Consistent truncations around half-maximal AdS vacua from Exceptional Field Theory

Valentí Vall Camell (IPhT)

Based on:

- AdS₆ and AdS₇: [1808.05597], [1901.11039] with E. Malek and H.Samtleben
- AdS₅: [2012.15601] with E. Malek

Consistent truncations

- Compactification: $AdS_D \times M_{int.}$ with $M_{int.}$ compact
 - ▶ Lower dim. (gauged) supergravity $\stackrel{?}{\longleftrightarrow}$ 11/10-d theory
 - ▶ Domain walls, AdS-black holes,... easier in *D*-dim. gSUGRA
- **Consistent truncation**. Set higher KK-modes to zero

- ▶ Not an effective action (no scale separation in AdS)
- ▶ In general, hard to construct (non-trivial mixing of metric and flux,...)
- Exceptional Field Theory: provides tools for a systematic analysis.
 - * Maximal case: CT for $AdS_5 \times S^5$, other sphere reductions, hyperboloids, 4d dyonic gaugings,...
 - [Hohm, Samtleben, Baguet, Malek, Inverso, Trigiante,....]
 - Tools also from Exceptional Generalise Geometry.
 [Waldram, Lee, Strickland-Constable, Ashmore, Petrini, Cassani, Josse, Graña, Gabella....]
- Today: Half-maximal consistent truncations in ExFT.

Exceptional Field Theory

Exceptional Field Theory

ExFT is a reformulation of supergravity adapted to a split $11 = D_{\text{ext}} + d_{\text{int}}$ where metric and flux are treated in the same footing.

11d supergravity on a torus $T^d \longrightarrow E_{d(d)}$ global symmetry.

Purely internal degrees of freedom (scalars)

$$\left\{g_{mn},\,C_{mnp}^{(3)},\,C_{mnpqrs}^{(6)}\right\} \to \mathcal{M}_{M_1N_1} \in \frac{E_{d(d)}}{K(E_d)} \quad \text{(generalised metric)}$$

Mixed component fields

$$\left\{g_{\mu n}, C_{\mu n p}^{(3)}, C_{\mu n p q r s}^{(6)}
ight\}
ightarrow \mathcal{A}_{\mu}^{N_1} \in \mathcal{R}(E_{d(d)})$$
 $\left\{C_{\mu
u p}^{(3)}, C_{\mu
u p q r s}^{(6)}
ight\}
ightarrow \mathcal{B}_{\mu
u}^{N_2} \in \tilde{\mathcal{R}}(E_{d(d)})$

ExFT: Use covariant objects to rewrite 11d supergravity **before** the truncation

Exceptional Field Theory

- Embed internal coordinates y^m into $Y^{M_1} = (y^m, \dots) \in \mathcal{R}(E_{d(d)})$
- Fields: $\mathcal{M}_{M_1N_1}(x,Y)$, $\mathcal{A}_{\mu}(x,Y)$, $\mathcal{B}_{\mu\nu}(x,Y)$,...
- Action: [Hohm, Samtleben]

$$\begin{split} \mathcal{L}_{\textit{EXFT}} \sim \mathcal{R}_{\textit{g}_{ext.}} + \mathfrak{D}_{\mu} \mathcal{M}_{\textit{M}_{1}\textit{N}_{1}} \mathfrak{D}^{\mu} \mathcal{M}^{\textit{M}_{1}\textit{N}_{1}} + \mathcal{F}_{\mu\nu}^{\quad \textit{M}_{1}} \mathcal{F}^{\mu\nu}^{\quad \textit{N}_{1}} \mathcal{M}_{\textit{M}_{1}\textit{N}_{1}} + \dots \\ + \mathcal{L}_{\textit{top.}} + \mathcal{L}_{\textit{scalar pot.}} \end{split}$$

Section constraint:

$$Y^{M_1N_1}_{P_1Q_1}\partial_{M_1}\otimes\partial_{N_1}=0\,,\qquad Y^{M_1N_1}_{P_1Q_1} o E_{d(d)}$$
 invariant tensor

- Required by closure of the algebra of generalised diffeomorphisms.
- ightharpoonup Solved by restricting coordinate dependence to a subset of Y^{M_1}
- ▶ Inequivalent solutions to the SC reduce $\mathcal{L}_{\textit{ExFT}}$ to 11d supergravity or IIB

Supersymmetric flux backgrounds

Compactifications with Fluxes = 0 (Special holonomy manifolds)

- **①** \exists globally defined spinor $\epsilon \Rightarrow$ Structure group $G \subset SO(d)$
- **2** $\nabla \epsilon = 0 \Rightarrow$ Covariantly constant spinors

From $\epsilon \to \text{construct bosonic bilinears}$

 $\bullet \ \, \text{plobally defined} \,\, \omega_{(2)} \,\, \text{and} \,\, \Omega_{(3)} \,\, \text{satisfying}$

$$\omega_{(2)} \wedge \Omega_{(3)} = 0 \,, \qquad \omega_{(2)} \wedge \omega_{(2)} \wedge \omega_{(2)} \sim \Omega_{(3)} \wedge \bar{\Omega}_{(3)} \sim \textit{Vol}_6$$

Compactifications with $Fluxes \neq 0$

- Same as in the fluxless case
- ② $(\nabla + "Flux terms") \epsilon = 0$ (In general hard to solve)

Supersymmetric flux backgrounds and ExFT

- 11/10-dim spinors ϵ organise into rep's of $K(E_{d(d)})$ max. compact subgroup of $E_{d(d)}$.
- Then,

[Coimbra, Strickland-Constable, Waldram]

$$(\nabla + "Flux terms") \epsilon = 0 \longrightarrow \nabla_{ExFT} \varepsilon = 0$$

with $\varepsilon \in K(E_{d(d)})$.

Supersymmetric flux backgrounds in ExFT

- **●** Generalised structure. Half-maximal case: $Spin(d-1) \subset E_{d(d)}$.

All internal d.o.f. are encoded into the structures: structures $\Rightarrow \mathcal{M}_{M_1M_2}$

Generalised structures for AdS vacua

Half-maximal AdS₇, AdS₆, AdS₅ vacua

[Malek]

Generalised $Spin(d-1) \subset E_{d(d)}$ **structures:** $J_u \in \mathcal{R}(E_{d(d)}), \ \hat{K} \in \tilde{\mathcal{R}}(E_{d(d)})$

$$J_u \curlywedge J_v = rac{1}{d-1} \delta_{uv} J_w \curlywedge J^w \,, \qquad \hat{K} \curlywedge J_w \curlywedge J^w > 0 \,, \qquad \left[u
ightarrow \mathit{Spin}(d-1)
ight]$$

Weakly integrability

 $(\Lambda_{uvw} \leftrightarrow cosmological\ constant)$

$$\mathcal{L}_{J_u}J_v=\Lambda_{uvw}J^w$$

As well as

$$\begin{split} \mathfrak{d}\hat{\mathcal{K}} &= \epsilon^{uvw} \Lambda_{uvw} J_z \, \, \downarrow \, J^z \qquad \text{(for AdS}_7) \\ \mathfrak{d}\hat{\mathcal{K}} &= \epsilon^{uvwz} \Lambda_{uvw} J_z \qquad \qquad \text{(for AdS}_6) \\ \mathcal{L}_{\hat{\mathcal{K}}} J_u &= \epsilon_{uvwzz} \Lambda^{vwx} J^z \qquad \qquad \text{(for AdS}_5) \end{split}$$

$$\mathsf{Break}\,\, \mathsf{Spin}(d-1) \to \mathsf{G}_R \subset \mathsf{Spin}(d-1) \qquad (\mathsf{G}_R \to \mathsf{R-symmetry})$$

extstyle o ExFT "wedge product", $extstyle \mathcal{L}, \mathfrak{d} o$ ExFT "differential operators".

Minimal consistent truncations

Conjecture [Gauntlett, Varela]

For any SUSY solution of 11/10-d SUGRA of the form $AdS_D \times_w M$, there is a consistent truncation to a D-dimensional gauged SUGRA keeping only the gravitational supermultiplet.

Half-maximal gravitational multiplet: 1 scalar X(x).

Truncation Ansatz

[Malek]

$$\mathcal{J}_{u} = X^{-1}(x) J_{u}(Y), \qquad \hat{\mathcal{K}} = X^{2}(x) \hat{\mathcal{K}}(Y)$$

as well as

AdS₇:
$$A_{\mu} = A_{\mu}(x)^{\mu} J_{\mu}$$
, $B_{\mu\nu} = -B_{\mu\nu}(x) J_{\nu} + J^{\nu}$, ...

$$AdS_6: \quad \mathcal{A}_{\mu} = A_{\mu}(x)^u J_u, \qquad \mathcal{B}_{\mu\nu} = -B_{\mu\nu}(x) J_w \wedge J^w + \tilde{B}_{\mu\nu}(x) \hat{K}, \quad \dots$$

$$\mathsf{AdS}_5: \quad \mathcal{A}_{\mu} = A_{\mu}(x)^u \, J_u + A_{\mu}^{(0)} \hat{K}(x) \, , \, \, \mathcal{B}_{\mu\nu} = B_{\mu\nu}(x) \, J_w \, \, \downarrow \, J^w + B_{\mu\nu}{}^u(x) \, J_u \, \, \downarrow \, \hat{K}, \ldots$$

- Consistency follows from integrability conditions.
- 11/10d fields can be obtained from $\mathcal{M}_{MN}(\mathcal{J},\hat{\mathcal{K}})$ and universal dictionaries between SUGRA and ExFT.

Consistent truncations with vector multiplets

- ullet To accept truncations keeping N vector multiplets, the vacuum must have extra structures
- $J_u \longrightarrow J_A = (J_u, \bar{J}_{\bar{u}})$ with $\bar{u} = 1, \dots N$

Spin(d-1-N) structure

[Malek]

Generalised $Spin(d-1-N) \subset Spin(d-1)$ **structure**: J_A

$$J_A \curlywedge J_B = rac{1}{d-1-N} \eta_{AB} \, J_C \curlywedge J^C \,, \quad \eta_{AB} o SO(d-1,N) \; {\sf metric}$$

Differential conditions

$$\mathcal{L}_{J_A}J_B = f_{AB}{}^C J_C \,, \qquad f_{AB}{}^C \text{constant}$$

- ullet $N \leq d-1$ and new J's transform as reps of the R-symmetry group
- Truncation Ansatz:

$$\mathcal{J}_u = X^{-1} b_u^A J_A$$
, $\hat{\mathcal{K}} = X^2 \hat{\mathcal{K}}$, $\mathcal{A}_\mu = A_\mu^A J_A$...

with
$$b_u{}^A b_v{}^B \eta_{AB} = \delta_{uv}$$
. $\Rightarrow \{b_u{}^A, X\} \in \frac{SO(d-1,N)}{SO(d-1) \times SO(N)} \times \mathbb{R}^+$

The method

- Onstruct general classes of half maximal structures.
 - ▶ Construct general Ansätze for the structures J_u and \hat{K} compatible with the R-symmetry G_R .
 - Solve algebraic structure conditions and weakly integrability conditions.
 - Read off the background fields from the structures and compare with known classes of vacua.
- Construct minimal consistent truncations.
 - ► Take the truncation Ansatz and read off the uplift formulae.
- Study truncations keeping vector multiplets
 - ▶ Construct Ansätze for $\bar{J}_{\bar{u}}$ and try to solve the structure conditions and differential conditions given the vacua structures.
 - ► These conditions turn out to be very restrictive ⇒ Many No-Go theorems
 - lacktriangle For those cases where $ar{J}_{ar{u}}$ exist, construct the truncation.

Results I: $AdS_7 \times I \times S^2$ in mIIA [1808.05597], [1901.11039]

- R-symmetry group: SU(2).
- AdS₇ half-maximal structures classified in terms of a function t on the interval I satisfying:

$$\ddot{t}=-\frac{m_{IIA}}{2}\,,\qquad t(z)\geq 0$$

with equality on the endpoints.

Same class as [Apruzzi, Fazzi, Rossa, Tomasiello]

• Vector multiplets? **Not possible for general** m_{IIA} Only when $m_{IIA}=0$: Truncation with a single vector multiplet (sub-truncation of maximal CT around AdS₇ \times S^4)

Results II: $AdS_6 \times \Sigma_2 \times S^2$ in IIB [1808.05597], [1901.11039]

- R-symmetry group: SU(2).
- AdS₆ half-maximal structures classified in terms of two holomorphic functions f^{α} ($\alpha=1,2$) on the Riemann surface Σ_2 satisfying:

$$\bar{\partial} f^{\alpha} = 0, \qquad i \, \partial f^{\alpha} \bar{\partial} \bar{f}_{\alpha} \ge 0$$

Same class as [D'Hoker, Gutperle, Karch, Uhlemann]

• Vector multiplets?

N	$SU(2)_R$ rep	Consistent truncation?	Gauging
1	1	Only if $\exists \chi$: $\partial (e^{i\chi}\partial f^{\alpha}) \in Real$ function on Σ	$SU(2)\times U(1)$
2	1 ⊕ 1	NO	N/A
3	${\bf 1} \oplus {\bf 1} \oplus {\bf 1}$	NO	N/A
3	3	Only if $r d\Pi^{\alpha} = p^{\alpha}\Pi^{\beta} \wedge \Pi_{\beta}$	ISO(3)
4	$1 \oplus 1 \oplus 1 \oplus 1$	NO	N/A
4	3 ⊕1	Only if $\exists 3$ and $\exists 1$ with $\chi = \frac{1}{2} \left(\frac{p_{\alpha} \bar{\partial} \bar{f}^{\alpha}}{p_{\beta} \partial f^{\beta}} \right)$	ISO(3)×U(1)

with Π^{α} a 1-form constructed from f^{α} .

Results III: AdS₅ \times $M_3 \times S^2 \times S^1$ in Mtheory [2012.15601]

- R-symmetry group: $SU(2) \times U(1)$
- AdS_5 vacua in terms of a function D on M_3 satisfying

$$(\partial_1^2 + \partial_1^2)D + \partial_3^2 e^D = 0 \hspace{1cm} \hbox{[Lin, Lunin, Maldacena]}$$

• Vector multiplets? The possibilities that are not ruled out are:

N	SU(2) imes U(1) rep.	Conditions to be satisfied	Gauging
1	1_0	$d\bar{\nu}=d\bar{\Phi}=0$	SU(2)×U(1)
2	$1_0\oplus1_0$	Two different "compatible" 1_0 's	SU(2)×U(1)
2	$1_{q}\oplus1_{-q}$	$ar\Phi_1 = rac{1}{q} dar u_2 ar\Phi_2 = -rac{1}{q} dar u_1$	SU(2)×U(1)'
3	$1_0\oplus1_0\oplus1_0$	Three different "compatible" 1_0 's	SU(2)×U(1)
3	$oldsymbol{1}_0 \oplus oldsymbol{1}_q \oplus oldsymbol{1}_{-q}$	"compatible" 1_0 and $1_q \oplus 1_{-q}$	SU(2)×U(1)'
3	3 ₀	S ⁴ fibred over Riemann surface	ISO(3)×U(1)

Where $\bar{\nu}$ a 1-form and $\bar{\Phi}$ 2-form constructed from $\bar{\nu}$ and D. See details in [2012.15601]

Conclusions

- ExFT gives a natural language to study consistent truncations
- We used it to systematically construct and classify truncations around half-maximal AdS vacua
- Minimal consistent truncations can always be constructed but truncations keeping vector multiplets are very rare.

Outlook:

- Find solutions to the differential conditions of vector multiplets.
- KK spectrum?
 - In [Malek, Samtleben '19] a new method to compute the whole KK spectrum using ExFT was developed.
 - ▶ It can be used to compute not only the KK spectrum of the maximally supersymmetric vacuum but also for any other (less supersymmetric) vacua inside the consistent truncation.
 - Work in progress: adapt this method to the half-maximal case. Formulation of the consistent truncation in terms of structures plays a crucial role.