CORRELATORS FROM SEPARATION OF VARIABLES IN SPIN CHAINS AND CFT'S

Fedor Levkovich-Maslyuk

Institut de Physique Théorique, CEA Saclay

	2103.15800 [Cavaglia, Gromov, FLM]
based on	2011.08229 [Gromov, FLM, Ryan]
	2003.05811 [FLM, Preti]
	1910.13442 [Gromov, FLM, Ryan, Volin]
	1907.03788 [Cavaglia, Gromov, FLM]

How to compute correlators $\langle\Psi| \hat{O}|\Phi\rangle$?

Hard even in integrable models

We study it for:

- Spin chains

- $\mathrm{N}=4$ super Yang-Mills in $4 \mathrm{~d} /$ strings on $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$

Main motivation - solve an interacting 4d gauge theory for the first time

$$
\langle\Psi| \hat{O}|\Phi\rangle=?
$$

Idea: find a basis where wavefunctions factorize

$$
\langle x \mid \Psi\rangle \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{N}\right) \quad \text { Separation of Variables (SoV) }
$$

like hydrogen atom $\Psi=F_{1}(r) F_{2}(\theta) F_{3}(\varphi)$

Should exist in any integrable model, expected to be powerful [Smirnov, Sklyanin, ... 90's] but understanding has been very limited

We developed SoV for $\operatorname{SU}(\mathrm{N})$ spin chains, starting to explore similar structures in QFT

SPIN CHAINS

SU(2) spin chains

$$
H=\sum_{n=1}^{L}\left(1-P_{n, n+1}\right)
$$

$$
\begin{aligned}
& T(u)=R_{a 1}\left(u-\theta_{1}\right) \ldots R_{a L}\left(u-\theta_{L}\right) g \\
& T(u)=\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)
\end{aligned}
$$

The Bethe roots u_{j} are fixed by Bethe equations

$$
\begin{array}{r}
\left(\frac{u_{j}+i / 2}{u_{j}-i / 2}\right)^{L}=\prod_{k \neq j} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i} \\
E=\sum_{i} \frac{1}{u_{i}^{2}+1 / 4}
\end{array}
$$

$|\Psi\rangle=B\left(u_{1}\right) B\left(u_{2}\right) \ldots B\left(u_{M}\right)|0\rangle$ built via 'creation operator'
$\langle x|=$ eigenstates of same operator $B(u)=\prod\left(u-x_{k}\right)$

So indeed wavefunctions factorize $\quad\langle x \mid \Psi\rangle=\prod_{k} Q_{1}\left(x_{k}\right) \longleftarrow Q(u)=\prod_{i}\left(u-u_{i}\right)$ $\left\langle\mathbf{x}_{1} \ldots \mathbf{x}_{L} \mid \Psi\right\rangle=\prod_{k=1}^{L} \prod_{j=1}^{M}\left(u_{j}-\mathbf{x}_{k}\right)=\prod_{k=1}^{L} Q_{1}\left(\mathbf{x}_{k}\right)$

Q's are polynomials

SU(N) spin chains

$$
|\Psi\rangle=B\left(u_{1}\right) B\left(u_{2}\right) \ldots B\left(u_{M}\right)|0\rangle \quad \begin{gathered}
\text { still true? Yes! } \\
{[\text { Gromov, FLM, Sizov 16] }}
\end{gathered} \quad \begin{gathered}
\text { Simple result, } \\
\text { hard to prove }
\end{gathered}
$$

$$
\begin{aligned}
B(u) & =T_{23}(u) T_{12}(u-i) T_{23}(u)-T_{23}(u) T_{13}(u-i) T_{22}(u) \\
& +T_{13}(u) T_{11}(u-i) T_{23}(u)-T_{13}(u) T_{13}(u-i) T_{21}(u)
\end{aligned}
$$

Replaces huge 'nested' Bethe ansatz formula, new result in old field!

$$
|\Psi\rangle=\sum_{\substack{a_{i}=2,3 \\ \nearrow}} F^{a_{1} a_{2} \ldots a_{M}} T_{1 a_{1}}\left(u_{1}\right) T_{1 a_{2}}\left(u_{2}\right) \ldots T_{1 a_{M}}\left(u_{M}\right)|0\rangle
$$

sum of exponentially many terms

$$
\langle x|=\text { eigenstate of } \mathrm{B}(\mathrm{u}) \square\langle x \mid \Psi\rangle=\prod_{k} Q_{1}\left(x_{k}\right)^{\begin{array}{l}
\text { i.e. wavefunctions factorize } \\
\text { so we have SoV }
\end{array}}
$$

SoV measure

$$
\langle x \mid \Psi\rangle \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{N}\right)
$$

For scalar products we also need measure (analog of $r^{2} \sin \theta d r d \varphi d \theta$ for hydrogen atom)

We found it for any $\operatorname{SU}(\mathrm{N})$ Longstanding problem resolved!
[Cavaglia, Gromov, FLM 19] [Gromov, FLM, Ryan, Volin 19] [Gromov, FLM, Ryan 20]

Gives new determinant (easy to evaluate) representations for many correlators!

$$
\operatorname{det}|\underbrace{\left(\frac{\hat{x}^{j-1}}{1+e^{2 \pi\left(\hat{x}-\theta_{i}\right)}}\right)}_{1 \leqslant i, j \leqslant L} \otimes \underbrace{\left(\begin{array}{cccc}
\mathcal{D}_{x}^{N-2} & \mathcal{D}_{x}^{N-4} & \ldots & \mathcal{D}_{x}^{2-N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{D}_{x}^{N-2} & \mathcal{D}_{x}^{N-4} & \ldots & \mathcal{D}_{x}^{2-N}
\end{array}\right)}_{(N-1) \times(N-1)}|
$$

$$
\begin{gathered}
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle \propto\left|\begin{array}{ll}
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2-}\right\rangle_{j} \\
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3-}\right\rangle_{j}
\end{array}\right|
\end{gathered}
$$

can insert operators like $B(u)$, likely full set

Expect many applications

APPLICATIONS FOR CFT'S

$$
\langle x \mid \Psi\rangle \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{N}\right)
$$

But we know the Q's at finite coupling! No longer polynomials
Fixed by Quantum Spectral Curve - set of functional equations
[Gromov, Kazakov, Leurent, Volin 13]

Give exact spectrum, many applications

Goal: use SoV to compute 3pt correlators

Key open problem

CORRELATORS IN N=4 SYM

[Cavaglia, Gromov, FLM 18]

Finally put the idea
on quantitative level in $N=4$ SYM

3 Wilson lines + local operators at cusps

$$
\begin{aligned}
& W=\operatorname{Tr} \mathcal{P} \exp \int d t[i A \cdot \dot{x}+\vec{\Phi} \cdot \vec{n}|\dot{x}|] \\
& \vec{n} \cdot \vec{n}_{\theta}=\cos \theta \rightarrow \infty
\end{aligned}
$$

Resum ∞ many ladder diagrams

$$
\Theta_{123}=\frac{\left\langle Q_{1} Q_{2} Q_{3}\right\rangle}{\sqrt{\left\langle Q_{1}^{2}\right\rangle\left\langle Q_{2}^{2}\right\rangle\left\langle Q_{3}^{2}\right\rangle}}
$$

Structure precisely as expected from separation of variables
Complicated result becomes extremely simple in terms of QSC !

Extension to local operators

"fishnet CFT"

$$
S=\frac{N}{2} \int d^{4} x \operatorname{tr}\left(\partial^{\mu} \phi_{1}^{\dagger} \partial_{\mu} \phi_{1}+\partial^{\mu} \phi_{2}^{\dagger} \partial_{\mu} \phi_{2}+2 \xi^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right)
$$

Baby version of N=4 SYM, no susy but inherits integrability, Q-functions etc

Integrability visible directly from Feynman graphs

We find very similar structures

$$
C_{\mathcal{O O L}} \propto \frac{d \Delta}{d \xi^{2}}=\frac{\int_{\left\lvert\, \frac{q \bar{q}}{u} \frac{d u}{2 \pi i}\right.}^{\int_{\mid} i\left(q^{+} \bar{q}^{-}-q^{-} \bar{q}^{+}\right) \frac{d u}{2 \pi i}}}{\text { 位 }}
$$

[Cavaglia, Gromov, FLM 21]
[+ with A. Sever to appear]

Holographic dual derived almost rigorously! Should give more data

Correlators from SoV for fishnets

Get $S O(4,2)$ spin chain in principal series rep
Wavefunction of spin chain $=$ correlator in CFT

$$
\varphi_{\mathcal{O}}\left(x_{1}, \ldots, x_{J}\right)=\left\langle\mathcal{O}\left(x_{0}\right) \operatorname{tr}\left[\phi_{1}^{\dagger}\left(x_{1}\right) \ldots \phi_{J}^{\dagger}\left(x_{J}\right)\right]\right\rangle
$$

$$
\operatorname{Tr}\left(\phi\left(x_{0}\right)\right)^{J}
$$

[Gromov, Sever 19]

Can compute large set of correlators in det form, via spin chain SoV [Cavaglia, Gromov, FLM 21]
E.g. 2pt function with local insertions to all loop orders

$$
\begin{aligned}
\frac{\partial \hat{H}}{\partial h_{\alpha}} \hat{H}^{-1} & =-8\left[-\frac{x_{\alpha, \alpha-1}^{2}+x_{\alpha, \alpha+1}^{2}}{2}\left(1+x_{\alpha}^{\mu} \frac{\partial}{\partial x_{\alpha}^{\mu}}\right)+\left(x_{\alpha, \alpha-1}^{2} x_{\alpha+1}^{\mu}+x_{\alpha, \alpha+1}^{2} x_{\alpha-1}^{\mu}\right) \frac{\partial}{\partial x_{\alpha}^{\mu}}\right] \\
& \times \square_{\alpha}^{-1} \frac{1}{x_{\alpha, \alpha-1}^{2}} \frac{1}{x_{\alpha, \alpha+1}^{2}} .
\end{aligned}
$$

Conjecture similar structures for 1 pt functions with defect

Can write formal det expressions for SYM, practical aspects are in progress...

SUMMARY

- SoV developed for higher rank $\operatorname{SU}(\mathrm{N})$ spin chains, obtained SoV measure, scalar products as det
- Works in very general situations when BA fails, including fishnet theory
- Spin chains - expect many applications, extension to super case, ...
- Extension to $\mathrm{N}=4$ SYM seems within reach, hints of hidden structures
- Correlators in matrix models of dually weighted graphs e.g. quadrangulations, insights into $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$? [Kazakov, FLM in progress]

