

SPIDER first flight results and beyond

Riccardo Gualtieri, PhD on behalf of the SPIDER collaboration

Outline

- CMB B-mode polarization
 - History of the universe
 - CMB Polarization
- The SPIDER Program
 - O 2015 Payload
- In-Flight Performance
 - Autonomous Detector Operations

- SPIDER results
 - Power spectra estimators
 - Null tests
 - Systematics
 - Foregrounds
 - Power Spectra
 - o r limits
- SPIDER-2
- Conclusions

History of the Universe

CMB Polarization

The SPIDER Program

- Balloon borne polarimeter targeting primordial gravitational waves at angular scale
- LDB flight in January 2015
- Multipole coverage: ~10<*ell*<~300
- ~10% of sky coverage
- 2400 antenna-coupled TESs at 90GHz and 150GHz
- SPIDER's second flight will incorporate payload upgrades and new receivers to map the sky at 285 GHz

The SPIDER Program

Selected publications

- Gambrel+ arXiv:2104.01172 (2021)
- Ade+ arXiv:2103.13334(2021): B-mode results!!
- Osherson+, JLTP (2020)
- **RG**+ JLTD (2018)
- Nagy+ ApJ 844, 151 (2017)

- Rahlin+ Proc. SPIE (2014)
- Fraisse+ JCAP 04 (2013) 047
- O'Dea+ ApJ 738, 63 (2011)
- Filippini+ Proc. SPIE (2010) ... and more ...

The SPIDER Program

- Payload recovered
- SPIDER's data analysis completed
- All flight systems functioned nominally
- Significant data flagging due to RFI
- Cosmic rays insignificant

E.Y. Young & British Antarctic Survey recovery campaign

SPIDER 2015 Payload

- 300mK focal plane
- Cold refractive optics at 4K
- IR blockers
- Polarization modulator: HWP
- Magnetic shielding
 - Sleeve
 - o FPU

SPIDER 2015 Payload

- 1300L LHe main tank
- SF tank continuously refilled through a capillary system
- 6 3He sorption fridges
- Carbon fiber gondola
- Two axis ACS: 1' pointing accuracy, ~6" post flight

In Flight Performance

- Exceptionally low internal loading
 - 95 GHz: ≤ 0.25 pW total absorbed
 - **150 GHz**: ≤ 0.35 pW total absorbed
- Flagging of samples and channels
 - Negligible from cosmic rays
 - Osherson+, JLTP (2020)
 - Significant from RFI
 - Transmitter handshake every ~1min
- Strict channel / sky cuts this analysis
 - ~1/4 of scan time outside analysis region
 - Wide exclusion around fridge cycles
 - One 150 GHz receiver excluded
- Scan-synchronous pickup (~CMB dipole)
 - Addressed with aggressive filtering

Band	Center [GHz]	Width [%]	FWHM [arcmin]	# Det. Used	$\begin{array}{c} \text{NET}_{tot} \\ [\mu K \sqrt{s}] \end{array}$	Data Used [days]	Map Depth [μK · arcmin]
95 GHz	94.7	26.4	41.4	675	7.1	6.5	22.5
$150\mathrm{GHz}$	151.0	25.7	28.8	815	6.0	5.6	20.4
- 11	9 1 12		11 01 11 1	100		TT TTT - 00 TT	1 100101

National CMB Colloquium - June 3rd, 2021

Autonomous Detector Operations

SQUID tuning

- Retuned (~5 min) after every fridge cycle
- Compares to pre-flight examples, adjusts parameters as needed

Detector responsivity

- Electrical bias step response used as proxy for optical gain variation
- 2s bias step every few turnarounds gives ~0.1% uncertainty
- Monitor loop adjusts TES biases occasionally if needed

Fully automated

Downlinks minimal statistics to verify functionality

Excellent gain stability in flight
Electrical calibration correlates well with in-flight gain
estimates

SPIDER Results: Power Spectra Estimators

Complex cross-linking, noise modeling is hard, data redundancy is limited

Noise Simulation Independent (NSI):

- PolSPICE pseudo-Cl Monte Carlo
- Signal-only simulation library
- Covariances from cross spectra among 14 data subsets (interleaved 3-min chunks)
- 91 crosses/band, 378 total crosses
- •J.M. Nagy, J. Hartley, ...

- •Iterative quadratic estimator in the isotropic, diagonal approximation used by MASTER
- Solves for binned bandpowers using signal and noise simulation library
- •Adapted for null tests, foreground sep in progress
- •C. Contaldi, D. Mak, A.E. Gambrel, A.S. Rahlin, arXiv:2104.01172

SPIDER Results: Null Tests

Internal consistency tests

- Define (near-) equal data splits designed to amplify possible systematics / variability
- Difference split maps
- · Subtract simulated signal residual
- · Compute power spectra

10 data splits:

- •6 spatial detector splits (see left)
- Highest / lowest band centers
- Left / right-going scans
- 2 mission time splits

Consistent with zero for both pipelines, accounting for **correlations** among detector splits

	Outlier T	est PTE	Distribution Test PTE		
Band	XFaster	NSI	XFaster	NSI	
95 GHz	0.38	0.80	0.07	N/A	
150 GHz	0.34	0.20	0.21	N/A	
Combined	0.78	0.34	0.56	0.50	

SPIDER Results: Systematics

- Simulate effects of known non-idealities
 - Differential beams, gain drift (deprojected)
 - Full physical optics beam convolution
 - Beam ghosts, crosstalk above known levels
- Strong symmetrization by HWP rotation mitigates wide range of beam effects (MacTavish+ 2008)
- Known beam and readout systematics should have negligible effect at current sensitivities.

Jon Gudmundsson Adri Duivenvoorden Spider Collaboration

SPIDER Results: Foregrounds

- **Spatial template subtraction**
 - Planck 353-100 / 217-100 templates
- **SMICA** Harmonic domain

SPIDER Results: Power Spectra

Raw power spectra

- Reduced sky mask: 4.8% sky fraction
 - Point sources removed
- Multipoles: 33<ell<257
 - o 9 science bins delta_ell=25
 - o Lower and higher bins accounted for leakage

National CMB Colloquium - June 3rd, 2021

SPIDER Results: Power Spectra

SPIDER Results: 'r' limits

National CMB Colloquium - June 3rd, 2021

SPIDER Results: r limits

Point estimate	$r = -0.21^{+0.12}_{-0.15}$
Feldman-Cousins (frequentist) constraint	<i>r</i> < 0.11
Bayesian constraint	<i>r</i> < 0.19

Pipeline	Description	r_{mle}	<i>r</i> ≤ 95%
XFaster	Nominal, Feldman–Cousins	-0.21	0.11
	Nominal, Bayesian	-0.21	0.19
	NSI-like:		
	(a) r from BB only	-0.19	-
	(b) Independent EE & BB noise	-0.19	_
	(a) + (b)	-0.15	_
NSI	Nominal, Feldman–Cousins	-0.09	0.23
	Nominal, Bayesian	-0.09	0.27
SMICA	Nominal, Bayesian	0.06	0.24
	Template-like:		
	Excl. <i>Planck</i> inputs < 353 GHz	-0.07	_

SPIDER Results: r limits

- Results paper explores r estimates derived from XFaster, NSI, SMICA
- All estimators found to be unbiased on simulations
- Choice of data (Planck maps, etc.) and method found to move r_{mle} by O(0.1)
- Largely consistent with simulations

Much more detail in the results paper!

- Lightweight LHe cryostat
- 3 X 150GHz inserts
- 3 X 285GHz "Dust Monitors"
- 285GHz feedhorn coupled detectors by NIST
- New low noise design SSAs

Shaw+ 2020 Bergman+ 2018 **RG**+ 2018 Hubmayr+ 2016

National CMB Colloquium - June 3rd, 2021

Commander foreground estimate

Proposal sensitivity - 2 flights

E.C.Shaw assembling the 280 receiver at UIUC

- Expanded frequency coverage to resolve foregrounds with post-Planck sensitivities
- 3x 280 GHz receivers, new optical design
- Best 95/150 receivers from first flight
- Second flight targeting
 2018/19 2019/20 2020/21
 (\$\infty\$) 2022/23? austral
 summer

Conclusions

SPIDER'S FIRST VOYAGE TO NEAR-SPACE WAS VERY SUCCESSFUL!

PRIMORDIAL GRAVITATIONAL WAVES REMAIN ELUSIVE

95/150 GHz, 6% of the sky: R<0.11 (0.19)

More to come on foregrounds and analysis techniques

SPIDER-2 IS READY TO MAP THE SKY AT 280 GHZ

UPCOMING PAPERS ON:

- Low-level processing
- NSI TRANSFER FUNCTION
- Foregrounds Phenomenology