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In a nutshell

Usual framework: local, UV complete QFTs

UV CFT

+ relevant
deformation

Examples of non-local, UV complete QFTs ?

no UV CFT/ fixed point

(no cutoff)

+irrelevant
deformation

IR CFT



Why interesting?

Examples of non-local, UV complete QFTs ?

no UV CFT /fixed point

(no cutoff)

+irrelevant
deformation

IR CFT

* novel UV behaviourin (integrable) QFT

Holography

decoupling limit

* non-AdS holography?

T non-normalizable

\

if single-trace



Smirnov-Zamolodchikov deformations

« irrelevant deformations of 2d QFTs - bilinears of two (higher spin) conserved currents J4, J?

= define Ojays li_r>n eaﬁJ&A(QZ)JﬁB(y) = (O ;a8 + | derivative terms Zamolodchikov ‘04
Y—T
R SZ'16
nice factorization properties
: 0S
= deformation: % = /dzx O jays (i)

= examples: ( TT - J&“:Ta"‘, JéB:T/gB (x€an)

universal

1 JT: Jt=17,, Jg:ng Lorentz

= highly tractable : exact finite -size spectrum, S-matrix, preserves integrability H

- deformed theory non-local ( scale ##) but argued UV complete QFT



Sample results in TT

. . 05 2 2 E4
= universal deformation of 2d QFTs o d“z (T.. T3z — T23),
- ~ 2

= in compact space ( ) — energy levels continuously deformed /

= deformed energies E,(R) determined solely by initial spectrum via Burger's egn

R 4/,LEO 4M2P2

u >0 : ground state energy Ey = —% becomes complex for R < R,in = #+/iC

»
»

p

e.g.seed CFT

- Hagedorn behaviour S « E at high energy Ty =R}

min

n <0 : all states with E, > B acquire imaginary energies — no sense in compact space

4] pu)

. . o B
= S-matrix: S, =¢e" 2,5 €aBPiP; So Dubovsky et al.

Cooper, Dubovsky, Moshen



Sample results in TT

= connection to the worldsheet theory of the bosonic string

( N N
n TT - deformed free bosons Nambu-Goto action for a stringin n + 2 target space

. /

dimensions in static gauge
o %

" TT deformation = change of gauge in the NG action ( conformal — static)

1 deformed and undef. theories related by a field-dependent coordinate transformation

= non-perturbative definition of the TT deformation in terms of coupling to topological (JT) gravity

= status of off-shell observables unclear

~

minimum length — theory of 2d quantum gravity ? Dubovsky et al.

1 Flow equation for correlation functions » =~ non-local QFT Cardy



Sample results in JT - deformed CFTs

= universal deformation of 2d QFTs/CFTs witha U(1) current

8SJT

a)\ = /dQZ (Jzng — Jgng))\'\ [A] - length

chTn <17 2) JT/

A, x Oz
= breaks Lorentz invariance T,; # T5,(=0)

= preserves SL(2,R);, x U(1)r « simplerthan TT
N J %‘/—/

local & conformal non-local!

1
Bun = 5B+ P)

4

A2k

~

* finite-size spectrum FEr =

(R — AQo + \/(R — AQo)? — )\2kRE](§)) Q) = Qo+ 5 Er

= off-shell observables: correlation functions of operators in mixed basis O(z,p) CFT1 correlators w/

non-local QFT k k. _
h(A) =h+Agp+ - A2 p? 4(A) =g+ 5 AP MG'19

— spectral flow with momentum-dependent parameter



Holographic interpretation

= in AdS/CFT parlance, the Smirnov-Zamolodchikov deformations are double-trace

A. of the SZ deformations themselves

B. of asingle-trace analogue of the SZ deformations



Double-trace deformations in AdS/CFT

= mixed boundary conditions for dual bulk fields

= e.g. scalar Q= o) 2R 4+ b(n) 2B 4.
« undeformed CFT: source J (fixed)  vev (O) (Fluctuates)

" IM:ICFT+ILL/O2
only uses large N field theory

X

1. variational principle (equivalent to Hubbard-Stratonovich at large N)

58, = 6Scpr — 6 /02 /05j M/502 /05j 240)

newvev @ newsource J
2. interpret result in terms of bulk field data

j = ¢(0) — 2/L¢(A) = Ffixed (mixed bC) <@> - ¢(A)



Holographic dictionary for TT - deformed CFTs

= variational principle (incrementally in #) = relation between new and old sources and vevs

- - * bothsi f
Yos (1) = Vap(0) — pTap(0) + T T5(0) ornsigns of A
= other (matter) vevs can be on
Tos (1) = Tup(0) — p T T, 5(0) = only uses large N field theory
x
Tag — ’)/agT

= holographicinterpretation (large N, large gap) — Fefferman Graham expansion for AdS3 metric

27,2 (0)
Cdp”  (9as @) o, B ©) ) )
— v + r + Gop - | dz®dz Jop < Yap(0) . gap ¢ 8TGLT,5(0)

/

ds?

~

universal non-univ

= 723(1t) fixed & mixed non-linear boundary conditions for the AdS3 metric

2
o) K (2 M (2)9(0)759%)

Yop (1) = Gop g dos T (87TG£)2g‘” = only depend on asymptotics

o (Tap(p)) depends non-linearlyon ¢'%, g®



Comments

= the above holographic dictionary can be used to compute the deformed energy spectrum -
— perfect match to Field-theory formula (both signs of &, matter field vevs on — universal!)

= precision holography, despite the deformation being irrelevant

Pure gravity

_ Cdp® 9} +pgl) + 0?9y

4p? p

(2)
8 da®daP

the FG expansion terminates  ds?

— : : , B
Yas (1) coincides with the induced metric at (pc = Izl M< 0

= (T,p(p)) coincides with the Brown-York stress tensorat pc

= in agreemement with observation that TT — deformed energies

E(p) = ——

= energy of ""black hole in a box" 2 12
R (1_\/1+4MM 427 >



Asymptotic symmetries

= large diffeomorphisms that preserve the mixed bnd. conditions < symmetries of dual Field theory

= expect: TT deformation breaks conformal symmetriesto U(1)r, x U(1)g and makes theory non-local

= asymptotic symmetry group: LVirasoro(u) x Virasoro(v) with same casin CFT

/

u,v — field-dependent coordinates

= similar results for JT : dual to AdS3 with mixed bnd. conditions between metric and U(1) CS gauge field

J non-local
= asymptotic symmetry group " rg N

SL(2,R), x U(1), x U(1)g L
e ot AT
L Virasoro - Kac-Moody X Virasorog ; flx™ — A/J)

= suggests TT, JT - deformed CFTs correspond to non-local generalizations of 2d CFTs

= note that different bnd conditons on AdS3 = radical modifications of the dual theory, as compared to
naive ASG suaaestion



Partial conclusions

= holographic duals of the TT, JT deformations of holographic CFTs are highly tractable (at sugra level)

— precision holography

= however — boring, because dual spacetime is always asymptotically locally AdS

= will now discuss holography for the single-trace analogues of the SZ deformations



The NS5 - F1 system

N5 NS5 and N; F1 strings in the NS5 decoupling limit
asympt. flat+ linear dilaton

gs — 0, o Fixed

UV: Little String Theory

non-gravitational, non-local theory with Hagedorn growth

IR: AdSs dualto (Men, )V /Sy, symmetric orbifold CFT

- can be obtained via TsT of near norizon AdS
= worldsheet o - model : exactly marginal deformation of the SL(2,R) x SU(2) x U(1)* WZW model

that describes the near-horizon AdS; by J~J—

= expand infinitesimally around IR AdS; — source for (2,2) single-trace operator ZTJ}-

2



Proposed holographic duality

e

Zstm‘ng [NS5‘ Fl] =27 [(TT — def. CFT6N5)N1/SN1] 1 Giveon, Itzhaki, Kutasov

o /
7N 7N . .
= = RHSis well-defined at finite deformation | == | = uses free product structure in an essential way
N N
= spectrum of string excitations exactly - not clear how to deform away From this
matches spectrum
TT (singular) point in moduli space

» black hole entropy (Hagedorn) B
= naively different behaviour from T'T correlator

= correlation functions (O(p)O(—p)) using more checks?
worldsheet '

= similar story holds For JT : pure NS-NS string background obtained from AdSs; x S x T* + TsT

on one AdS and one angular direction — warped AdSs

g

= universal near-horizon geometry of extremal black holes, with Virasoro x Virasoro ASG



To sum up...

= TT, JT deformations are highly tractable : spectrum, S-matrix, ~ correlators

= their holographic duals are also highly tractable, though slightly boring

* single-trace analogues of TT, JT are conjecturally dual to non- asymptotically AdS spacetimes
— possibly tractable instances of non-AdS holography
— directly relevant for understanding the near-horizon dynamics of (extremal) black holes

= in both single/double-trace case, the ASG analyses indicate existence of Virasoro x Virasoro symmetry

Q: can we use the high degree of (concrete) solvability of the TT, JT deformations to learn more about

the field-dependent symmetries that appeared in the ASG analyses?



Field - dependent symmetries of TT, JT

what are they ?

how do they act?

do they survive quantization ?

how do they constrain observables?



Field-dependent symmetries

= consider a 2d classical field theory with null coordinates U,V =0+t

= consider the coordinate shifts: U — U + € f(u) V=V —cf(v) where  w(U, V), v(U,V)

are some possibly field-dependent coordinates
= the variation of the actionis 075 = — /dUdV€ f'(w) (Tyydvu + Tyydyu)
" ina2dCFT Tyy =0 off-shell » for w=U, §;5=0 Vf(u) — infinite conformal symmetries
= inTT, JT—deformed CFTs, still only two independent components of the stress tensor off-shell
- choose w(U,V) 3 Typoyvu+Tyydpu=0 = infinite field-dependent symmetries
= special structure of TT,JT - universal form for w(U, V), v(U,V)

= coordinates in terms of which the deformed dynamics trivializes to that of the original CFT
— field-dependent symmetries = original CFT symmetries (o) seen through the prism of these coord.



Example: classical JT - deformed CFTs

work in Hamiltonian formalism O\H = €*?J*T gy J : U(1) shift current for ¢
deformed Hamiltonian density Y+ P
| | Hir=
- N 2
2
HR - 5 11— )\j_|_ — \/(1 — )\j_|_)2 - )\27‘[%)) T+ (b/
A2 J+ =
N X J 2
undeformed

can show that for such JT - deformed CFTs, | w=U (due to SL(2,R)), [v =V =X ]

conserved charges

Q= [dos O Q= [ dof)

charge algebra  {Qy,Q4} = Qsy'— /g {Q7,Qs} =Qfy_7q {Qs,Q7} =0

— two commuting copies of the functional (‘= 0,) Witt algebra

— similar results for TT and JTa



JT - charge algebra in compact space

= compact space - use Fourier basis of functions fn(U) =™/ % | f.(v) =e ™/ Q.. Qn
R, =R—Aw isthe field-dependent radius of v w = Jy — Jy = winding of ¢

= in term of these Fourier modes, the charge algebra is

{Qma Qn} = —1 (m; n) Qm—l—n {Qma Qn} = —1 (mfi_ n) C?m—l—n

not the usual Witt algebra!
Two problems with quantization

— acting with the corresp. quantum generator L_,,

will not respect charge/momentum quantization

2. expected Virasoro symmetry is in tension with the JT - deformed finite size spectrum

A
Er = 157 (R — Qo + \/(R —A\Qo)? — A%RE}?)



Resolution

1. Solution for v determined up to a constant — Ffix such that charge quantization is respected

AR, ~ ~ A - A
Unew = 0 — AQ + m% o = ¢o — R_v /d0¢(j— + §HR)

generator of spectral flow in JT

modified charges Q,, = /dae—mvmw/RvHR are conserved and have Poisson brackets that are

consistent with semiclassical quantization

new charge algebra has quadratic terms on the RHS

~ 2 12

Qn = RQn - )\ERKn + A ER 5n,0 > K, — )\%57’%0

the combinations do satisfy Witt—Kac—Moody2
~ B B 2E2
5, = RyQy — AElC, + ~ R

5n,0 ’ Ian - T(Sn,O

2. Qo, éo coincide with the undeformed CFT energies Eé% « integer-spaced spectrum

— not the left/right energies in the JT — deformed CFT!



Partial summary

= there exists an infinite set of classical conserved charges in JT — deformed CFTs (compact or not)
= these charges are consistent with semiclassical quantization in compact space
= there exists a non-linear combination of these charges whose Poisson bracket algebra is two copies

of Witt- Kac-Moody at classical full non-linear level

= tension with the JT - deformed spectrum is resolved because the zero mode of the Witt algebra does

not coincide with the energy

= quantization - resolve normal ordering issues (e.g. order by orderin A) — no problem of principle



Conclusions

= TT, JT are a set of well-defined and highly tractable irrelevant deformations of 2d QFTs
— deformed spectrum, S-matrix, ~ correlators, precise holographic dictionary

— UV complete non-local QFTs

= there exist closely related single-trace analogues of TT, JT
— relevant for non-AdS holography (near-horizon dynamics of general back holes)

— suggest larger set of theories similarto TT, JT - UV completeness, symmetries?

but more general ? - speekrum

= doTT, JT - deformed CFTs correspond to non-local 2d CFTs - field-dependent Virasoro symmetries?
— classically: yesin non-compact space, also in compact space for JT

— JT: obstacle to quantization removed - quantum algebra? central extension?



Thank you'!
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