
The ESCAPE Data Lake: The machinery behind testing,
monitoring and supporting a unified federated storage in-
frastructure of the exabyte-scale

Rizart Dona 1,∗ and Riccardo Di Maria 1,∗∗ on behalf of the ESCAPE project
1European Organization for Nuclear Research (CERN), Geneva, Switzerland

Abstract. The EU-funded ESCAPE project aims at enabling a prototype fed-
erated storage infrastructure, a Data Lake, that would handle data on the
exabyte-scale, address the FAIR data management principles and provide sci-
ence projects a unified scalable data management solution for accessing and
analyzing large volumes of scientific data. In this respect, data transfer and
management technologies such as Rucio, FTS and GFAL are employed along
with monitoring enabling solutions such as Grafana, Elasticsearch and perf-
SONAR. This paper presents and describes the technical details behind the ma-
chinery of testing and monitoring of the Data Lake – this includes continuous
automated functional testing, network monitoring and development of insight-
ful visualizations that reflect the current state of the system. Topics that are also
addressed include the integration with the CRIC information system as well
as the initial support for token based authentication / authorization by using
OpenID Connect. The current architecture of these components is provided and
future enhancements are discussed.

1 Introduction

The European Union funded ESCAPE project (European Science Cluster of Astronomy &
Particle physics ESFRI research infrastructures) [1] [2] consists of a synergy between ESFRI
projects and science organizations [3] which aims at establishing a single collaborative cluster
of next generation facilities in the area of astronomy and accelerator-based particle physics
in order to implement a functional link between those and EOSC [4]. The project spans over
six work packages which reflect the goals of it. On the technical level these concern the
implementation and deployment of a data infrastructure for open science [5] and the creation
of a a flexible science platform (ESAP) [6] for the analysis of open access data available
through the EOSC environment.

One of the main objectives of the Data Infrastructure for Open Science work package
(DIOS) is building a prototype scalable federated data infrastructure, a Data Lake, that would
be able to handle data on the exabyte-scale and address the FAIR [7] data management prin-
ciples, that is, the data would need to be Findable, Accessible, Interoperable and Reusable.
Furthermore, this infrastructure would facilitate the access to the scientific data via the ESAP

∗e-mail: rizart.dona@cern.ch
∗∗e-mail: riccardo.di.maria@cern.ch

https://orcid.org/0000-0001-6219-9578
https://orcid.org/0000-0002-0186-3639


science platform and provide the tools and documentation for such platforms to seamlessly
integrate with it.

The ESCAPE project has been active since February 2019 and it has successfully deliv-
ered a pilot version of the Data Lake which serves the needs and use cases of the participant
science organizations and partners. This paper presents an overview of the architecture of this
system and focuses on the methodology and technologies that are used in order to test and
monitor the data management capabilities of it. More specifically, these topics are covered in
the next sections as follows: in section 2 the Data Lake architecture is provided along with
the software stack that is used in order to deploy it, in section 3 the testing infrastructure is
presented and in section 4 the monitoring capabilities are detailed. Finally, in section 5 some
conclusions are drawn and future plans are discussed.

2 Data Lake Architecture

The Data Lake consists of several components that work with each other in order to provide a
unified namespace to users that wish to upload, download or access data. On the lowest level
one can find the various storage technologies that are deployed and integrated into it, these
include storages such as EOS [8] [9], DPM [10], dCache [11], StoRM [12] and XRootD [13].
Currently more than ten deployments are present in different locations and institutes [14].

The data transfer technology stack can be attributed to three software solutions, GFAL,
FTS and Rucio. GFAL (Grid File Access Library) [15] acts as a a multi-protocol data man-
agement library providing an abstraction layer of the grid storage system complexity. It sup-
ports protocols like GridFTP [16], HTTP [17] and Root [13], all three protocols are currently
supported in the Data Lake as well through several storages [14]. The FTS (File Transfer
Service) [18] [19] acts as the middleware and provides reliable data transfer at a large scale
between the storage systems, it enables TPC (Third Party Copy) to transfer data between
two storages that support the same protocol by using a direct link between the two. Parallel
transfers optimization can also be achieved through heuristics that gather metrics from the
network state at the time of the transfers. Rucio [20] [21] acts as the data orchestrator, it is
the enabling technology that implements many of the concepts of the Data Lake such as QoS
(Quality of Service) [22] [23] and file transitions, distributed redundancy and data policies.
It is also the technology that provides a proto-common namespace for the users to interact
with the data. One can see the interaction of those three components in Figure 1. Rucio
uses GFAL for upload/download operations and FTS in order to perform TPC transfers. FTS
employs GFAL in order to perform the actual transfer during a TPC. GFAL finally works on
the storage file system level with the supported protocols.

Figure 1: The Data Lake transfer stack



The current deployment of Rucio is based on a Kubernetes [24] cluster that runs on top
of Openstack [25], both of those services are provided by the CERN IT Cloud Services [26].
In particular, components of Rucio that run there include the server, the authentication server,
the WebUI portal and the various daemons that are responsible for most of the data manage-
ment logic. Rucio also keeps state in a database which in this case consists of an OracleDB
[27] instance provided by the CERN IT DB on Demand service [28]. The same cluster also
hosts all the transfer and access testing code as well as synchronization scripts that integrate
different subsystems inside the Data Lake. CRIC (Computing Resource Information Cata-
logue) [29] serves as the information catalogue and it’s where the configuration of the Rucio
Storage Elements (RSE) happens, this configuration is also accessible via REST API as a
JSON response. The instance is provided and maintained by the CRIC team at CERN, the
current deployment includes the core functionality with the extension of the DOMA plugin.
The FTS instance that is used in the Data Lake is provided by the CERN IT FTS Service [30].

The authentication and authorization schema that allows users to to interact with the Data
Lake ecosystem currently relies on the use of X.509 certificates [31]. Following the example
of WLCG [32], the VOMS [33] stack is used in order to grant access control in distributed
services and storages. These capabilities are implemented through the INDIGO IAM (Iden-
tity and Access Management) [34] service which is hosted at INFN-CNAF [35]. Neverthe-
less, the goal is to move towards token-based authorization by extending the work done in the
context of the WLCG Authorization Working group [36] and more specifically on the WLCG
JWT profile [37]. This transition will be achieved by using the OpenID Connect (OIDC) [38]
identity layer on top of the OAuth2 protocol [39]. Rucio supports OIDC authentication [40]
and this is already being tested in the DOMA Rucio instance [41]. In the context of ESCAPE
an initial testing phase is also ongoing where those functionalities are examined with the aim
of demonstrating completely X.509 free access to the resources.

3 Testing Infrastructure

The ESCAPE Data Lake testing infrastructure consists of all the tools and technologies that
are deployed in order to ensure that the transfer stack functions seamlessly. In this context,
each level of the stack is put into the test with various functional and stress testing scenar-
ios. Additionally, the network performance is measured with well established tools that are
specifically targeted at federated systems that have the characteristics of the Data Lake.

3.1 Transfer Capabilities

The Data Lake transfer capabilities are essentially derived from the functionality of the trans-
fer stack that was described in section 2, that is GFAL, FTS and Rucio. A set of tools and
scripts is built around these technologies.

Gfal Functional Testing

For the functional testing that concerns GFAL, a Python based script is used [42]. All RSEs
in Rucio consist of one or more endpoints that are associated with a supported protocol, this
testing flow examines the basic data operations one can perform on the storage level and
provides results per RSE per endpoint. There are three types of operations that are being
tested:

• Upload of a file that is a few bytes long to all the endpoints of all RSEs

• Download of the file that was uploaded in the previous step



• Deletion of the file that was uploaded in the first step

The results are pushed into an Elasticsearch [43] datasource that is provided by the CERN
IT Monitoring Service (MONIT) [44]. This script is also integrated with CRIC, it fetches the
RSEs configuration before each run from the JSON endpoint ensuring that once something is
configured centrally it will also be reflected on the testing scenario. The frequency that this
procedure runs is every minute providing this way real time results.

FTS TPC Testing

In order to test FTS TPC transfers, a Python based toolkit is used [45]. In this case, the same
endpoints as in the GFAL tests are examined and the goal is to trigger TPC transfers between
all possible endpoint pairs that participate in the Data Lake. The toolkit reads from a config-
uration file all endpoint pairs that are to be tested as well as other parameters like number of
jobs that are to be triggered, file sizes to be used, number of files per job and whether or not
to enable checksum verification. Custom metadata attributes that can be attached to FTS jobs
or to the files that participate in these jobs are also supported.

Before each mock transfer the endpoints that serve as the source in the copy are populated
with the relevant testing files, a mechanism is in place to label an endpoint problematic if this
attempt is not successful. In that case that endpoint will not participate in the transfers. The
nature of this testing is asynchronous, the toolkit will trigger the required FTS jobs and then
will start polling the server in order to get the job states, as soon as a job finishes it will record
the final job state on the output and remove the transferred files from the destination endpoint.
The data is not pilling up on the destination endpoints and thus no quota is exceeded. Exten-
sive error handling is performed all throughout the code making sure that the testing flow will
continue even if endpoints fail to respond mid-test, this concerns mainly GFAL operations
that are used to prepare the endpoints for the transfers.

The current deployed configuration performs two sets of tests. The first one transfers
1MB files with 4 files per job and all Data Lake endpoints participate making it a N:N transfer
mesh (an FTS job is initiated for every endpoint pair). The second one transfers 1GB files
with 4 files per job and all Data Lake endpoints participate except for some testing ones with
low quota. Testing results are automatically pushed from the FTS server to an Elasticsearch
datasource provided by MONIT. The frequency that this procedure runs is every 30 minutes.

Rucio Testing

The testing of the Rucio data orchestrator can be broken down to a few functionalities. The
main goal is to perform uploads of files by using the Rucio client and then assigning what
in Rucio are called rules in order to trigger data movement across RSEs (Rucio replication
mechanism). A bash script is being deployed that serves this purpose [46], it uploads files to
all RSEs and then it assigns rules that trigger the movement of those files to all other RSEs
making this also a N:N transfer mesh like in the FTS case. Along the strategy in the GFAL
tests, this script is also integrated with CRIC and it fetches the RSEs configuration before
each run.

The current deployed configuration concerns of file sizes of 1MB, 10MB, 100MB, 1GB
and 5GB with running frequencies of 15, 30, 60, 240 and 480 minutes respectively. A second
toolkit is also used [47] in order to perform the same type of tests. This is developed and
deployed by the SKAO [48] team that works for ESCAPE and runs hourly tests for uploads
and replication across all RSEs with 100KB files. Testing results are handled by Rucio built-
in machinery and other messaging systems that are explained in detail in section 4.1.



3.2 Network Capabilities

In order to measure network performance in the Data Lake and establish end-to-end usage
expectations among the RSEs the perfSONAR [49] toolkit is employed. perfSONAR is a
network measurement toolkit designed to provide federated coverage of paths and end-to-end
network measurements. It consists of multiple network tools brought together (e.g. iperf3,
ping, traceroute) [50] in order to provide a framework which can be used to collect and
analyze network metrics.

WLCG [32] and OSG [51] jointly operate a network of perfSONAR agents deployed
worldwide, ESCAPE participates in this network through hosts [14] that represent the RSEs
of the Data Lake. It is required that each RSE has two hosts associated with it in the system,
one dedicated for bandwidth tests and one for latency. These hosts form the ESCAPE network
mesh and network tests are being ran among all possible pairs that participate in it. The test
specifications are the following:

• Latency tests that use the owping tool in order to perform the one-way delay test between
the hosts. These tests run continuously in the background and only IPv4 is tried

• Traceroute tests that use the traceroute tool in order to measure the number of hops that
are required for hosts to reach each other. These tests run every 10 minutes and no IP
version is forced (both IPv4 and IPv6 are tried as supported)

• Throughput tests that use the iperf3 tool in order to perform the throughput test between
the hosts. These tests run every 23 hours, each test has a duration of 25 seconds and the
TCP protocol is used. Both IPv4 and IPv6 are tried given that they are supported by the
hosts

The results of these tests become available via MaDDash [52] which is monitoring soft-
ware that presents two-dimensional data as a set of grids. They are also pushed to an Elastic-
search datasource, more details are given in section 4.1.

4 Monitoring Infrastructure

The ESCAPE monitoring infrastructure consists of all the tools and technologies that are
deployed in order to monitor the Data Lake along with the services that support it. It includes
insightful visualizations derived from the produced data traffic of the testing activities that
were described in section 3.

4.1 Architecture

The monitoring infrastructure can be divided into several technologies. The visualization
platform that is used is Grafana [53], a multi-platform open source analytics and interac-
tive visualization web application. It supports multiple storage backends (Elasticsearch, In-
fluxDB, MySQL, etc.) as data sources which one can query in order to fetch data and create a
panel, the basic visualization building block. Multiple panels is what constitute a dashboard
which serves as the main unit of organizing different topics in the ESCAPE case. Moreover,
the only employed data source is Elasticsearch (ES) while the messaging technology that is
used is ActiveMQ [54].

A diagram of the architecture can be seen in Figure 2. Most services are provided by the
MONIT service and the CERN IT Messaging Service [55]. Two external Elasticsearch data
sources are ported into Grafana, one based in STFC Cloud [56] that is operated by SKAO
and one based in the University of Chicago [57] which is part of the WLCG/OSG network of
perfSONAR boxes.



Figure 2: The Data Lake monitoring architecture

As can be seen in the diagram, the GFAL testing results get pushed directly to an ES data
source while the FTS TPC testing results pass through the FTS server first before ending up
to ES. Rucio testing data follows a different path, once the Rucio server becomes aware of
the traffic it stores various useful information in the backend database in the form of data
points (Rucio events), those are then fetched by a messaging daemon and are pushed to an
ActiveMQ broker before ending up in ES. The ActiveMQ broker provides access for the
same events to external consumers from the experiments that want to build tools that use
them. Furthermore, since Rucio makes use of FTS, part of the TPC data comes from the
transfer daemons.

The SKAO Rucio testing activity reflects on the monitoring in two different ways. The
first one is done via the Rucio Events mechanism since this captures all traffic no matter where
it comes from. The second concerns the STFC Cloud ES data source which is accessible
through Grafana. This data source holds custom data that is manually pushed and is not in
the chain of the standard Rucio messaging workflow.

4.2 Dashboards

Dashboards are eventually where users, experiment data managers and storage infrastructure
providers go to in order to analyse and visualize data. It’s where the integrity of data storage,
distribution and processing can be verified. They provide a general view of the Data Lake
status but they also support refined views that enable users to identify issues and debug RSEs.
The main dashboards follow.

GFAL Dashboard

This dashboard presents the results of the GFAL operations as they were described in section
3.1. Metrics that are plotted include number of successful/failed operations per RSE while
filtering capabilities exist for protocols. The user is able to identify potential issues at the
storage level and observe the historical resiliency of particular RSEs over time.



FTS Dashboard

This dashboard presents the results of the FTS TPC transfers as they were described in section
3.1. The main highlights for a user would be the several aggregated statistics that are available
(total data transferred, mean throughput, successful transfers, etc.) as well as an efficiency
matrix where one can see the percentage of successful transfers from one RSE to another.
This dashboard also presents debugging views of error codes and links for the logfiles of
the failed transfers. The general stats view can be seen in in Figure 3, the data volume and
metrics presented in this view are only indicative of the functionality of the dashboard and
cover a 1 month period.

Figure 3: FTS transfers dashboard (general stats view - 1 month)

Rucio Events Dashboard

This dashboard presents the results of the Rucio (testing) traffic as it was described in section
3.1. It monitors the creation of replicas as well as the deletion of those. The user is able
to navigate through metrics such as the total throughput from RSE to RSE, the total volume
transferred and the failed or successful deletions over time. Support also exists for a refined
search of specific files that participated in the replica creation process in order to pinpoint the
viewing to specific cases. A part of this dashboard is displayed in Figure 4.

Figure 4: Rucio events dashboard (FDR day)

Rucio Stats Dashboard

This dashboard consists of data that is fetched from the Rucio Stats Probe which is displayed
in the architecture diagram as seen in Figure 2. The Rucio Stats Probe is a Python based script
which communicates with the Rucio server through a client and queries for information like
the total amount of storage used per RSE and the number of files that exist in each RSE. These



metrics are also aggregated per experiment. The visualizations of this dashboard allows a user
to have a general view of the Data Lake and observe the usage patterns over time across RSEs
and experiments. Examples can be seen in Figures 5 and 6.

Figure 5: Used storage over time for experiments (FDR day)

(a) Used storage per experiment (b) Files per experiment

Figure 6: Rucio stats dashboard

The Full Dress Rehearsal Experience

The Full Dress Rehearsal (FDR) was a full scale exercise when the experiments made ex-
tensive usage of the Data Lake capabilities by injecting data and replicating it according to
their scientific workflow scenarios. This exercise lasted for 24 hours. During this period
the monitoring infrastructure proved to be well prepared and essential in order to track (and
improve by debugging) the performance/status of the RSEs and validate that the workflows
were actually successful. Views that concern the FDR can be found in Figures 4 and 5.

5 Conclusions

The ESCAPE Data Lake has successfully reached it’s pilot phase and it has demonstrated
a robust architecture that serves the needs and use cases of the participant experiments and
science facilities. The testing infrastructure along with the monitoring capabilities allow
users to validate the system status and efficiently track their activities through the functional
elements that bring together the data management ecosystem.

The next steps involve work towards the Data Lake prototype. Consolidation of topics like
token based authentication, quality of service mechanisms and network optimized transfers
are some of the features that are to be implemented. In this aspect, ESCAPE is closely related
to the WLCG activities and shares many of the data challenges that the DOMA project deals
with. Synergies between the two can be very beneficial for the community in general.

Acknowledgements

Authors acknowledge support from the ESCAPE project. This project has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 824064 (ESCAPE, the European Science Cluster of Astronomy & Particle
Physics ESFRI Research Infrastructures).



References

[1] Bolton, Rosie, Campana, Simone, Ceccanti, Andrea, Espinal, Xavier, Fkiaras, Aristei-
dis, Fuhrmann, Patrick, Grange, Yan, EPJ Web Conf. 245, 04019 (2020)

[2] ESCAPE Website, https://projectescape.eu (2021), accessed: 2021-02-20
[3] ESCAPE Experiments & Partners, https://wiki.escape2020.de/index.php/Experiment_

and_partners (2021), accessed: 2021-02-20
[4] EOSC Portal, https://eosc-portal.eu (2021), accessed: 2021-02-20
[5] Data Infrastructure for Open Science, https://projectescape.eu/services/

data-infrastructure-open-science (2021), accessed: 2021-02-20
[6] ESFRI Science Analysis Platform, https://projectescape.eu/services/

esfri-science-analysis-platform (2021), accessed: 2021-02-20
[7] FAIR Principles, https://www.go-fair.org/fair-principles (2021), accessed: 2021-02-20
[8] A.J. Peters, L. Janyst, Journal of Physics: Conference Series 331, 052015 (2011)
[9] EOS Website, http://eos.web.cern.ch (2021), accessed: 2021-02-20

[10] A. Alvarez, A. Beche, F. Furano, M. Hellmich, O. Keeble, R. Rocha, Journal of Physics:
Conference Series 396, 032015 (2012)

[11] P. Fuhrmann, V. Gülzow, dCache, Storage System for the Future, in Euro-Par 2006
Parallel Processing, edited by W.E. Nagel, W.V. Walter, W. Lehner (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006), pp. 1106–1113

[12] A. Carbone, L. dell’Agnello, A. Forti, A. Ghiselli, E. Lanciotti, L. Magnoni, M. Mazzu-
cato, R. Santinelli, V. Sapunenko, V. Vagnoni et al., Performance studies of the StoRM
Storage Resource Manager, in Third International Conference on e-Science and Grid
Computing, e-Science 2007, 10-13 December 2007, Bangalore, India (IEEE Computer
Society, 2007), pp. 423–430

[13] XRootD Website, https://xrootd.slac.stanford.edu (2021), accessed: 2021-02-20
[14] Datalake Storages, https://wiki.escape2020.de/index.php/WP2_-_DIOS#Datalake_

Status (2021), accessed: 2021-02-20
[15] GFAL2 Documentation, https://dmc-docs.web.cern.ch/dmc-docs/gfal2/gfal2.html

(2021), accessed: 2021-02-20
[16] GridFTP, https://en.wikipedia.org/wiki/GridFTP (2021), accessed: 2021-02-20
[17] HTTP, https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol (2021), accessed:

2021-02-20
[18] A.A. Ayllon, M. Salichos, M.K. Simon, O. Keeble, Journal of Physics: Conference

Series 513, 032081 (2014)
[19] FTS Website, https://fts.web.cern.ch (2021), accessed: 2021-02-20
[20] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, D. Cameron,

D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing et al., Computing and Software
for Big Science 3, 11 (2019)

[21] Rucio Website, https://rucio.cern.ch (2021), accessed: 2021-02-20
[22] QoS in ESCAPE, https://wiki.escape2020.de/index.php/ESCAPE_QoS_Architecture

(2021), accessed: 2021-02-20
[23] QoS in Rucio, https://indico.cern.ch/event/873367/contributions/3686567/attachments/

1983605/3304257/QoS_in_Rucio_and_ATLAS.pdf (2021), accessed: 2021-02-20
[24] Kubernetes, https://kubernetes.io (2021), accessed: 2021-02-20
[25] Openstack, https://www.openstack.org (2021), accessed: 2021-02-20
[26] CERN IT - Server Provisioning Service, https://information-technology.web.cern.ch/

services/server-provisioning (2021), accessed: 2021-02-20

https://projectescape.eu
https://wiki.escape2020.de/index.php/Experiment_and_partners
https://wiki.escape2020.de/index.php/Experiment_and_partners
https://eosc-portal.eu
https://projectescape.eu/services/data-infrastructure-open-science
https://projectescape.eu/services/data-infrastructure-open-science
https://projectescape.eu/services/esfri-science-analysis-platform
https://projectescape.eu/services/esfri-science-analysis-platform
https://www.go-fair.org/fair-principles
http://eos.web.cern.ch
https://xrootd.slac.stanford.edu
https://wiki.escape2020.de/index.php/WP2_-_DIOS#Datalake_Status
https://wiki.escape2020.de/index.php/WP2_-_DIOS#Datalake_Status
https://dmc-docs.web.cern.ch/dmc-docs/gfal2/gfal2.html
https://en.wikipedia.org/wiki/GridFTP
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://fts.web.cern.ch
https://rucio.cern.ch
https://wiki.escape2020.de/index.php/ESCAPE_QoS_Architecture
https://indico.cern.ch/event/873367/contributions/3686567/attachments/1983605/3304257/QoS_in_Rucio_and_ATLAS.pdf
https://indico.cern.ch/event/873367/contributions/3686567/attachments/1983605/3304257/QoS_in_Rucio_and_ATLAS.pdf
https://kubernetes.io
https://www.openstack.org
https://information-technology.web.cern.ch/services/server-provisioning
https://information-technology.web.cern.ch/services/server-provisioning


[27] Oracle DBMS, https://en.wikipedia.org/wiki/Oracle_Database (2021), accessed: 2021-
02-20

[28] CERN IT - Database on Demand Service, https://information-technology.web.cern.ch/

services/database-on-demand (2021), accessed: 2021-02-20
[29] A. Anisenkov, J. Andreeva, A. Di Girolamo, P. Paparrigopoulos, A. Vedaee, EPJ Web

Conf. 214, 03003. 8 p (2019)
[30] CERN IT - File Transfer Service, https://information-technology.web.cern.ch/services/

file-transfer (2021), accessed: 2021-02-20
[31] X.509, https://en.wikipedia.org/wiki/X.509 (2021), accessed: 2021-02-20
[32] Worldwide LHC Computing Grid, https://wlcg.web.cern.ch (2021), accessed: 2021-02-

20
[33] Virtual Organization Membership Service, https://italiangrid.github.io/voms (2021), ac-

cessed: 2021-02-20
[34] INDIGO-IAM, https://github.com/indigo-iam/iam (2021), accessed: 2021-02-20
[35] INFN-CNAF, https://www.cnaf.infn.it/en (2021), accessed: 2021-02-20
[36] WLCG Auth WG, https://twiki.cern.ch/twiki/bin/view/LCG/WLCGAuthorizationWG

(2021), accessed: 2021-02-20
[37] M. Altunay, B. Bockelman, A. Ceccanti, L. Cornwall, M. Crawford, D. Crooks, T. Dack,

D. Dykstra, D. Groep, I. Igoumenos et al., WLCG Common JWT Profiles (2019)
[38] OpenID Connect, https://openid.net/connect (2021), accessed: 2021-02-20
[39] OAuth 2.0, https://oauth.net/2 (2021), accessed: 2021-02-20
[40] Bockelman, Brian, Ceccanti, Andrea, Collier, Ian, Cornwall, Linda, Dack, Thomas,

Guenther, Jaroslav, Lassnig, Mario, Litmaath, Maarten, Millar, Paul, Sallé, Mischa
et al., EPJ Web Conf. 245, 03001 (2020)

[41] DOMA Rucio, https://twiki.cern.ch/twiki/bin/view/LCG/DomaRucio (2021), accessed:
2021-02-20

[42] GFAL Testing, https://github.com/ESCAPE-WP2/Utilities-and-Operations-Scripts/
tree/master/gfal-sam-testing (2021), accessed: 2021-02-20

[43] Elasticsearch, https://www.elastic.co/elasticsearch (2021), accessed: 2021-02-20
[44] CERN IT - Monitoring Service, https://monit.web.cern.ch/monit (2021), accessed:

2021-02-20
[45] FTS TPC Tests Toolkit, https://github.com/ESCAPE-WP2/fts-analysis-datalake (2021),

accessed: 2021-02-20
[46] Bash script for Rucio testing, https://github.com/ESCAPE-WP2/DataLake-Crons/blob/

master/scripts/rucio_produce_noise.sh (2021), accessed: 2021-02-20
[47] Rucio Tests Toolkit, https://github.com/ESCAPE-WP2/rucio-analysis (2021), accessed:

2021-02-20
[48] Square Kilometre Array, https://www.skatelescope.org (2021), accessed: 2021-02-20
[49] perfSONAR, https://www.perfsonar.net (2021), accessed: 2021-02-20
[50] perfSONAR Tools, https://docs.perfsonar.net/pscheduler_ref_tests_tools.html (2021),

accessed: 2021-02-20
[51] Open Science Grid, https://opensciencegrid.org (2021), accessed: 2021-02-20
[52] MaDDash, http://docs.perfsonar.net/maddash_intro.html (2021), accessed: 2021-02-20
[53] Grafana, https://grafana.com (2021), accessed: 2021-02-20
[54] Apache ActiveMQ, http://activemq.apache.org (2021), accessed: 2021-02-20
[55] CERN IT - Messaging Service, https://information-technology.web.cern.ch/services/

Messaging-Service (2021), accessed: 2021-02-20

https://en.wikipedia.org/wiki/Oracle_Database
https://information-technology.web.cern.ch/services/database-on-demand
https://information-technology.web.cern.ch/services/database-on-demand
https://information-technology.web.cern.ch/services/file-transfer
https://information-technology.web.cern.ch/services/file-transfer
https://en.wikipedia.org/wiki/X.509
https://wlcg.web.cern.ch
https://italiangrid.github.io/voms
https://github.com/indigo-iam/iam
https://www.cnaf.infn.it/en
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGAuthorizationWG
https://openid.net/connect
https://oauth.net/2
https://twiki.cern.ch/twiki/bin/view/LCG/DomaRucio
https://github.com/ESCAPE-WP2/Utilities-and-Operations-Scripts/tree/master/gfal-sam-testing
https://github.com/ESCAPE-WP2/Utilities-and-Operations-Scripts/tree/master/gfal-sam-testing
https://www.elastic.co/elasticsearch
https://monit.web.cern.ch/monit
https://github.com/ESCAPE-WP2/fts-analysis-datalake
https://github.com/ESCAPE-WP2/DataLake-Crons/blob/master/scripts/rucio_produce_noise.sh
https://github.com/ESCAPE-WP2/DataLake-Crons/blob/master/scripts/rucio_produce_noise.sh
https://github.com/ESCAPE-WP2/rucio-analysis
https://www.skatelescope.org
https://www.perfsonar.net
https://docs.perfsonar.net/pscheduler_ref_tests_tools.html
https://opensciencegrid.org
http://docs.perfsonar.net/maddash_intro.html
https://grafana.com
http://activemq.apache.org
https://information-technology.web.cern.ch/services/Messaging-Service
https://information-technology.web.cern.ch/services/Messaging-Service


[56] STFC Cloud, https://openstack.stfc.ac.uk (2021), accessed: 2021-02-20
[57] University of Chicago Elasticsearch, https://atlas-analytics.github.io/

ATLAS-Analytics/infrastructure/elasticsearch (2021), accessed: 2021-02-20

https://openstack.stfc.ac.uk
https://atlas-analytics.github.io/ATLAS-Analytics/infrastructure/elasticsearch
https://atlas-analytics.github.io/ATLAS-Analytics/infrastructure/elasticsearch

	Introduction
	Data Lake Architecture
	Testing Infrastructure
	Transfer Capabilities
	Network Capabilities

	Monitoring Infrastructure
	Architecture
	Dashboards

	Conclusions

