+1}}{\left(\ell_{10}(p)+1\right)_{6}}
$$

[Aprile-Drummond-Heslop-HP'17'18]
with

- $M_{t}=(t-1)(t+a)(t+a+b+1)(t+2 a+b+2)$
- effective 10 d spin $\ell_{10}(p)=\ell+2 p-a-3-\frac{1+(-1)^{a+\ell}}{2}$
- idea: many 4d operators descend from the same 10d primary

The double-trace spectrum

Need to address the mixing of double-trace operators:

$$
\mathcal{O}_{p q}=\mathcal{O}_{p} \square^{1 / 2(\tau-p-q)} \partial^{\ell} \mathcal{O}_{q}
$$

$\rightarrow \eta^{(0)}$ anomalous dimensions exhibit partial residual degeneracy!

Adding string corrections

$\operatorname{AdS}_{5} \times \mathrm{S}^{5}: \quad \mathcal{M}_{\vec{p}}=\frac{1}{(\mathbf{s}+1)(\mathbf{t}+1)(\mathbf{u}+1)}+\left(\alpha^{\prime}\right)^{3} \mathcal{M}_{\vec{p}}^{(3)}+\left(\alpha^{\prime}\right)^{5} \mathcal{M}_{\vec{p}}^{(5)}+\ldots$

Adding string corrections

$\operatorname{AdS}_{5} \times \mathrm{S}^{5}: \quad \mathcal{M}_{\vec{p}}=\frac{1}{(\mathbf{s}+1)(\mathbf{t}+1)(\mathbf{u}+1)}+\left(\alpha^{\prime}\right)^{3} \mathcal{M}_{\vec{p}}^{(3)}+\left(\alpha^{\prime}\right)^{5} \mathcal{M}_{\vec{p}}^{(5)}+\ldots$

$$
\Downarrow \mathbf{s}, \mathbf{t} \rightarrow \infty
$$

flat-space: $\quad \mathcal{V}=\frac{1}{\mathbf{s t} \mathbf{u}}+\frac{\zeta_{3}\left(\alpha^{\prime}\right)^{3}}{32}+\frac{\zeta_{5}\left(\alpha^{\prime}\right)^{5}}{1024}\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right)+\ldots$

Adding string corrections

$\mathrm{AdS}_{5} \times \mathrm{S}^{5}: \quad \mathcal{M}_{\vec{p}}=\frac{1}{(\mathbf{s}+1)(\mathbf{t}+1)(\mathbf{u}+1)}+\left(\alpha^{\prime}\right)^{3} \mathcal{M}_{\vec{p}}^{(3)}+\left(\alpha^{\prime}\right)^{5} \mathcal{M}_{\vec{p}}^{(5)}+\ldots$

$$
\Downarrow \mathbf{s}, \mathbf{t} \rightarrow \infty
$$

flat-space: $\quad \mathcal{V}=\frac{1}{\mathbf{s t} \mathbf{u}}+\frac{\zeta_{3}\left(\alpha^{\prime}\right)^{3}}{32}+\frac{\zeta_{5}\left(\alpha^{\prime}\right)^{5}}{1024}\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right)+\ldots$

- $\mathcal{M}_{\vec{p}}^{(3)}$ is just a constant
- $\mathcal{M}_{\vec{p}}^{(5)}$ is at most quadratic in $(s, t, \tilde{s}, \tilde{t})$
- $\mathcal{M}_{\vec{p}}^{(6)}$ is at most cubic in $(s, t, \tilde{s}, \tilde{t})$

Adding string corrections

What does this imply for the double-trace spectrum?

Adding string corrections

What does this imply for the double-trace spectrum?
Note that string corrections are spin truncated:

Adding string corrections

What does this imply for the double-trace spectrum?
Note that string corrections are spin truncated:
$-\left(\alpha^{\prime}\right)^{3}: \quad \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0$

- $\left(\alpha^{\prime}\right)^{5}: \partial^{4} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2$
- $\left(\alpha^{\prime}\right)^{6}: \partial^{6} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2$
- $\left(\alpha^{\prime}\right)^{7}: \partial^{8} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2,4$

Adding string corrections

What does this imply for the double-trace spectrum?
Note that string corrections are spin truncated:
$-\left(\alpha^{\prime}\right)^{3}: \quad \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0$

- $\left(\alpha^{\prime}\right)^{5}: \partial^{4} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2$
- $\left(\alpha^{\prime}\right)^{6}: \partial^{6} \mathcal{R}^{4} \rightarrow \ell_{10}=0,2$
- $\left(\alpha^{\prime}\right)^{7}: \partial^{8} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2,4$

String corrections successively lift the partial degeneracy:
\Rightarrow level-splitting breaks the 10d conformal symmetry!

Adding string corrections

What does this imply for the double-trace spectrum?
Note that string corrections are spin truncated:
$-\left(\alpha^{\prime}\right)^{3}: \quad \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0$

- $\left(\alpha^{\prime}\right)^{5}: \partial^{4} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2$
- $\left(\alpha^{\prime}\right)^{6}: \partial^{6} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2$
- $\left(\alpha^{\prime}\right)^{7}: \partial^{8} \mathcal{R}^{4} \quad \rightarrow \quad \ell_{10}=0,2,4$

First example: the order $\left(\alpha^{\prime}\right)^{3}$ correction
\rightarrow amplitude fully fixed by the flat-space limit:

$$
\mathcal{M}_{\vec{p}}^{(3)}=(\Sigma-1)_{3} \frac{\zeta_{3}}{4}, \quad \text { where } \quad \Sigma=\frac{1}{2}\left(p_{1}+p_{2}+p_{3}+p_{4}\right)
$$

And indeed, one finds this contributes only to states with $\ell_{10}=0$!
$\left(\alpha^{\prime}\right)^{3}$
$\mathcal{R}^{4}: \quad \ell_{10}=0$

$\left(\alpha^{\prime}\right)^{5}$

$$
\partial^{4} \mathcal{R}^{4}: \quad \ell_{10}=0,2
$$

$\left(\alpha^{\prime}\right)^{7}$

$$
\partial^{8} \mathcal{R}^{4}: \quad \ell_{10}=0,2,4
$$

$\left(\alpha^{\prime}\right)^{9}$

$$
\partial^{12} \mathcal{R}^{4}: \quad \ell_{10}=0,2,4,6
$$

$\left(\alpha^{\prime}\right)^{11}$

$$
\partial^{16} \mathcal{R}^{4}: \quad \ell_{10}=0,2,4,6,8
$$

Summary and Outlook

- String corrections break the 10d conformal symmetry and induce a level-splitting of the spectrum
- Using constraints on the spectrum (i.e. truncation of ℓ_{10}), we are able to bootstrap amplitudes at orders $\left(\alpha^{\prime}\right)^{5,6,7,8,9}$ see also [Abl-Heslop-Lipstein'20]
- We derive lots of new CFT data by solving the level-splitting at levels 2 (all orders in α^{\prime}) and 3, 4 (for some low orders)

Summary and Outlook

- String corrections break the 10d conformal symmetry and induce a level-splitting of the spectrum
- Using constraints on the spectrum (i.e. truncation of ℓ_{10}), we are able to bootstrap amplitudes at orders $\left(\alpha^{\prime}\right)^{5,6,7,8,9}$ see also [Abl-Heslop-Lipstein'20]
- We derive lots of new CFT data by solving the level-splitting at levels 2 (all orders in α^{\prime}) and 3, 4 (for some low orders)

Outlook and open questions:

- Flat-space amplitude is so simple: how to resum the AdS amplitude? Is there a better choice of variables? ...
- Wealth of new tree-level data can be used to bootstrap one-loop string corrections to higher orders
[Alday,Drummond-HP,Drummond-Glew-HP]
- Would be interesting to make contact with recent strong coupling results from integrability (octagon function)

Definitions

Mellin space measure:

$$
\Gamma_{\otimes}=\mathfrak{S} \frac{\Gamma[-s] \Gamma[-t] \Gamma[-u] \Gamma\left[-s+c_{s}\right] \Gamma\left[-t+c_{t}\right] \Gamma\left[-u+c_{u}\right]}{\Gamma[1+\tilde{s}] \Gamma[1+\tilde{t}] \Gamma[1+\tilde{u}] \Gamma\left[1+\tilde{s}+c_{s}\right] \Gamma\left[1+\tilde{t}+c_{t}\right] \Gamma\left[1+\tilde{u}+c_{u}\right]}
$$

where

$$
\mathfrak{S}=\pi^{2} \frac{(-)^{\tilde{t}}(-)^{\tilde{u}}}{\sin (\pi \tilde{t}) \sin (\pi \tilde{u})}
$$

Further conventions:

$$
\begin{array}{cl}
\mathbf{s}=s+\tilde{\mathbf{s}} & \mathbf{t}=t+\tilde{t} \quad \mathbf{s}+\mathbf{t}+\mathbf{u}=-4 \\
\tilde{\mathbf{s}}=c_{s}+2 \tilde{\mathbf{s}} & \tilde{\mathbf{t}}=c_{t}+2 \tilde{t} \quad \tilde{\mathbf{s}}+\tilde{\mathbf{t}}+\tilde{\mathbf{u}}=\Sigma-4 \\
c_{s}=\frac{p_{1}+p_{2}-p_{3}-p_{4}}{2} & c_{t}=\frac{p_{1}+p_{4}-p_{2}-p_{3}}{2} \quad c_{u}=\frac{p_{2}+p_{4}-p_{3}-p_{1}}{2} \\
\Sigma=\frac{p_{+}+p_{2}+p_{3}+p_{4}}{2}
\end{array}
$$

Bootstrapping higher-order amplitudes

Idea:
use spin-truncation to bootstrap higher-order amplitudes $\mathcal{M}_{\vec{p}}^{(n)}$

Bootstrapping higher-order amplitudes

Idea:
use spin-truncation to bootstrap higher-order amplitudes $\mathcal{M}_{\vec{p}}^{(n)}$

1. Start with a fully crossing symmetric ansatz

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(n)}= & \#(\Sigma-1)_{n} \mathcal{V}_{\text {flat }}^{(n)}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \\
& +\sum_{i=0}^{n-1}(\Sigma-1)_{i+3}\left\{\sum_{0 \leq d_{1}+d_{2} \leq i} C_{d_{1}, d_{2}}^{(n, i)}(\tilde{s}, \tilde{t}, \vec{p}) \mathbf{s}^{d_{1}} \mathbf{t}^{d_{2}}\right\}
\end{aligned}
$$

Bootstrapping higher-order amplitudes

Idea:
use spin-truncation to bootstrap higher-order amplitudes $\mathcal{M}_{\vec{p}}^{(n)}$

1. Start with a fully crossing symmetric ansatz

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(n)}= & \#(\Sigma-1)_{n} \mathcal{V}_{\text {flat }}^{(n)}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \\
& +\sum_{i=0}^{n-1}(\Sigma-1)_{i+3}\left\{\sum_{0 \leq d_{1}+d_{2} \leq i} C_{d_{1}, d_{2}}^{(n, i)}(\tilde{s}, \tilde{t}, \vec{p}) \mathbf{s}^{d_{1}} \mathbf{t}^{d_{2}}\right\}
\end{aligned}
$$

2. Extract partial-wave coefficients and solve rank-constraints

Bootstrapping higher-order amplitudes

Idea:
use spin-truncation to bootstrap higher-order amplitudes $\mathcal{M}_{\vec{p}}^{(n)}$

1. Start with a fully crossing symmetric ansatz

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(n)}= & \#(\Sigma-1)_{n} \mathcal{V}_{\text {flat }}^{(n)}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \\
& +\sum_{i=0}^{n-1}(\Sigma-1)_{i+3}\left\{\sum_{0 \leq d_{1}+d_{2} \leq i} C_{d_{1}, d_{2}}^{(n, i)}(\tilde{s}, \tilde{t}, \vec{p}) \mathbf{s}^{d_{1}} \mathbf{t}^{d_{2}}\right\}
\end{aligned}
$$

2. Extract partial-wave coefficients and solve rank-constraints
3. Leftover ambiguities do not affect the level-splitting

Results at $\left(\alpha^{\prime}\right)^{5}$
Ansatz:

$$
\begin{aligned}
& \mathcal{M}_{\vec{p}}^{(5)}=(\Sigma-1)_{5}\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right) \\
&+(\Sigma-1)_{4} \\
& k_{4,1}(\mathbf{s} \tilde{\mathbf{s}}+\mathbf{t} \tilde{\mathbf{t}}+\mathbf{u} \tilde{\mathbf{u}}) \\
&+(\Sigma-1)_{3}\left(k_{3,1} \Sigma^{2}+k_{3,2}\left(c_{s}^{2}+c_{t}^{2}+c_{u}^{2}\right)+k_{3,3}\left(\tilde{\mathbf{s}}^{2}+\tilde{\mathbf{t}}^{2}+\tilde{\mathbf{u}}^{2}\right)\right. \\
&\left.+k_{3,4} \Sigma+k_{3,5}\right)
\end{aligned}
$$

Results at $\left(\alpha^{\prime}\right)^{5}$

Ansatz:

$$
\begin{aligned}
& \mathcal{M}_{\vec{p}}^{(5)}=(\Sigma-1)_{5}\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right) \\
&+(\Sigma-1)_{4} \\
& k_{4,1}(\mathbf{s} \tilde{\mathbf{s}}+\mathbf{t} \tilde{\mathbf{t}}+\mathbf{u} \tilde{\mathbf{u}}) \\
&+(\Sigma-1)_{3}\left(k_{3,1} \Sigma^{2}+k_{3,2}\left(c_{s}^{2}+c_{t}^{2}+c_{u}^{2}\right)+k_{3,3}\left(\tilde{\mathbf{s}}^{2}+\tilde{\mathbf{t}}^{2}+\tilde{\mathbf{u}}^{2}\right)\right. \\
&\left.+k_{3,4} \Sigma+k_{3,5}\right)
\end{aligned}
$$

Rank constraints give

$$
k_{4,1}=-5, \quad k_{3,3}=5, \quad k_{3,2}-k_{3,1}=11, \quad k_{3,4}=0
$$

Leaving two ambiguities:
$k_{3,5}$ (constant) and $k_{3,1}\left(\Sigma^{2}+c_{s}^{2}+c_{t}^{2}+c_{u}^{2}\right)$

Results at $\left(\alpha^{\prime}\right)^{5}$

Ansatz:

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(5)}= & (\Sigma-1)_{5}\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right) \\
+ & (\Sigma-1)_{4} k_{4,1}(\mathbf{s} \tilde{\mathbf{s}}+\mathbf{t} \tilde{\mathbf{t}}+\mathbf{u} \tilde{\mathbf{u}}) \\
+ & (\Sigma-1)_{3}\left(k_{3,1} \Sigma^{2}+k_{3,2}\left(c_{s}^{2}+c_{t}^{2}+c_{u}^{2}\right)+k_{3,3}\left(\tilde{\mathbf{s}}^{2}+\tilde{\mathbf{t}}^{2}+\tilde{\mathbf{u}}^{2}\right)\right. \\
& \left.+k_{3,4} \Sigma+k_{3,5}\right)
\end{aligned}
$$

Rank constraints give

$$
k_{4,1}=-5, \quad k_{3,3}=5, \quad k_{3,2}-k_{3,1}=11, \quad k_{3,4}=0
$$

Leaving two ambiguities:
$k_{3,5}$ (constant) and $k_{3,1}\left(\Sigma^{2}+c_{s}^{2}+c_{t}^{2}+c_{u}^{2}\right)$
\rightarrow fixed by supersymmetric localisation results:
[Binder-Chester-Pufu-Wang'19, Chester-Pufu'20]

$$
k_{3,1}=-\frac{27}{2}, \quad k_{3,5}=\frac{33}{2}
$$

Results at $\left(\alpha^{\prime}\right)^{6}$

Ansatz:

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(6)}= & (\Sigma-1)_{6} \frac{2}{3}\left(\mathbf{s}^{3}+\mathbf{t}^{3}+\mathbf{u}^{3}\right) \\
+ & (\Sigma-1)_{5}\left(k_{5,1}\left(\mathbf{s}^{2} \tilde{\mathbf{s}}+\mathbf{t}^{2} \tilde{\mathbf{t}}+\mathbf{u}^{2} \tilde{\mathbf{u}}\right)+\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right)\left(\Sigma k_{5,2}+k_{5,3}\right)\right) \\
+ & (\Sigma-1)_{4}\left(k_{4,1}\left(\tilde{s}^{2}+\tilde{\mathbf{t}}^{2}+\mathbf{u} \tilde{\mathbf{u}}^{2}\right)+k_{4,2}\left(\mathbf{s} c_{s}^{2}+\mathbf{t} c_{t}^{2}+\mathbf{u} c_{u}^{2}\right)\right. \\
& \left.+\left(\Sigma k_{4,3}+k_{4,4}\right)(\mathbf{s} \tilde{\mathbf{s}}+\mathbf{t} \tilde{\mathbf{t}}+\mathbf{u} \tilde{\mathbf{u}})\right) \\
+ & (\Sigma-1)_{3}\left(k_{3,1}\left(\tilde{\mathbf{s}}^{3}+\tilde{\mathbf{t}}^{3}+\tilde{\mathbf{u}}^{3}\right)+k_{3,2}\left(c_{s}^{2} \tilde{\mathbf{s}}+c_{t}^{2} \tilde{\mathbf{t}}+c_{u}^{2} \tilde{\mathbf{u}}\right)+\ldots\right)
\end{aligned}
$$

Results at $\left(\alpha^{\prime}\right)^{6}$

Ansatz:

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(6)}= & (\Sigma-1)_{6} \frac{2}{3}\left(\mathbf{s}^{3}+\mathbf{t}^{3}+\mathbf{u}^{3}\right) \\
+ & (\Sigma-1)_{5}\left(k_{5,1}\left(\mathbf{s}^{2} \tilde{\mathbf{s}}+\mathbf{t}^{2} \tilde{\mathbf{t}}+\mathbf{u}^{2} \tilde{\mathbf{u}}\right)+\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right)\left(\Sigma k_{5,2}+k_{5,3}\right)\right) \\
+ & (\Sigma-1)_{4}\left(k_{4,1}\left(\tilde{s}^{2}+\tilde{\mathbf{t}}^{2}+\mathbf{u} \tilde{\mathbf{u}}^{2}\right)+k_{4,2}\left(\mathbf{s} c_{s}^{2}+\mathbf{t} c_{t}^{2}+\mathbf{u} c_{u}^{2}\right)\right. \\
& \left.+\left(\Sigma k_{4,3}+k_{4,4}\right)(\mathbf{s} \tilde{\mathbf{s}}+\mathbf{t} \tilde{\mathbf{t}}+\mathbf{u} \tilde{\mathbf{u}})\right) \\
+ & (\Sigma-1)_{3}\left(k_{3,1}\left(\tilde{\mathbf{s}}^{3}+\tilde{\mathbf{t}}^{3}+\tilde{\mathbf{u}}^{3}\right)+k_{3,2}\left(c_{s}^{2} \tilde{\mathbf{s}}+c_{t}^{2} \tilde{\mathbf{t}}+c_{u}^{2} \tilde{\mathbf{u}}\right)+\ldots\right)
\end{aligned}
$$

Rank constraints give

$$
\begin{array}{lll}
k_{5,1}=-6 & k_{3,5}=\frac{55}{3}-\frac{5}{32} k_{3,10} & k_{4,4}=-\frac{4}{3}-5 k_{5,3}-\frac{1}{8} k_{3,10} \\
k_{4,1}=+15 & k_{4,2}=-\frac{7}{3}-\frac{1}{32} k_{3,10} & k_{3,9}=\frac{10}{3}+\frac{5}{16} k_{3,10}+5 k_{5,3} \\
k_{3,1}=-10 & k_{3,2}=\frac{14}{3}+\frac{1}{16} k_{3,10} & k_{3,4}=-\frac{7}{3}-\frac{1}{32} k_{3,10} \\
k_{5,2}=4 & k_{4,3}=-\frac{58}{3}+\frac{1}{16} k_{3,10} & k_{3,7}=-\frac{22}{3}-\frac{11}{16} k_{3,10}+k_{3,8}-11 k_{5,3} \\
k_{3,6}=0 & k_{3,3}=-32+\frac{1}{8} k_{3,10} &
\end{array}
$$

Leaving three ambiguities

Results at $\left(\alpha^{\prime}\right)^{6}$

Ansatz:

$$
\begin{aligned}
\mathcal{M}_{\vec{p}}^{(6)}= & (\Sigma-1)_{6} \frac{2}{3}\left(\mathbf{s}^{3}+\mathbf{t}^{3}+\mathbf{u}^{3}\right) \\
+ & (\Sigma-1)_{5}\left(k_{5,1}\left(\mathbf{s}^{2} \tilde{\mathbf{s}}+\mathbf{t}^{2} \tilde{\mathbf{t}}+\mathbf{u}^{2} \tilde{\mathbf{u}}\right)+\left(\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}\right)\left(\Sigma k_{5,2}+k_{5,3}\right)\right) \\
+ & (\Sigma-1)_{4}\left(k_{4,1}\left(\tilde{s}^{2}+\tilde{\mathbf{t}}^{2}+\mathbf{u} \tilde{\mathbf{u}}^{2}\right)+k_{4,2}\left(\mathbf{s} c_{s}^{2}+\mathbf{t} c_{t}^{2}+\mathbf{u} c_{u}^{2}\right)\right. \\
& \left.+\left(\Sigma k_{4,3}+k_{4,4}\right)(\mathbf{s} \tilde{\mathbf{s}}+\mathbf{t} \tilde{\mathbf{t}}+\mathbf{u} \tilde{\mathbf{u}})\right) \\
+ & (\Sigma-1)_{3}\left(k_{3,1}\left(\tilde{\mathbf{s}}^{3}+\tilde{\mathbf{t}}^{3}+\tilde{\mathbf{u}}^{3}\right)+k_{3,2}\left(c_{s}^{2} \tilde{\mathbf{s}}+c_{t}^{2} \tilde{\mathbf{t}}+c_{u}^{2} \tilde{\mathbf{u}}\right)+\ldots\right)
\end{aligned}
$$

and localisation gives

$$
k_{3,8}=\frac{4}{3}-\frac{1}{16} k_{3,10} \quad k_{3,11}=0 \quad k_{5,3}=-2
$$

leaving one final ambiguity.

Results at higher orders

- Similarly, we obtain results at orders $\left(\alpha^{\prime}\right)^{7},\left(\alpha^{\prime}\right)^{8},\left(\alpha^{\prime}\right)^{9}$ with a growing number of ambiguities: 10, 16, 33

Results at higher orders

- Similarly, we obtain results at orders $\left(\alpha^{\prime}\right)^{7},\left(\alpha^{\prime}\right)^{8},\left(\alpha^{\prime}\right)^{9}$ with a growing number of ambiguities: 10, 16, 33
- Since level-splitting is not affected by ambiguities, we can (in principle) study the level-splitting to all orders in α^{\prime} !

Results at higher orders

- Similarly, we obtain results at orders $\left(\alpha^{\prime}\right)^{7},\left(\alpha^{\prime}\right)^{8},\left(\alpha^{\prime}\right)^{9}$ with a growing number of ambiguities: 10, 16, 33
- Since level-splitting is not affected by ambiguities, we can (in principle) study the level-splitting to all orders in α^{\prime} !

For example: at level two,

Results at higher orders

- Similarly, we obtain results at orders $\left(\alpha^{\prime}\right)^{7},\left(\alpha^{\prime}\right)^{8},\left(\alpha^{\prime}\right)^{9}$ with a growing number of ambiguities: 10, 16, 33
- Since level-splitting is not affected by ambiguities, we can (in principle) study the level-splitting to all orders in α^{\prime} !

Results at higher orders

- Similarly, we obtain results at orders $\left(\alpha^{\prime}\right)^{7},\left(\alpha^{\prime}\right)^{8},\left(\alpha^{\prime}\right)^{9}$ with a growing number of ambiguities: 10, 16, 33
- Since level-splitting is not affected by ambiguities, we can (in principle) study the level-splitting to all orders in α^{\prime} !

For example: at level two, we obtain the characteristic polynomial

$$
(\tilde{\eta}+r)^{2}+(\tilde{\eta}+r) \gamma_{2,1}+\gamma_{2,0}=0
$$

where

$$
\begin{aligned}
r & =(T-B)^{2}+B(2+l)+(2+a) T \\
\gamma_{2,1} & =-\frac{(n+2)(n+3)}{2 n+5}(B(2 l+5)+(2 a+5) T-(a+2)(I+2)) \\
\gamma_{2,0} & =\frac{(n+2)^{2}(n+3)^{2}}{2 n+5} B T
\end{aligned}
$$

which has an interesting $\operatorname{AdS}_{5} \leftrightarrow S^{5}$ symmetry: $B \leftrightarrow T$ \& $a \leftrightarrow \ell$

