The CFT Dual of a Tidal Force? Shaun Hampton IRN:QFS Conference June 10, 2021

Motivation

- Microstate geometries program

Mathur, Lunin, Giusto, Russo, Bena

- smooth, horizonless geometries
- same charges and mass of BH counterparts
- horizon scale structure
- composed objects in string theory
- A special class of three charge solutions called superstrata exhibit tidal forces

Yyukov, Walker, Warner 2017
Bena, Martinec, Walker, Warner 2018

- A string probe sent into a superstrata experiences tidal excitations along transverse directions Martinec, Warner '20
- These geometries have an $A d S_{3}$ region
- There is a well defined map between these microstates and states within the D1D5 CFT Bena et. al. '15, '18,

Rawash, Turton '21

- We want to understand tidal forces from the perspective of the dual CFT

Motivation

- What is a diagnostic of this behavior?
- We'll need an interaction, a deformation of the CFT
- We need to generate excitations
- We'll consider two scenarios
- 1) CFT dual of a probe moving in empty AdS (from 2 charge system)
- 2) CFT dual of a probe moving in a superstrata geometry
- What are their differences?

Two Charge Solution

- Compactify IIB String Theory in 10D

$$
M_{4,1} \times S^{1} \times T^{4}
$$

- N_{1} D1 branes wrap S^{1}
- N_{5} D5 branes wrap $T^{4} \times S^{1}$
- Share common direction S^{1}

Fully backreacted solution gives the super tube - (Lunin-Mathur - '01) There is particular limit of the geometry which is

D1-D5 CFT

- Free CFT from a bound state of D1 and D5 branes wrapping a circle (called D strings) with $N=N_{1} N_{5}$

$$
\begin{aligned}
& \tau=i \frac{t}{R} \quad-\infty<\tau<\infty \\
& w=\tau+i \sigma
\end{aligned}
$$

D1-D5 CFT cont.

- Can have excitations of D-branes which correspond to open string excitations (4 bosons polarized along $T^{4}, 4$ fermions polarized along T^{4} and S^{3})

- Can have left movers and right movers

Interaction cont.

- Need to add an interaction to the theory to move closer to the supergravity description

$$
S_{0} \rightarrow S_{0}+\lambda \int d^{2} w D(w, \bar{w})
$$

- Our interaction, $D(w, \bar{w})$ contains two main ingredients

$$
D(w, \bar{w})=G \bar{G} \sigma(w, \bar{w})
$$

- no bar - left-moving, bar - right moving
- G is a supersymmetric operator in the CFT
α : boson
$G: \alpha \rightarrow d$
d :fermion
$G: d \rightarrow \alpha$
- σ is a 'twist operator' which twists or untwists effective strings, i.e.

Consider a Graviton Probe Moving in Two Charge System

- left and right moving boson acting on a CFT Ground state composed of N singly wound strands in NS sector
$\alpha_{-n}^{(1)} \bar{\alpha}_{-n}^{(1)}|0\rangle_{N S}^{(1)}|\overline{0}\rangle_{N S}^{(1)}|0\rangle_{N S}^{(2)}|\overline{0}\rangle_{N S}^{(2)}$
$A d S_{3}\left(\times S^{3} \times T^{4}\right)$

One excitation in initial state

- 1 Initial excitation and 3 final excitations
(I've suppressed polarization indices which are along T^{4})

$$
\begin{aligned}
&\left|\phi_{1}\right\rangle \sim \alpha_{-p}^{(1)} \alpha_{-q}^{(1)} \alpha_{-r}^{(1)}|0\rangle^{(1)} \bar{\alpha}_{-p}^{(1)} \bar{\alpha}_{-q}^{(1)} \bar{\alpha}_{-r}^{(1)}|\overline{0}\rangle^{(1)}|0\rangle^{(2)}|\overline{0}\rangle^{(2)} \\
& \otimes \ldots \otimes|0\rangle^{(N)}|\overline{0}\rangle^{(N)}
\end{aligned}
$$

Pick the first two strings and twist them together and untwist them

Interested in computing transition amplitude, A_{n}^{11}

$$
\begin{gathered}
\left|\psi_{1}\right\rangle \sim \alpha_{-n}^{(1)}|0\rangle^{(1)} \bar{\alpha}_{-n}^{(1)}|\overline{0}\rangle^{(1)}|0\rangle^{(2)}|\overline{0}\rangle^{(2)} \\
\otimes \ldots \otimes|0\rangle^{(N)}|\overline{0}\rangle^{(N)}
\end{gathered}
$$

$t:[0,2 \pi]$
Guo SH to appear

(1,0,n) Superstrata

- Probe moving in Superstrata - Fully backreacted, smooth, three charge solution with charges Q_{1}, Q_{5}, Q_{p}

One excitation in initial state

- 1 Initial excitation $\rightarrow 3$ Final excitations

(I've suppressed polarization indices which are along T^{4})

$$
\begin{aligned}
\left|\phi_{1}\right\rangle \sim & \left(L_{-1}-J_{-1}^{3}\right)^{n}|00\rangle_{1}^{(1)} \\
& \alpha_{-p} d_{-q}^{-} d_{-r}^{+} \bar{\alpha}_{-p} \bar{d}_{-q}^{+} \bar{d}_{-r}^{-r}|++\rangle_{1}^{(1)} \\
& \left.\otimes_{N_{00}-1} L_{-1}-J_{-1}^{3}\right)^{n}|00\rangle \\
& \otimes_{N_{++}-1}|++\rangle_{1}
\end{aligned}
$$

Again compute transition amplitude, $A_{m, n}$

$$
\begin{aligned}
\left|\psi_{1}\right\rangle \sim & \left(L_{-1}-J_{-1}^{3}\right)^{n}|00\rangle_{1} \alpha_{-m} \bar{\alpha}_{-m}|++\rangle_{1} \\
& \otimes_{N_{00}-1}\left(L_{-1}-J_{-1}^{3}\right)^{n}|00\rangle \\
& \otimes_{N_{++^{-}}-1}|++\rangle_{1}
\end{aligned}
$$

Comparing the two processes

Splitting in the vacuum

$$
A_{n}^{11 \rightarrow 11} \approx \lambda^{2} \frac{c_{1}}{n^{2}}[t]_{(0, \pi), \text { saw-like }}
$$

Splitting in presence of superstrata state

$$
-A_{m, n} \approx \frac{c_{2}}{m^{2}} \lambda^{2}\left(2 \pi^{2} t^{2}+\left[-2 \pi^{2} t^{2}+4 \pi^{3} t\right]_{(0, \pi), \text { saw-like }}\right)
$$

- cancellation of t^{2} term from $[0, \pi]$ gives a similar result as for the vacuum computation
- linear t behavior
- acts locally at first but then grows

Conclusion

- CFT dual of in-falling graviton corresponds to splitting of modes but no growth in the amplitude
- Probes moving in superstrata were shown to be tidally excited along S^{3} and y directions
- Looked at CFT dual and found a growth in the splitting amplitude to produce fermions (carry S^{3} charge)
- Suggestive of tidal excitations
- Suggests we should find similar behavior for excitations along T^{4} in gravity picture. Indeed this was found. Nejc will discuss this in his talk
- Need to compute the corresponding amplitude in the CFT
- Investigate stringy modes in more detail
- Consider long winding sector

Thank you!

