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Motivation

» Simplicity and elegance of the VS-amplitude in flat space:
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celebrated central object of early days of string theory
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Motivation

» Simplicity and elegance of the VS-amplitude in flat space:

natural to attempt generalisations:

Can we construct the VS-amplitude in AdSsxS°®?

» AdS/CFT is an arena which relates

» theories on curved spacetimes

» QFT's at strong coupling

— let us start with tree-level string theory on AdSsxS®



General Setup

AdS/CFT correspondence

N =4 SYM with = Type |IB supergravity
gauge group SU(N) on AdSsxS°®

4pt correlation functions = AdS amplitudes
(Witten diagrams)

strong coupling limit: —= supergravity limit:
N — 0o, A > gs— 0, 0o =0

» Interested in corrections to supergravity in AdSs:
loop-corrections (1/N) and string-corrections (1/))



General Setup

4pt-functions of single-particle operators Op: Hp, pypspa

0o(1) @ —  free field theory

o). @+®+®+...

O(1/N*) : @+@+@+ + ...
I 1

supergravity 1/ string corrections



Tree-level AdS amplitudes

Tree-level amplitudes are best studied in Mellin space
[Mack,Penedones,Rastelli-Zhou,...]

Hp(u,v;o,7) = fdsdt uvi x Tz(s, t) x Mg(s, t;o,7)



Tree-level AdS amplitudes

Tree-level amplitudes are best studied in Mellin space
[Mack,Penedones,Rastelli-Zhou,...]

Hp(u,v;o,7) = ?{dsdt uvi x Tz(s, t) x Mg(s, t;o,7)

Two main advantages:

1. Simplicity: M is rational (supergravity)

polynomial (string corrections)

2. Direct connection to flat-space amplitudes:

» flat-space limit: s,t— 00 [Penedones’10]



Tree-level AdS amplitudes

Tree-level amplitudes are best studied in Mellin space
[Mack,Penedones,Rastelli-Zhou,...]

Hp(u,v;o,7) = ?{dsdt uvi x Tz(s, t) x Mg(s, t;o,7)

Amplitude admits a large N, large A double-expansion:

M5:%<M()+/\**M()+A*3M§’) )+O(N4>

and the set of exchanged double-trace operators Opq



The supergravity amplitude M (©)

Result for supergravity amplitude [Rastelli-Zhou'16'17]
5 =

it ka2 (S — S0+ 2k)(t —to + 2j)(u — up + 2i)



The supergravity amplitude M (©)

Result for supergravity amplitude [Rastelli-Zhou'16'17]
MO — 3 ajj o'
5 =

it k—ds2 (s — so+ 2k)(t — to + 2j)(u — up + 2i)

exhibits a hidden 10d conformal symmetry: [CaronHuot-Trinh'18]



The supergravity amplitude M (©)

Result for supergravity amplitude [Rastelli-Zhou'16'17]

aj o't
My = . .
P i+j+;34_2 (s — so+ 2k)(t — to + 2j)(u — up + 2i)

exhibits a hidden 10d conformal symmetry: [CaronHuot-Trinh'18]

1. All correlators descend from the seed-correlator (O,020,05):

0
H(O) = DP1P2P3P4 © H52)22

P1p2p3pa

2. Predicts residual degeneracies for supergravity anomalous
dimensions 7(?)



The supergravity amplitude M (©)

Consider more 'democratic’ Mellin transform: [Aprile-Vieira'20]

Hp(u,v;o,7) = fdsdt?{dé’df wviosrt x Ty x Mp(s, t; 5, t)



The supergravity amplitude M (©)

Consider more 'democratic’ Mellin transform: [Aprile-Vieira'20]
Hp(u,v;o,7) = %dsdt%dé’df wviosrt x Ty x Mp(s, t; 5, t)

which makes hidden 10d symmetry manifest:

1
(s+1)(t+1)(u+1)

) _
Mﬁ =

with "10-dimensional’ variables

s =543, t=1t+1, s+t+u=—4.



The double-trace spectrum

Need to address the mixing of double-trace operators:
Opq = 0,0Y20=P=a)5t 0,

are degenerate for all (p,q) € R-.



The double-trace spectrum

Need to address the mixing of double-trace operators:

Opg = @pmlﬁ(T*pfq)afoq

are degenerate for all (p,q) € R-.
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The double-trace spectrum

Need to address the mixing of double-trace operators:

Opg = @pmlﬁ(T*pfq)afoq

Tedious computation... leads to a remarkably simple solution!

© _ o MtMiiria
(C10(p) +1)s

[Aprile-Drummond-Heslop-HP'17'18]

n

with
> M= (t—1)(t+a)(t+a+b+1)(t+2a+b+2)

» effective 10d spin f10(p) =€ +2p—a—3 — 1+(—271)a+[

» idea: many 4d operators descend from the same 10d primary



The double-trace spectrum

Need to address the mixing of double-trace operators:

Opg = @pmlﬁ(T*pfq)afoq

— n(o) anomalous dimensions exhibit partial residual degeneracy!
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Adding string corrections

1
5. g "3 (_,3) )5 (E))
AdSs xS M (s+1)(t+1)(u+1)+(a)MP + (@M + .




Adding string corrections

1

5. o N3 aB) "5 A ®)
AdSs xS M (s+1)(t+1)(u+1)+(a)MP + (@ )M+
I s,t—> 0
. _ 1 G@)? | G(@)’ o, 2, 2
flat-space: V= sta T 5 + 1004 (s“+t°+u’)+...

1) () ()
sugra R* I*R*



Adding string corrections

1

5. o N3 aB) "5 A ®)
AdSs xS M (s+1)(t+1)(u+1)+(a)MP + (o) M;;
I s,t—> 0
. _ 1 G) | () o, 2, 2
flat-space: V= sta T 5 + 1004 (s“+t°+u’)+...
1) fr fr
sugra R* I*R*

> MS) is just a constant
> M%S) is at most quadratic in (s, t, §, t)

> Mg’) is at most cubic in (s, t, §, t)
> ...

+ ...



Adding string corrections

What does this imply for the double-trace spectrum?
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Adding string corrections

What does this imply for the double-trace spectrum?

Note that string corrections are spin truncated:
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Adding string corrections
What does this imply for the double-trace spectrum?

Note that string corrections are spin truncated:
()3 R*Y = f1p=0

(@)’ O*R* — {1p=0,2
()% OOR* — (l10=0,2
( —

0/)7: 88R4 610 = 0, 2, 4

String corrections successively lift the partial degeneracy:

= level-splitting breaks the 10d conformal symmetry!



Adding string corrections
What does this imply for the double-trace spectrum?

Note that string corrections are spin truncated:

> (/)3 RY = lpp=0

> (o) O*R* — {1p=0,2
> (/)% 9OR* — f10=0,2
> (/) BR* — (10=0,2,4
> .

3

First example: the order (/) correction

— amplitude fully fixed by the flat-space limit:

G

MS):(Z—1)3 f’ where Z:%(P1+p2+P3+P4)

And indeed, one finds this contributes only to states with /19 = 0!



12
10

N A~ O

\

0

2

4 6 8 10 12 14

“p



(')

84R4 . 610 = 0,2

q ~
AN 7 I
14
12
10
. [¢

o

6 v

4 X

.
2

0 2 4 6 8 10 12 14 P



(o)’

88R4 . 610 = 0,2,4
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OPRY: 41p=0,2,4,6
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Summary and Outlook

» String corrections break the 10d conformal symmetry and
induce a level-splitting of the spectrum

» Using constraints on the spectrum (i.e. truncation of £1p), we
are able to bootstrap amplitudes at orders (a/)%%7:8:9
see also [Abl-Heslop-Lipstein'20]
» We derive lots of new CFT data by solving the level-splitting
at levels 2 (all orders in o’) and 3, 4 (for some low orders)



Summary and Outlook

» String corrections break the 10d conformal symmetry and
induce a level-splitting of the spectrum

» Using constraints on the spectrum (i.e. truncation of £1p), we
are able to bootstrap amplitudes at orders (a/)%%7:8:9
see also [Abl-Heslop-Lipstein'20]
» We derive lots of new CFT data by solving the level-splitting
at levels 2 (all orders in o’) and 3, 4 (for some low orders)

Outlook and open questions:

» Flat-space amplitude is so simple: how to resum the AdS
amplitude? Is there a better choice of variables? ...

> Wealth of new tree-level data can be used to bootstrap

one-loop string corrections to higher orders
[Alday,Drummond-HP,Drummond-Glew-HP]

> Would be interesting to make contact with recent strong
coupling results from integrability (octagon function)
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Definitions

Mellin space measure:

Mo =6 M[=s]M[— )M [—u]l[—s + c T[—t + ] [—u + cu]

T[S+ ML+ aT[1 43+ ]l[L + £+ c]M[L + d + cu]
where o
6o ()

~ " sin(nt) sin(wii)

Further conventions:
s=s+5§ t=t+t s+t+u=-4
§=c+25 t=c +2f §+t+iu=X -4

C. = p1+p2—p3—pa pP1t+pa—p2—p3 C, = p2+ps—p3—p1
C 2 2 u— 2

Ct =

y — Pip2 +p3+pa
- 2



Bootstrapping higher-order amplitudes
Idea:

use spin-truncation to bootstrap higher-order amplitudes Mg')



Bootstrapping higher-order amplitudes
Idea:

use spin-truncation to bootstrap higher-order amplitudes Mg')

1. Start with a fully crossing symmetric ansatz

MY =4 (£~ 1), ViI(s.t,u)

flat

> E-Das{ YOG Ep) st

i=0 0<d1+d-<i



Bootstrapping higher-order amplitudes
Idea:

use spin-truncation to bootstrap higher-order amplitudes Mg')

1. Start with a fully crossing symmetric ansatz

MY =4 (£ - 1), Vi2(s. tu)

flat
n—1 )
+ Z(Z - 1)i+3 { Z C((j::(ljl(ga Ev ﬁ) sdltd2}
i=0 0<d1+dr<i

2. Extract partial-wave coefficients and solve rank-constraints



Bootstrapping higher-order amplitudes
Idea:

use spin-truncation to bootstrap higher-order amplitudes Mg')

1. Start with a fully crossing symmetric ansatz

MY =4 (£ - 1), Vi2(s. tu)

flat
n—1 )
+ Z(Z - 1)i+3 { Z C((j::(ljl(ga Ev ﬁ) sdltd2}
i=0 0<d1+dr<i

2. Extract partial-wave coefficients and solve rank-constraints

3. Leftover ambiguities do not affect the level-splitting



Results at (a’)°
Ansatz:
MY = (T 1)5 (82 + 12+ v?)
+ (X — 1) kq1(s8 + tt + uii)
+(Z = 1)3 (kg1 X2+ k3o(2 + 4+ ¢3) + kg3 (3% + 2 + i)
+ k34X + k3 5)



Results at (a’)°
Ansatz:

MY = (- 1)s (2 + 2+ u?)
+ (X —1)g ka1(s8 + tt + uii)
+(Z = 1)3 (kg1 X2+ k3o(2 + 4+ ¢3) + kg3 (3% + 2 + i)
+ k34T + k35)
Rank constraints give
ky1=-5 k33=05, k3p—k3; =11, k3a=0
Leaving two ambiguities:

ks s (constant) and k31 (X2 + c2 + ¢2 + c2)



Results at (a’)°

Ansatz:

MY = (£ - 1)s (s + 2+ u?)
+ (X = 1)4 kg 1(sS + tt + uii)
+(Z = 1)3 (kg1 X2+ k3o(2 + 4+ ¢3) + kg3 (3% + 2 + i)

+ k34T + k35)
Rank constraints give

ky1=-5 k33=05, kyo—k31 =11, k3s=0

Leaving two ambiguities:

ks s (constant) and k31 (X2 + c2 + ¢2 + c2)

— fixed by supersymmetric localisation results:
[Binder-Chester-Pufu-Wang'19,Chester-Pufu’20]

_ 27 _ 33
ksi1=—-%5, kis=7%



Results at (a)®

Ansatz:
(6) _ 3
./\/lﬁ = (Z — 1) ( +t3+u )

2

3

( (s%8 + %t + v?ii) + (8% + 2+ u?) (Tksp + k573))

( 24t + uii®) + ks (s + tcf + uc))
(Zk4,3 + ka4) (s8 + tt + uid) )

F(Z-1); (k3,1(§3 + B4 + ko (28 + 2+ i) + .. )



Results at (a)®
Ansatz:

Mff): (2—1) (s + 13+ ud)

2
3
( (s%8 + %t + v?ii) + (8% + 2+ u?) (Tksp + k573))
( s§% + tt? + uii®) + ka2 (s + tcf + ucy)
+ (Zk4,3 + ka4) (s8 + tt + uid) )
F(Z-1); (k3,1(§3 + B4 + ko (28 + 2+ i) + .. )

Rank constraints give

ks1=-6 ks =2 — *k3 10 Ky s = —% — 5ks 3 — %k3,10

kypy =415 kyp = —% — 5ksio  kso =% + ks + 5k,

ki1 =—-10 ki, =%+ Lk  ka= —g + k3,10

ks =4 kiz=—%+tcksno ka7 =—% — tks 1o+ ksg — 11ks3
k3,6 =0 k3,3 = —-32+ %ke,,lo

Leaving three ambiguities



Results at (a)®

Ansatz:
(6) _ 3
./\/lp = (Z — 1) ( +t3+u )

2
3
~ 2% 2~ 2 2 2
( (s%8 + 2T+ v?i) + (2 + t +u)(Zk572+k573))
( s§% + tt? + uii®) + ka2 (s + tcf + ucy)
+ (Zk4,3 + ka4) (s8 + tt + uid) )

F(Z-1); (k3,1(§3 + B4 + ko (28 + 2+ i) + .. )

and localisation gives
ksg =% — =k k311 =0 ks3=—2
3,8 = 3 — 16K3,10 3,11 = 53 =

leaving one final ambiguity.
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» Similarly, we obtain results at orders ()7, (a/)8, (/)°

with a growing number of ambiguities: 10, 16, 33

» Since level-splitting is not affected by ambiguities, we can
(in principle) study the level-splitting to all orders in /!

For example: at level two,



Results at higher orders

» Similarly, we obtain results at orders ()7, (a/)8, (/)°

with a growing number of ambiguities: 10, 16, 33

» Since level-splitting is not affected by ambiguities, we can
(in principle) study the level-splitting to all orders in /!
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Results at higher orders

» Similarly, we obtain results at orders ()7, (a/)8, (/)°

with a growing number of ambiguities: 10, 16, 33

» Since level-splitting is not affected by ambiguities, we can
(in principle) study the level-splitting to all orders in /!

For example: at level two, we obtain the characteristic polynomial

(fi+r)?+ (f+r)y21+720=0
where
r=(T-B’+BR+)+(2+a)T
Y1 = — 20 (B(2] 4 5) + (2a+5)T — (a+2)(/ +2))

n 2 n 2
Yoo = (D3] +22),,i5+3) BT

which has an interesting AdSs <+S° symmetry: B« T & a <> /¢



	Higher orders

