

Throwing Strings into Microstate Geometries

Nejc Čeplak

Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif sur Yvette, France

Based on [2106.03841] with S. Hampton and Y.Li Generalization of work by Martinec and Warner [2009.07847]

French kick-off meeting of the International Research Network on Quantum Fields and Strings

June 10, 2021

Contents

Introduction

2 Tidal Forces on infalling strings

Summary and Outlook

Introduction

Motivation - Black Holes

- New observational data
- Refinement of theoretical results Information Paradox [Hawking;...]
- Resolution might involve new physics [Almheiri, Marolf, Polchinski, Sully;...] such as:
 - Firewalls [Almheiri, Marolf, Polchinski, Sully;...]
 - Islands, Wormholes, ... [Penington; Almheiri, Engelhardt. Marolf, Maxfield; ...]
 - Fuzzballs [Mathur, Lunin; Bena, Warner, ...]
- Fuzzballs: Take the microstate counting seriously [Strominger, Vafa; Sen; ...] There exist $e^{S_{BH}}$ explicit microstates with structure at the would-be horizon

- A typical state might include arbitrary high-energy modes
- Arguments supported by constructions in string theory

Microstate Geometries

[Mathur, Lunin; Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner;...]

- Some microstates can be seen within (super)gravity: Microstate geometries:
 Smooth horizonless solutions within supergravity that have the same charges as the usual black hole
- Well studied example is D1-D5 system (can use AdS_3/CFT_2 duality): Microstates of the extremal D1-D5-P black hole (1,0,n) superstrata

$$J_L \; = \; J_R \; = \; \frac{R_y}{2} \, a^2 \, , \qquad Q_P \; = \; \frac{1}{2} \, n \, b^2 \, .$$

• Asymptotically $AdS_3 \times S^3 \times T^4$.

Tidal Forces on infalling strings

Previous Results

- The capped structure implies physics different from that of a classical black hole: for example gravitational echoes.
 [Bena, Heidmann, Monten, Warner]
- Capped geometries exhibit large tidal forces high up the throat.

[Tyukov, Walker, Warner; Bena, Martinec, Walker, Warner]

- If the infalling probe is a massless string then tidal forces cause string excitations → String obtains mass.
 [Martinec, Warner]
- The resulting massive string gets trapped at the cap, but can emit low energy radiation that escapes to infinity.

Stringy Probe

• We need full 10-dimensional string frame metric:

$$ds_{10}^2 \; = \; \prod \left(\widetilde{ds}_{{\rm AdS}_3}^2 \; + \; \widetilde{ds}_{S^3}^2 \; + \; ds_{T^4}^2 \right) \, .$$

• Infall of a massless string – follows a spiralling null geodesic.

• Use Penrose Limit to analyse the quadratic neighbourhood of the geodesic

$$ds_{10}^2 = 2dx^+ dx^- - A_{ij}(x^-) w^i w^j (dx^-)^2 + \delta_{ij} dw^i dw^j.$$

Tidal Forces

 $oldsymbol{\mathcal{A}_{ij}}$ appears as a mass matrix in the equations of motion of the string modes in light-cone gauge

$$\partial_{\tau}^2 w^i + k^2 \, w^i + \left(\alpha' E\right)^2 \frac{\mathcal{A}_{ij}(\tau)}{\mathcal{A}_{ij}(\tau)} \, w^j + i k \, \alpha' E \, B_{ij}(\tau) \, w^j = 0 \, . \label{eq:delta_ij}$$

- Oscillatory behaviour of all A_{ii} .
- Along y direction only compression.
- Along the S^3 and the T^4 both stretching and compression.
- Amplitude of A_{ii} scales with length of throat.

Summary and Outlook

Summary and Outlook

Summary

- Tidal forces along T^4 : full 10D important.
- String alternately experiences stretching and compressing.
- Supports CFT intuition.

Outlook

- What is the exact fate of the string?
 - B-field contributions?
 - Resonances?
- Subleading effects in Penrose limit: Effects coming from the different sizes of S^3 and T^4 .
- What is the precise dual of this result in the CFT? [see Shaun's talk]