

European Science Cluster of Astronomy & Particle physics ESFRI research Infrastructures

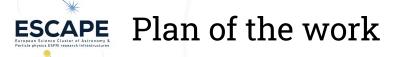
EOSC-Future Test Science Project : Extreme Universe

Elena Cuoco, European Gravitational Observatory (EGO) and Scuola Normale Superiore (SNS), Pisa

Elena Cuoco

ESCAPE Goals of the Extreme universe Test science project

- → Exploit Astrophysical extreme phenomena through the gravitational waves, GRB, FRB, neutrino messengers.
- → Understand extreme matter and particle processes in strongly curved space-time and compact objects
- → Building convincing science cases proto-EOSC for MMA and Extreme Universe studies



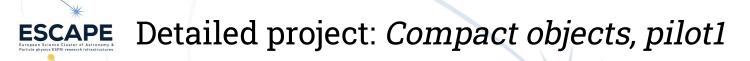
ESCAPE Pilot projects

Main Research Area	Objects/source s	Messengers	ESF/RI involved	ESCAPE services EOSC-Future integrations	Data Analysis tools (AI,ML)	Pilot project(s)	Computing resources required	Partner PM involved
Compact objects	Pulsars,	radio, GW,	LOFAR	<i>Multimessenge r platform/Softw are catalogue,</i>	Machine Learning	1) Radio astronomy: FRB		42 PM Astron,
High energy Astrophysics	GRBs, jets, AGN, BNS, CCSN	neutrinos, gamma-ray, radio,X-ray, GW,	CTA, Virgo, KM3NET, SKA,LSST	<i>Multimessenge r platform/Softw are catalogue,</i>	Model compariso n, Machine Learning	1)GRB/neutri no/GW analysis, 2) Blazar MWL/neutrin 0	GPU cluster Jupyter hub	12 PM UVa, 6 PM FAU. CNRS, 12 PM SNS
Fundamental physics	Dark matter, GR, Primordial Universe	GW,	Virgo, Einstein Telescope	Template banks, generation software,	Machine learning approach	1) DM template bank and ML analysis pipeline 2) GW Stochastic background	GPU cluster Jupyter hub	10 PM INFN,12 PM UvA, 12 PM SNS, 2 PM FAU

We will continue with the project already started in ESCAPE, focusing on the realizations of **End to End workflow**

- 1. Select the scientific goal: (<6 months)
 - a. See table
- 2. Evaluation of database, data, census of software already in place in the different participating ESFRI and assessment of interoperability (< 6months),
- 3. Organization of datasets for the Data analysis experiment (< 6months)
- 4. Development, implementation (18 months)
- 5. Publication, prototype release on EOSC portal (30 months)

04-05/ 21	06-10/ 21	10/21- 4/22	04-22	06/22	10/22
W1 W2 W3 W4	W1 W2 W3 W4	W1 W2 W3 W4	W1 W2 W3 W4	W1 W2 W3 W4	W1 W2 W3 W4
Start of the project Post d					
Post doc hi	iring				
		Development of projects			
		In contion in			
			the EOSC portal/ ESAP		
			Repo	rt/paper publications-Produ	uct releases



Which kind of ESCAPE service are we going to use?

- AAI authentication service
- Data lake
- Data analysis platform (ESAP)
- Software catalogue
- Virtual Observatory
- Citizen science links

) .

Team/Lab/ESFRI involved: Vedantham, Hessels, Swinbank, van Haarlem, Meyer / ASTRON / LOFAR (42 PM)

- Classify sources in LoTSS.
- Radio as probe of particle acceleration.

Team/Lab/ESFRI involved: INFN 10 PM, SNS 12 PM, FAU 6PM, LAPP 6PM

- GW, Neutrino, GRB multimessenger analysis
- Real time ML platform

Team/Lab/ESFRI involved: UVA 12PM, FAU 6PM, LAPP 6PM?

 Developing capabilities for joint modeling of MWL observations from radio though X-rays with very-high-energy (VHE) gamma-rays from CTA and VHE neutrinos from KM3NET.

Team/Lab/ESFRI involved: UVA 12PM, SNS 12PM,...

- Exotic GW waveform template and ML application
 - Waveform template generation and database inclusion
 - ML application for the detection

Funded by the European Union's Horizon 2020 - Grant N° 824064

Team/Lab/ESFRI involved: 10 PM INFN, SNS ...

Modeling, detection and parameter estimation for non-Gaussian stochastic backgrounds of gravitational waves.

The two key ingredients are:

- A Markov chain Monte Carlo procedure which generate segments of data for a network of detectors with the correct statistics,
- A fast superposed waveform generator, which will be optimized by using machine learning techniques.

Additional requests

- MoU for data sharing. Easy access and templates for the teams
- Policy for publications?
- In kind/ external participation. Do we need to formalize?

- Some partners are ready to launch the call
- Need to have the GA in place at least
- Ian already prepare the general header, we need only to specify the call for the single project/lab

