
TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

1

TRIGGER & DATA CONCENTRATOR

MODULE

REFERENCE MANUAL

D. Calvet

Version 1.16

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

2

1 GENERAL OVERVIEW
The Trigger and Data Concentrator Module – TDCM – is a versatile electronic back-

end module for detector readout systems based on the AFTER [1], AGET [2], ASTRE [3]

family of chips. It performs the following functions: 1) distribution of a primary reference

clock to a set of front-end cards or modules, 2) distribution of a common trigger signal

and global synchronization of the front-ends, 3) configuration and read-back of the

front-end and back-end sides, 4) data collection from the front-end, 5) slow control and

monitoring of the front-end and back-end sides.

The TDCM is primarily designed for the neutrino-less double beta decay experiment

PandaX-III, but it is also intended to use it for other applications that have comparable

requirements.

The TDCM can be used as a master device where it uses its own local reference clock,

or it can be used as a slave device where it receives the primary clock and trigger from

another master device, e.g. another TDCM or some other module. Master and slave

TDCMs are noted M-TDCM and S-TDCM respectively. A system may include at most one

M-TDCM, and can have one or several S-TDCMs.

Depending on hardware configuration, a TDCM can control up to 32 front-end units.

In PandaX-III, the basic front-end unit is a front-end card, FEC, which is equipped with 4

AGET chips and FPGA logic to communicate with the TDCM. In T2K-II, the elementary

front-end unit can be a front-end card, called the ARC, which is equipped with 4 AFTER

or AGET chips and FPGA logic for communication with the TDCM, but it can also be a

front-end module, which is composed of two front-end cards, also called FEC, equipped

with 8 AFTER chips each, and a front-end mezzanine card, FEM, which includes the FPGA

logic for controlling the two FECs and communicating with the TDCM.

In this document, each front-end unit is referred to as a “front-end’, noted FE”,

although the underlying hardware may be a (PandaX-III) FEC, an ARC, or a (T2K-II) FEM

and its (T2K-II) FECs. There are nonetheless some differences between the different FEs,

and specific features are mentioned when appropriate. Using PandaX-III FEC (256

channels), a TDCM can read out up to 8192 channels. In T2K-II, the maximum channel

count per TDCM is 9216 and 36,854 using the ARC (288 channels) and the FEM and its

two FECs (576 channels each) respectively.

The TDCM has a number of interfaces to connect to its partner devices. Four NIM

level inputs are available to input a reference clock, a baseband trigger signal, and two

other signals (e.g. timestamp reset and clock synchronization). Two NIM level outputs

are provided to output a busy signal and a user defined signal. Three general purpose

TTL level input and three outputs are also available. Alternatively, the primary clock,

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

3

trigger and synchronization signals can be provided over a RJ45 cable carrying serially

encoded information over LVDS, or an optical interface can be used. Both the RJ45

electrical interface and optical port use a proprietary protocol and encoding. Multiple

TDCMs can be cascaded using their master and slave RJ45 port. The TDCM has four high

speed transceivers connected to SFP cages. One of these SFP ports is normally used to

interface to a control and DAQ PC over Gigabit Ethernet (optical, or electrical using a

GBIC – Gigabit Ethernet Interface Converter). The three other SFPs have no specifically

assigned function and are available to the user. A second Gigabit Ethernet port (RJ45) is

also available. A PCI-Express (Gen 2 x 4 lanes), is also present on the TDCM, but it is not

supported by default (and even it is currently untested).

The interface to the front-end devices normally uses optical media, although a

physical layer based on copper may also be developed in the future if it is needed.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

4

2 BOARD DESCRIPTION
The TDCM is a composite assembly made of three types of electronic boards:

 An FPGA module. For a fast and cost effective development, a commercially

available FPGA module was selected: the Mercury ZX1 from Enclustra [4].

 A main carrier board. This custom made board is designed to carry a Mercury

ZX1 FPGA module and up to two physical layer mezzanine cards. For

development, it is also possible to use the evaluation platform sold by

Enclustra, the Mercury PE1. With this platform, some of the interfaces of the

full size TDCM are not available, and only one physical layer mezzanine card

can be used. This configuration is intended for tests and development only.

 Physical layer mezzanine cards. This card is also a custom design. It houses the

physical layer part of the interface to the front-ends, for example optical

transceivers. Other types of physical layer mezzanine cards may be designed

in the future if some application require copper media, or some specific type

of optical transceiver. A physical layer mezzanine card can have up to 16

transceiver/interface ports.

2.1 MERCURY ZX1 FPGA MODULE

A complete description of the Mercury ZX1 FPGA Module is available in [4]. The

model that has initially been used for the development of the TDCM is ME-ZX1-45-2C-

D10-P or ME-ZX1-45-2I-D10-P. Later versions have switched to a cheaper model from

the same family: ME-ZX1-30-2I-D10 or ME-ZX1-30-2C-D10. The main difference

between the XC7z030 and the XC7z045 part is that only 4 MGT transceivers at up to 6.6

Gbps are available instead of 8 MGT at up to 10 Gbps. Consequently, the PCIE interface

is not available on the TDCM equipped with a ME-ZX-30 FPGA module.

Alternatively, the ME-ZX1-35-1C-D10 or ME-ZX1-35-1I-D10 may also be adequate –

although this has not been checked.

2.2 MERCURY PE1 EVALUATION KIT

A development version of the TDCM is implemented on the commercially available

Mercury PE1 Evaluation kit made by Enclustra. This hardware configuration can be

equipped with only one physical layer mezzanine card and it cannot be interfaced to a

master trigger and clock distributor. This setup is normally only used for firmware and

software development. A picture of the TDCM mock-up built with the Enclustra PE1

evaluation kit is shown in Fig. 1. Connection to the data acquisition PC can be done with

the Gigabit Ethernet port of the Mercury PE1 board but this configuration does not

support Jumbo frames. Alternatively, an adapter board that converts the PCI Express

connector into several SFP+ and SMA connectors can be purchased from Enclustra. This

hardware allows the implementation of Gigabit Ethernet using 1000-baseX physical

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

5

layer and can support Jumbo frame with the appropriate MAC device. This configuration

of the TDCM mock-up is shown in Fig. 2.

Fig. 1. TDCM mock-up on Enclustra PE1 evaluation kit.

Fig. 2. TDCM mock-up on Enclustra PE1 evaluation kit with the PCIe breakout.

The physical layer mezzanine card is not mandatory, but in this case, no FE can be

connected. If present, the physical layer mezzanine card must be screwed on the PE1

evaluation kit using M2.5 screws and 8 mm standoff. On the front side of the physical

layer mezzanine card, M3 screws and 18 mm standoff shall be used. A heat sink and a

fan is required for the FPGA module. When using the on-board Ethernet, connect the

host to the RJ45 port closest to the USB connector on the front panel side of the PE1

evaluation kit (marked with a red sticker on the picture in Fig. 1). When the PCIe

breakout board is used, a GBIC should be used, in the SFP cage closest to the PCIe

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

6

connector (see Fig. 2). Also, in this configuration, the board must be powered from the

circular jack on the PCIe breakout board instead of the power jack of the PE1 board.

For both hardware variants, jumper VSEL_A should be set to position “A” while

jumper VSEL_B should be set to position “B”. Switches CFG_A should be set OFF; OFF;

OFF; ON. This corresponds to a default boot from the MicroSD flash. Switches CFG_B

should be set OFF; OFF; ON; ON. The PE1 evaluation kit contains 4 user defined DIP

switches and 4 push buttons. Their usage is shown in Table 1.

Table 1 . Usage of PE1 card user DIP switches and push buttons.

Resource TDCM mock-up usage

User switch #1 DBG_SEL<0>
User switch #2 DBG_SEL<1>
User switch #3 DBG_SEL<2>
User switch #4 BIOS_N
Push button #0 RESET_N
Push button #1 MAN_TRIG_N
Push button #2 MAN_SYNCH_N
Push button #3 MAN_CLR_N

For proper operation of the TDCM mock-up on the PE1, a jumper must be installed

between pin #35 and pin #36 of connector IOA. This connects and internally generated

25 MHz clock to the primary external clock input of the TDCM mock-up.

The firmware of the TDCM mock-up defines 16 debug output pins that can be used

to spy-on internal signals with an external oscilloscope or logic analyzer. Up to 8 groups

of 16 signals can be observed according to the position of user switches DBG_SEL<3..0>.

The observable signals are mapped to FPGA I/O pins connected to connector IOA as

shown in Table 2.

Table 2 . Location of debug output pins (connector IOA).

Resource Pin# Pin# Resource

DBG<0> 31 32 DBG<1>
DBG<2> 29 30 DBG<3>
DBG<4> 27 28 DBG<5>
DBG<6> 25 26 DBG<7>
DBG<8> 21 22 DBG<9>

DBG<10> 19 20 DBG<11>
DBG<12> 17 18 DBG<13>
DBG<14> 15 16 DBG<15>

The observable internal signals are defined in the VHDL source code of the TDCM

mock-up and is changed as needed during firmware development.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

7

Connection to a RS232 terminal console is done through a USB converter on-board

the PE1 evaluation kit. A micro-USB cable should be connected on the connector close

to the power supply input. It may be necessary to install the FTDI drivers for the USB-

RS232 bridge. Console settings are 115.000 bauds, 8 bit, no parity. Note that the USB

section of the PE1 board and some other logic is powered from USB. In some cases, it

can be necessary to power off the PE1 board and disconnect it from the USB to entirely

reset the board.

The TDCM mock-up on the PE1 evaluation kit requires a specific version of the TDCM

firmware and software (note also that it is different depending on whether the PCIe

breakout board is used or not), but besides this, the mock-up supports almost exactly

the same set of commands, and uses the same tools and methods as the full-size TDCM.

2.3 TDCM CARRIER CARD

The TDCM carrier card is a 6U form factor electronic board designed to accommodate

a Mercury ZX1 FPGA module, one or two physical layer mezzanine cards (with up to 16

links each). The width of TDCM assembly with a physical layer mezzanine on each side

is 8 cm (i.e. 16 HP or the equivalent of 4 slots in a Eurocard chassis). The TDCM carrier

receives an external 12V power input and distributes the adequate power voltages to

the FPGA module and the mezzanine cards. The TDCM carrier includes a large variety of

I/O’s to interface to a data acquisition and control PC, to connect to a master trigger and

clock distributor module, and to optionally cascade several TDCMs.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

8

Fig. 3. Front view of the TDCM carrier.

A picture of the rear side of the TDCM is shown in Fig. 4.

Connector for
Physical Layer
Mezzanine #0

RJ45
Gigabit

Ethernet

PCI Express
LEDsJTAG RESET

General purpose SFPs
Gigabit

Ethernet
SFP

Connectors for
ZX1 FPGA
Module

Debug
Connector

NIM
Inputs

NIM
Outputs

RJ45
for

Slave
TDCM

RJ45
for

Master
TDCM

TTL
Input

Outputs

MicroSD
Flash
Card

microUSB
(RS232

Console)

12V
Power
Input

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

9

Fig. 4. Rear side view of the TDCM carrier.

2.4 MULTI-SFP MEZZANINE CARD

The multi-SFP Mezzanine Card is a custom made board that can house up to 16 small

form factor pluggable optical transceivers (SFP) as specified in the Multi-Source

Agreement (MSA) document signed by many manufacturers in 2000 and that has

become a de-facto standard.

The host side of the multi-SFP Mezzanine Card uses LVDS signaling for the 16 transmit

and 16 receive differential transceiver signals. The card also contains some peripheral

I/O components controllable via I2C. These are used to control front-panel LED’s (two

per transceiver), drive the TX disable pin of each transceiver, and read-back the LOS

indicator of each transceiver. In addition, it is also possible to access through an I2C

multiplexer the Digital Diagnosis Monitoring interface of each transceiver.

The multi-SFP Mezzanine card uses a low pin count FMC connector as defined in VITA

57.1 standard. However, the card is not compatible with this standard, and its form

factor is also different. Do not connect a multi-SFP Mezzanine Card to a carrier platform

others than those recommended without checking in advance that it is compatible.

Connector for
Physical Layer
Mezzanine #1

TTL
Input

Outputs

MicroSD
Flash
Card

microUSB
(RS232

Console)

12V
Power
Input

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

10

Fig. 5. Front view of the multi-SFP Mezzanine Card.

A front view picture of the multi-SFP Mezzanine Card is shown in Fig. 5. Each of the

16 slots can accept a SFP transceiver. A port number is used to identify each SFP. If two

multi-SFP Mezzanine Cards are connected to a carrier board, the port number of the

second multi-SFP Mezzanine are offset by 16. During the procedure of detection and

enumeration of the FEs connected to the TDCM, each FE is assigned the ID that

corresponds to the port number where it is connected.

There are two front-panel LEDs associated with each transceiver. The green (or

yellow) LED indicates the following:

- Permanently OFF: the corresponding port is not active

- Slow blinking: communication is not established with the partner FE

- Permanently ON: communication with the partner FE is established

The yellow (or green) LED illuminates during 100 ms whenever a data packet is

received on the corresponding port. The functions of the LED may be changed in the

future.

Port
#1

Port
#3

Port
#5

Port
#7

Port
#9

Port
#11

Port
#13

Port
#0

Port
#2

Port
#4

Port
#6

Port
#8

Port
#10

Port
#12

Port
#14

Port
#15

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

11

3 HARDWARE FEATURES AND INSTALLATION
3.1 POWER SUPPLY REQUIREMENTS

The TDCM requires a single +12 V power supply. Without any mezzanine card, the

typical current drawn by the TDCM carrier and FPGA module is 1 A. Each mezzanine

cards (without the optical transceivers) draws an additional 0.5 A. Each optical

transceiver is expected to draw ~250 mA from 3.3V, i.e. the equivalent of ~100 mA from

12V. Assuming that 32 transceivers are used, these will draw ~3.2 A from 12 V. In total,

a power supply rated 6 A should be adequate (to be confirmed).

The power dissipation of the FPGA module is rather high and it is mandatory that

both a heat sink and a fan are used on the TDCM. The fan takes power (12 V) directly

from the TDCM carrier board.

3.2 PRIMARY CLOCK SELECTION

The embedded processor of the TDCM and Ethernet communication rely on internal

oscillators. Communication with the front-ends is synchronous to a 100 MHz reference

clock that is derived from three possible sources selected by clock selection switches as

shown in Table 3. When the NIM clock input or the local generator are selected, the 25

MHz supplied clock is multiplied by a PLL to produce the final 100 MHz reference clock.

Table 3 . Reference clock selection switches.

CLK < 1..0> Reference clock source

OFF - OFF Master TCM RJ45 connector (100 MHz)
OFF - ON NIM Clock input (25 MHz)
ON - OFF Local clock generator (25 MHz)
ON – ON Illegal

When the primary clock is provided by the Master TCM, the DIP switch MTCM must

also be ON.

3.3 BOOT MODE SELECTION

The TDCM is programmed via JTAG during the debugging and development phase.

For self-configuration at power up, the board can boot from the micro-SD flash memory

card, or the SPI card embedded on the FPGA module. Booting from the flash NAND

memory should be possible but was not tested so far. The BOOT_MODE switches

determine which boot device is used as indicated in Table 4.

Table 4 . Boot mode selection switches.

BOOT_MODE < 1..0> Boot device

OFF - OFF Micro SD card
OFF - ON QSPI flash

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

12

ON - OFF NAND flash
ON - ON JTAG

3.4 MULTI-SFP MEZZANINE CARD

For some development and debugging tasks, it is possible to use the TDCM without

any physical layer mezzanine card. However, communication with some front-ends

require at least one of the physical layer mezzanine cards. Either the top or the bottom

mezzanine card can be installed, or both of them. When only one mezzanine card is

installed it is however preferable to connect it to the connector on the top side of the

TDCM for reasons of compactness. However, on the first prototype TDCM, only the

mezzanine on the bottom side can be plugged due to a connector orientation error for

the layout of the PCB.

3.5 ETHERNET CONNECTION
The TDCM has several Ethernet ports. The RJ45 copper port on the front panel of the

TDCM is connected to the Ethernet MAC embedded in the ZYNQ processor sub-system

of the FPGA module. This device supports 10/10/1000 Mbps speeds but it does not

support Jumbo frames. This Ethernet port is therefore disabled by default in the

firmware of the TDCM. Instead of the basic ZYNQ MAC, a Xilinx TEMAC coupled to a GTP

serial transceiver is used. The translation from the Ethernet 1000-BaseX interface to

RJ45 copper requires a GBIC. The device used is AVAGO ABCU-5730ARZ, but other

compatible devices should also work. Alternatively, an optical SFP transceiver can be

installed if Ethernet over fiber is used. On the TDCM, SFP location #0 is reserved for the

SFP/GBIC of the second Ethernet port. Note that the jumper next to SFP location #0 must

be installed to enable that SFP port.

Most configurations will use a direct point-to-point connection between the Ethernet

SFP/GBIC port and the PC used for DAQ and control, or a connection through a switch if

the same PC is used to control multiple TDCMs. Note that the TDCM may not be directly

connected to a large Ethernet network, but should reside in a small local private

network.

3.6 CONNECTION OF A RS232 TERMINAL
The use of a RS232 terminal is optional except for the first time when a blank FPGA

module is used on a TDCM. Several parameters (MAC and IP address, card ID, etc) must

be set in the flash memory of the FPGA module before a TDCM becomes operational.

Setting these parameters require a RS232 terminal connection. Settings are the

following: speed = 115.200 bauds, 8 bits, no parity, no hardware flow control. Locally

typed characters must be echoed and outgoing CR characters should be mapped to CR-

LF. The TDCM uses a Microchip 2221 USB to RS232 converter. The corresponding drivers

may need to be installed on the control PC. A micro-USB cable is required for the

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

13

connection. Note that on TDCM version 0, it is necessary that the card is powered ON in

order for the PC to detect the new USB device properly. When the TDCM is turned OFF,

the connection will need to be restored at the next power ON phase. On TDCM version

1 and beyond, the USB bridge of the TDCM is powered via the USB cable to the host.

Hence the device is detected when the cable is plugged and the connection persists

independently of the power ON/OFF state of the TDCM itself.

At power-up, messages are displayed on the RS232 console. During operation, fatal

error messages may be printed in case of failure. An example of a normal startup is

shown in Fig. 6.

Fig. 6. Example of terminal printout after a normal boot.

3.7 RESET MEANS

In addition to the power-on reset, the TDCM has several other means for reset. The

“PS_SRST” push button is a software reset for the embedded processor only. It does not

reload or re-program the FPGA part of the TDCM. In practice, this button is seldom used.

The “PS_POR” push button is equivalent to the power-on reset for the processor system:

pressing this button reloads the embedded software, re-programs the FPGA and starts

the execution of the main TDCM application program. A second push button with the

same function is accessible on the front panel of the TDCM, and alternatively a small

connector for a remote contactor is available. Note that these last two are not

operational on the first prototype of the TDCM. The “RESET” push button is used to reset

the user logic part of the FPGA part of the TDCM. Only experienced users may have to

press this button.

3.8 LEDS

The FPGA module contains four yellow LEDs. These LEDs are not visible when the

TDCM is placed inside a crate. These LEDs are used for development and debugging only.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

14

The TDCM carrier has four LEDs, among these, three are visible from the front panel. A

green LED (not visible from the front-panel) is connected to the DONE pin of the FPGA.

It indicates that the FPGA part of the system on module has been programmed correctly.

If the TDCM boots successfully, this LED will be ON. The green LED on the front panel

illuminates when the 3.3V on-board converter is ON.

The yellow LED visible from the front panel is controlled by the FPGA logic. It normally

indicates the presence of the primary clock and it should be blinking at ~1 Hz. If this LED

stays still or blinks at a different rate, a missing or inappropriate primary clock may be

the cause. Note that the function of this LED may be changed in the future.

The red LED visible from the front-panel is connected to an error signal of the

application logic. Currently it is used to signal that the TDCM and one or several FEs have

lost their common synchronization. When this error LED illuminates, the TDCM will not

accept or forward any triggers to the front-ends until the error condition is cleared and

some re-synchronization is performed. Note also that the signification of this LED

indicator may be changed in the future.

3.9 NIM I/O’S
The TDCM carrier has 4 NIM level inputs and 2 NIM level outputs. These I/O’s are

accessible on standard LEMO connectors at the rear of the board as shown on Fig. 7.

Fig. 7. NIM level I/O’s.

The SYNCH input is used to send a signal to all FE for setting to the same phase each

local divisor that produces the clock used for sampling detector signals. The RESET input

is used to clear event counters in the TDCM and all FEs. The TRIGGER input is one of the

possible external trigger sources of the TDCM. The CLOCK input is used to provide an

external master reference clock to the TDCM instead of the local oscillator. Currently

the external clock must be 25 MHz and it is multiplied locally by 4 to produce the 100

MHz reference clock used by the TDCM. If the external clock input is used, the

appropriate switch must be set for the correct selection of the primary clock. NIM

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

15

outputs are currently assigned to some internally divided clock signal but may be

assigned some particular function in future releases of the firmware.

3.10 TTL I/O’S

The TDCM carrier has 3 TTL level outputs and 3 inputs. These I/O’s are accessible on

an 8-pin, dual row, 2.54 mm pitch right angled male header (Amphenol

T821108A1R100CEU, Farnell: 2215289) placed next to the Micro-SD memory card, at

the rear side of the board. This is shown on the left side of Fig. 8. Inputs are on the left

column of pins on the picture (closest to the PCB), while outputs are on the right column

of pins (elevated from the PCB).

Fig. 8. TTL I/O connector (left), and voltage selector (right).

The I/O voltage can be selected between 3.3V LVTTL or standard 5V TTL by setting

the appropriate jumper between the central pin of the header shown on Fig. 8, right,

and the 3V3 or 5V pin. Inputs have a parallel 50 Ω resistor connected to ground and

clamp diodes to ground and the supply voltage (3.3V or 5V). It is recommended that the

source driving any of these TTL inputs has 50 Ω impedance. It is recommended to check

that the source can adequately drive a 50 Ω load, i.e. the high level voltage remains

above 2 V when the load is connected. TTL outputs have an additional 22 Ω series

resistor with the standard buffer.

Connections to the TTL I/O’s can use discrete wires with crimped contacts (e.g.

AMPMODU MODII 181270-2, Farnell: 1772721) or an 8-pin female socket with soldered

coaxial cables. Possible references include: TE Connectivity 215308-8 (Farnell: 186-

3520), SAMTEC SSW-104-01-G-D or SSW-104-02-S-D (Farnell: 166-8340 or 166-8346),

Multicomp 2214S-08SG-85 (Farnell: 1593489), Harwin M20-7830446 (Farnell: 799-

1991).

Pin usage is shown in Table 5. Note that pins may be assigned to some other functions

in future releases of the firmware.

Table 5 . TTL I/O pin usage.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

16

Pin Function

TTL IN<0> CLR_EVENT_COUNT (active Low)
TTL IN<1> WCK_SYNCH (active Low)
TTL IN<2> TRIGGER (active Low)

TTL OUT<0> BUSY (active Low)
TTL OUT<1> MULT_TRIG (active Low)
TTL OUT<2> reserved

The signal CLR_EVENT_COUNT is a synchronous clear for the event counter of the

TDCM and all FE. The signal WCK_SYNCH is a synchronous signal sent to all FE for setting

to the same phase each local divisor that produces the clock used for sampling detector

signals. The TRIGGER signal is obviously used as an external trigger input by the TDCM.

System dead-time is reflected on the BUSY pin. The MULT_TRIG signal is only available

with FE that can produce self-trigger primitives and when the TDCM is set to elaborate

a trigger signal, called “multiplicity trigger”. The bit that result from the processing of

multiplicity trigger primitives sent by the FEs can be internally looped back in the TDCM

to self-trigger, or it can be forwarded to an external unit for additional processing,

combination with other sources, global distribution, etc.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

17

4 SOFTWARE INSTALLATION
4.1 EMBEDDED FIRMWARE AND SOFTWARE

During exploitation, the TDCM will normally boot from the external micro-SD card or

from the SPI memory on-board the FPGA module. A bootable file comprises a First Stage

Boot Loader (FSBL) for the ZYNQ device on-board the FPGA module, the configuration

bitstream for the FPGA, and the executable application program.

Fig. 9. Window for creating a boot image file.

The bootable file is generated with Xilinx SDK tool (menu “Xilinx Tools” -> “Create

Boot Image”). After loading the existing BIF file, the pop-up window shown on Fig. 9

should be displayed. Press the “Create Image” button to generate a new image file. The

boot image file can then be copied to the Micro SD card. Note that the file name must

be “BOOT.BIN” and cannot be changed. The file must also reside in the root directory of

the card, although the card may contain other files and directories.

The “BOOT.BIN” file can also be copied to the SD Card remotely from the client PC

program. This is accomplished in pclient (see section 11) by the commands below:

be sd mount

be sd wena 1

rcp <boot_version_data> BOOT.BIN

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

18

After mounting the SD card, the user must enable write access to the SD card. Then,

he can perform a remote copy of the bitstream file to the SD Card with the

corresponding command. To keep track of versions, the local copy normally has the

target FPGA, board version and revision date contained in the name of the file. However,

the target file must always be called “BOOT.BIN” exactly. The transfer takes ~1,5 minute

(for a binary file of 15 Mbytes). Take extreme care when doing the copy because the

original boot file of the TDCM will be erased. If a corrupted file is loaded, or if the upload

fails, the TDCM will no longer boot. If such situation occurs, the micro SD memory card

will need to be removed from the TDCM and some proper boot file be restored.

Alternatively the BOOT.BIN file can be programmed in the on board SPI device of the

FPGA module via JTAG. This can be accomplished using Xilinx SDK via the menu “Xilinx

Tools” -> “Program Flash”. Note that if the SPI flash memory is entirely erased, the MAC

address, the IP address and other settings of the TDCM will also be erased.

4.2 THE MINI-BIOS CONFIGURATION UTILITY

When a TDCM is boot for the first time, its IP address, MAC address and some other

parameters must be set. This operation is accomplished via a RS232 terminal using the

“mini-BIOS” utility. To enter mini-BIOS, hold the push button “BIOS” down and power

ON the TDCM until the menu of mini-BIOS shown on Fig. 10 appears.

The options M, I, T and E are used to set the MAC address, IP address, Maximum

Transfer Unit (MTU), and speed of the Ethernet connection to the DAQ and control PC.

The TDCM must reside on a private network. The maximum transfer unit should be set

to 1500 bytes at most if Jumbo frames are not supported, and can be set to a maximum

of 8100 bytes. Note that the native Ethernet controller of the ZYNQ does not support

Jumbo frames but the MAC that drives the SFP Ethernet port does. It is recommended

to set the speed to 1000 Mbps, although 100 Mbps and even 10 Mbps should work.

The card ID should be set in a way that each TDCM in the system has a different ID.

The allowed range is from 0 to 31.

The PLL type and output clock delay should be left to 0.

The SFP mezzanine parameter should be set to 0, 1, 2 or 3 depending on whether no,

one, or the two SFP mezzanine cards are installed. Note that on the TDCM prototype,

mezzanine #0 is the one that plugs on the bottom side while on subsequent models,

mezzanine #0 refers to the one on the top side.

Different types of secure EEPROM may be installed on the FPGA module. Refer to the

documentation provided by Enclustra for details. The TDCM does not use the MAC

address and other information stored in the secure EEPROM.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

19

The Si5338 PLL is only present on the Enclustra PE1 evaluation kit. This option must

not be enabled on the TDCM.

After all the desired changes have been made, they must be saved in the on-board

flash memory with the command “S”. To exit mini-BIOS and boot the TDCM, press “Q”.

An example of a successful boot of the TDCM is shown in Fig. 11. After displaying the

version number and compilation date, various peripheral circuits and devices are

configured. Finally, the Ethernet port is configured. At this time, the TDCM shall respond

to ping commands and to the commands sent by the DAQ PC following the protocol and

syntax defined in the relevant sections of this document.

Fig. 10. Mini-BIOS menu.

Fig. 11. Console messages after a normal boot.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

20

4.3 EMBEDDED SOFTWARE COMPILATION

The embedded software of the TDCM has originally been developed using Xilinx SDK

release 2015.4. Migration to more recent versions of the tool is described in the next

section.

Selecting which Ethernet MAC is used (hard IP in the ZYNQ of the FPGA module or

Xilinx TEMAC synthetized in FPGA logic) is defined at the compilation time and cannot

be changed at run-time. Normally, the TDCM software is compiled in the Xilinx TEMAC

flavor because it supports Jumbo frames while the hard IP of the ZYNQ does not.

However, both options are supported. The firmware instantiates both types of

controller and need not be changed to select which controller is used. However,

producing the desired flavor of the software requires a few changes in the TDCM SDK

project itself. Those changes are listed in Table 6.

Table 6 . Software generation settings for Ethernet MAC selection.

Item ZYNQ hard IP TEMAC soft IP

Include search path /network/zynq /network/temac
Pre-processor definitions USE_EMAC_PS

ETHERNET_PHY_KSZ9031
USE_AXI_ETHERNET_DMA

Source files ethernet_xemac.c
ksz9031.c

ethernet_axidma.c
1000baseX.c

Note that on TDCM version 0, the micro SD memory card interface can operate at

6.25 MHz maximum instead of the default value of 25 MHz which is set in Xilinx support

library. The speed must be reduced from 25 MHz to 6.25 MHz and the speed of the bus

must not be changed to high speed. The modifications to perform in the board support

package file xsdps.c are the following:

InstancePtr->BusSpeed = 6250000; //SD_CLK_25_MHZ;

…

//Status = XSdPs_Change_BusSpeed(InstancePtr);

The modification persists until the BSP source files are re-generated. The SD memory

card interface for TDCM version 1, and beyond, can operate at the nominal 25 MHz rate.

No modification to the BSP provided by Xilinx is needed.

4.4 MIGRATION TO NEWER VERSIONS OF VIVADO

The migration from the original Vivado 2015.4 release requires that both the

firmware side and the embedded software sides are upgraded. Unfortunately, the

update is not smooth. The following tips were used. This may not be the optimal way,

and it may not work in all cases.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

21

To migrate a complete project while keeping the original version, the first step is to

open the original project and save it as a new project in a different directory. This step

is shown in Fig. 12. It is assumed that the VHDL source files are not included in the

project. After this step is done, the original Vivado (2015.4) tool is exited and the project

is re-open with the newer target version of Vivado (e.g. 2018.3). Vivado detects that

project was created with an older version and asks the user what to do. Click on

“Automatically upgrade to the current version”.

Fig. 12. Safe way to copy a Vivado project.

At the next step, Vivado suggest to make a status report on IP changes. Perform this

operation and update all the IPs as it is suggested by the tool. An example is shown in

Fig. 13.

Fig. 13. IP status when starting the migration procedure.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

22

The custom made IP liteaxififo does not run properly on Vivado 2018.3. It has been

rewritten. The correct files have to be referenced in the upgraded project. This IP also

relies on a FIFO IP from Xilinx catalog. This IP also needs to be upgraded. It is

recommended to copy the custom IP in the project directory. Make sure the project

references the correct location. An example is shown in Fig. 14.

Fig. 14. Example setting for custom IP location.

The update of all IPs may work smoothly, or there may be some critical warning

messages where Vivado request manual intervention for the update. Actually there

were 3 critical warnings at this step when migrating the TDCM from Vivado 2015.4 to

2018.3. The block design that contains the embedded processor shall be opened

automatically after the IP migration step. Run the “Validate Design (F6)” step. In the

present case, the errors shown in Fig. 15 occurred.

Fig. 15. Block design migration errors.

To solve these errors, select the interface port that caused the error and add the

missing property “READ_WRITE” at the place shown on Fig. 16.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

23

Fig. 16. Missing port property after migration.

Save the block design and re-run the validation step. There are a few other warning

messages, but it seems acceptable to ignore them. Re-run the validation of the block

until it passes successfully. Then close the block design. Re-run the IP status update

procedure to make sure that all IP are now up to date. Then rerun the usual steps of

synthesis, place and route, and bitstream generation. Most probably, synthesis will fail

because the PL SDRAM controller was not successfully generated. The typical message

that occurs in this case is shown in Fig. 17.

Fig. 17. PL SDRAM controller synthesis failure.

For some unclear reason (to me), every time the block design is modified, it seems

necessary to rerun MIG from scratch. Re-open the Block Design, and re-customize the

SDRAM controller. A custom SDRAM part must be created from the closest template.

Refer to Enclustra ZX1 User Manual for PL SDRAM settings. The number of address lines

must be set to 14 instead of the default value 15. Recommended settings are shown in

Fig. 18.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

24

Fig. 18. PL SDRAM recommended settings.

Proceed with subsequent steps in MIG leaving suggested values. Re-validate the

pinout (do not create a new one), and re-generate the IP. Re-validate the Block Design,

save it and close it. Then re-run synthesis, place and route and bitstream generation.

Hopefully, these steps will complete without failure and serious warning.

After the bistream has been exported to SDK and SDK has been launched, it is

necessary to configure the BSP correctly. The device drivers must be set to “generic” for

the custom IP “liteaxififo_0” and “regbk_crtl_0”.

Changes in the Xilinx FAT file system library from Vivado 2015.4 to Vivado 2018.3

require to manually change the header file ffconf.h on each BSP concerned to enable

the use of functions f_chmod() and f_utime(). The relevant line should be as follows:

 #define FF_USE_CHMOD 1.

Note that this change is lost whenever the source files of the BSP are re-generated,

unless that change is made in the repository files of the Vivado tool itself.

It is possible that the migration of the BSP from one version of Vivado to a newer

release does not work, or that a new BSP is automatically created when opening SDK.

One way to handle this situation – may be not the optimal way – is to delete the old BSP

and rename the newly created one to the same name as the old one.

From Vivado 2015.4 to Vivado 2018.3, the compiler for the ARM processor has been

changed. While the original projects use “arm-xilinx-eabi-gcc” newer versions of Vivado

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

25

use “arm-none-eabi-gcc”. The change must be applied for the assembler, compiler,

linker and “Print size” program called at the end of build. A number of compilation

options must also be changed. The recommended compiler and linker options for Vivado

2018.3 are shown in Fig. 19 and Fig. 20 respectively.

Fig. 19. Recommended compiler options for Vivado 2018.3.

Fig. 20. Recommended linker options for Vivado 2018.3.

Note that a new file, Xilinx.spec, is required. This was not needed with Vivado 2015.4.

This additional file is generated automatically by Vivado SDK when a new application

project is created, but it is not created when migrating a project from an older version

of Vivado. It must be copied manually. In the end, software projects migration should

be accomplished successfully. However, the icon that displays if project compilation

succeeded or failed currently always indicate a failure, even when compilation was

successful.

The above instructions should allow porting all applications, but it may be necessary

to delete and re-create the FSBL for the embedded Zynq processor(s). If the FSBL is

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

26

deleted and re-created, software changes in the code of the original FSBL must be

redone in the newly created BSP.

4.5 PROJECT PORTABILITY ACROSS LOCATION AND HOST COMPUTER

Besides a Vivado license, the compilation of the firmware of the full-size TDCM and

TDCM mockup with the Ethernet on the PCIe breakout board of the Enclustra PE1

evaluation require the following license: Xilinx LogiCORE, Tri-mode Ethernet Media

Access Controller. In principle, this license is not needed for the TDCM mockup that use

the embedded Ethernet controller of the Zynq SoC.

The compilation of the embedded software for all flavors of the TDCM only requires

a Vivado license without any license for some IP core. The core of the source files for the

embedded software of the TDCM is located in a directory which is separate from the

bulk of the project files required by Xilinx tools. When the code is moved to another

directory on the same computer, a different disk, or a different machine, the appropriate

variables must be updated to point to the correct location. The settings to modify are

shown in Fig. 21 and Fig. 22.

Fig. 21. Defining the base directory of the source code files.

Fig. 22. Setting the required build variable.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

27

Note that the source base directory and the C/C++ build variable have to be defined

for each application because their scope is not global within the SDK project.

4.6 DUAL CPU VERSION OF TDCM EMBEDDED SOFTWARE

The original embedded software of the TDCM is a command interpreter that runs in

bare metal mode on the ARM processor CPU#0 of the on-board Zynq SoC. A new

software architecture has been developed to support a dual CPU mode of operation.

In the dual CPU core flavor of the embedded software of the TDCM, the command

interpreter is split into two different programs:

- A network bridge program that handles communication via Ethernet with the

external world of the TDCM. This task runs on CPU#0.

- A command interpreter program that decodes and executes on the hardware the

commands relayed by the network bridge. This task runs on CPU#1.

The two tasks and CPU core communicate with each other via shared memory

regions. A set of bi-directional FIFO’s, shared variables, and buffers are placed in the On-

Chip Memory (OCM) of the Zynq SoC used on-board the TDCM. A pool of 8 buffers of 8

Kbyte is allocated in the OCM for communication in the CPU#0 to CPU#1 direction and

a second pool of the same size is reserved for communication in the opposite direction.

A communication FIFO is allocated for communication in each direction. These FIFO’s

exchange buffer descriptors that point to the buffers that contain the actual message or

data payloads. In the CPU#0 to CPU#1 direction, received commands are copied from

the Ethernet buffer to a buffer taken in the OCM pool which is posted to the CPU#0 to

CPU#1 FIFO. Because commands have a small size, this data copy does not incur a

significant penalty. This scheme is simpler to implement than zero-copy transfers.

However, in the CPU#1 to CPU#0 direction, zero-copy transfers over the Ethernet have

been implemented. Responses configuration or monitoring commands are filled by

CPU#1 using buffers taken from the OCM pool. Messages that contain event data reside

in the external SDRAM as it is explained in section 7.2. These messages are transferred

over Ethernet by CPU#0 in zero-copy mode after they have been posted by CPU#1 in the

CPU#1 to CPU#0 FIFO. After a buffer has been consumed by either CPU#0, CPU#1, the

Ethernet controller or the AXI Ring Buffer DMA controller (see section 7.2), it must be

returned to its original owner for later re-use. A FIFO in the CPU#0 to CPU#1 direction is

used to return to CPU#1 and AXI ring buffer DMA controller the buffers that can be

recycled. These belong to one of these two pools: the OCM pool of CPU#1 (used to store

responses to configuration and monitoring commands), or the SDRAM pool of the AXI

Ring Buffer used for storing event data received from the hardwired logic part of the

TDCM. Another FIFO, in the CPU#1 to CPU#0 direction, is used to post to CPU#0 the

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

28

buffers of its OCM pool that have been processed by CPU#1 and can now be recycled to

store the future commands that CPU#0 will receive over the Ethernet connection.

In the dual CPU software model of the TDCM, the external SDRAM of the Zynq SoC is

split into three regions:

- The lower 1 MB are not accessible,

- the following 511 MB are allocated to CPU#0 exclusively,

- the next 448 MB are allocated to CPU#1 exclusively,

- the upper 64 MB are shared between the hardware based AXI DMA, and the two

CPUs.

Note that modifications to the FSBL provided by Xilinx are needed to start the

execution of CPU#1 after the transfer of the image program for the two CPUs has been

completed by CPU#0 after booting from the SD-card. For a reason that is not understood

yet, CPU#1 cannot access the SD-card after CPU#0 has accessed it during the boot

process. Hence it is currently not possible to copy any file to the SD-card using the

command interpreter in the dual-CPU flavor of the TDCM after the card has boot from

the SD-card. But after booting via JTAG, the SD-card is accessible by CPU#1. The previous

issue has not been solved yet.

4.7 EMBEDDED LINUX ON THE TDCM

The next planned evolutions of the TDCM embedded software are to install Linux on

the ZYNQ SoC. This work is under progress at the Lpnhe group for the upgrade of the

T2K experiment. The original single CPU baremetal command interpreter model will

nonetheless be developed and maintained for the current usage of the TDCM in various

projects – including parts of the T2K experiment (e.g. equipment used for test benches,

or detector test beams).

The Linux versions of the TDCM may exist in the following flavors:

- A dual CPU model where CPU#1 runs in baremetal mode the command

interpreter program described in the previous section and CPU#0 runs the Linux

kernel as well as a MIDAS front-end program for the integration of the TDCM in a

global DAQ system based on MIDAS.

- A generic model where Linux runs on both CPU cores and the MIDAS front-end

program and the command program are applications that run simultaneously.

The current command interpreter command will need to be adapted so that it

can compile and run on Linux.

For either model, inter-process or inter-CPU communication is needed. The scheme

via the OCM described in the previous section could be used, or some other mechanism

may be implemented. In addition to the MIDAS front-end program, a network bridge

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

29

program will also be required to run concurrently so that the command interpreter

program (running on CPU#1 or as an oridinary Linux application) can be accessed

indifferently via MIDAS or via the “pclient” client application for system development,

debugging and remote fault diagnosis.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

30

5 MASTER TRIGGER/CLOCK MODULE INTERFACE

(PANDAX-III SPECIFIC INTERFACE)
5.1 PHYSICAL LAYER

When the TDCM is used as a slave device of a master device, e.g. in PandaX-III a

Master Trigger Clock Module, M-TCM, it is called a S-TDCM. The interface between the

S-TDCM and the M-TCM uses a four-pair standard category 6 shielded twisted pair (STP)

RJ45 cable. This type of cable is commonly used for Fast/Gigabit Ethernet networking.

One pair is split into two wires that carry unipolar 3.3V LVTTL signals while the three

other pairs use LVDS. The signals from the M-TCM to the S-TDCM are:

 TCM_CLK: this signal is a free running 100 MHz reference clock (LVDS).

 TCM_MOSI (Master Out, Slave In): this signal transports the serially encoded

trigger and other synchronous control signals (LVDS).

 TCM_ENAREM (ENAble REMote): this is an active high 3.3V LVTTL signal to

indicate to the S-TDCM that the M-TCM is present and requests the S-TDCM

to respond.

The signals from the S-TDCM to the M-TCM are:

 TCM_REMDET (REMote DETected): this is an active high 3.3V LVTTL signal

asserted by the S-TDCM to signal its presence and readiness to the M-TCM.

 TCM_MISO (Master In, Slave Out): this signal carries serially encoded

synchronous data (e.g. trigger acknowledge, busy/release, etc.) from the S-

TDCM to the M-TCM (LVDS).

A schematic view of the M-TCM to S-TDCM interface is shown in Fig. 23.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

31

Fig. 23. M-TCM – S-TDCM electrical interface.

The M-TCM de-activates communication with the S-TDCM when it detects a low level

on the TCM_REMDET line. This happens in the following situations:

 The M-TCM sets a low level on TCM_ENAREM to voluntary disable

communication with the S-TDCM,

 The M-TCM has set a high level on TCM_ENAREM but no S-TDCM is connected

at the other extremity of the cable, or an S-TDCM is connected but it is

currently not powered, or it is present and powered but SW is open meaning

that it is desired that the S-TDCM operates on its own local clock.

When SW is closed, the S-TDCM takes its locally generated clock as a reference if the

M-TCM is not present or if TCM_ENAREM is low, which happens if the M-TCM is present

but not powered, or present and powered but TCM_ENAREM is not activated. The S-

TDCM takes TCM_CLK_100 as a reference when both SW is closed and the M-TCM has

asserted TCM_ENAREM high. The signal TCM_ON indicates to the FPGA logic of the S-

DTCM that the M-TCM is present and ready.

Differential pairs may use AC coupling or DC coupling by choosing between capacitors

or 0Ω resistors at the receiving end. The TCM_CLK_P/N pair will preferably use AC

coupling. Initially, it is proposed to use DC coupling for the TCM_MOSI_P/N and

TCM_MISO_P/N pairs although this may choice may be changed in the future. All

differential receivers must be terminated with a 100Ω differential impedance. This

resistor may be integrated in the receiver or it may be external. A failsafe circuit may

also be needed.

TCM_CLK_P/N

TCM_MOSI_P/N

TCM_MISO_P/N

TCM_ENAREM

TCM_REMDET

100KΩ

4.7KΩ

3V3

SW

REF_CLK_100

LOC_CLK_100

TCM_ON

TCM_CLK_100

TCM_MOSI

1MΩ

TCM_MISO

100Ω

4.7KΩ

0V0V

C or R=0Ω

C or R=0Ω

Master side Slave sidecable

en

en

en

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

32

If DC coupling is used for differential pairs, the M-TCM is not allowed to actively drive

any of its LVDS output lines unless a high level is detected on TCM_REMDET. Similarly,

the S-TDCM is not allowed to actively drive the TCM_MISO_P/N lines unless a high level

is sensed on TCM_REMDET. If AC coupling is used, the common mode voltage of the

differential drivers will be blocked at the receiver end, and differential drivers can be

enabled even when there are connected to a remote partner board that is not powered.

It is however preferable that differential drivers transmit a constant logic level when no

active receiver is detected. Because series resistors are placed on TCM_ENAREM, limited

current will flow from the M-TCM to the S-TDCM if the M-TDCM drives this line to a high

level while the S-TDCM is present but not powered and SW is closed.

The pin assignment of the RJ45 cable between the M-TCM and the S-TDCM is shown

in Fig. 24. Note that colors depend on compliance with one of two possible standards.

Fig. 24. M-TCM – S-TDCM cable pin assignment.

5.2 MESSAGE FORMAT

The format of the frames sent from the M-TCM to the S-TDCM before encoding is

shown in Fig. 25.

Fig. 25. M-TCM to S-TDCM frame format.

EIA/TIA T568B EIA/TIA T568A

1
2
3
4
5
6
7
8

TCM_CLK_P
TCM_CLK_N

TCM_ENAREM
TCM_MOSI_P
TCM_MOSI_N
TCM_REMDET
TCM_MISO_P
TCM_MISO_N

Male RJ45 connector

Wh/ Or
Orange
Wh / Gr

Blue
Wh / Bl
Green

Wh / Br
Brown

Wh / Gr
Green

Wh / Or
Blue

Wh / Bl
Orange
Wh / Br
Brown

PARITY
EV_TYPE<0>
EV_TYPE<1>
CLR_TSTAMP
CLR_EVCNT
SCA_STOP
SCA_START
WCK_SYNCH
reserved
START BIT

S
T

P
A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

transmission order

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

33

The marking level of the TCM_MOSI line is a low level. The START_BIT is a high level.

The PARITY bit is the exclusive OR of the START_BIT and bit D0 to D7, i.e. the total

number of bits equal to 1 in a message taken from the start bit to the parity bit (included)

is always made even. The bit WCK_SYNCH is used to synchronize the clock generator of

the SCA write clock in each front-end card. The SCA_START bit is used to synchronously

start sampling in the SCA of the ASICs of the front-ends. The SCA_STOP bit is the trigger.

Four types of event can be distinguished by EV_TYPE<1..0>. The CLR_EVCNT bit and

CLR_TSTAMP bit are used to synchronously clear the event counter and time stamp

counter of all slave cards simultaneously. The CLR_TSTAMP bit actually performs a

preset of the timestamp counter to an initial programmable value. After the last bit of

data, the M-TCM must insert a gap of at least 6 symbols before transmitting the next

frame. Consequently, the maximum frame rate sent by the M-TCM to the S-TDCM is

1/160 ns = 6.25 MHz. However, the absolute time of synchronization signals can be

resolved with 10 ns resolution.

The format of the frames sent from the S-TDCM to the M-TCM before encoding is

shown in Fig. 26.

Fig. 26. S-TDCM to M-TCM frame format.

 The marking level of the TCM_MISO line is a low level. The START_BIT is a high level.

The PARITY bit is the exclusive OR of the START_BIT and bit D0 to D7, i.e. the total

number of bits equal to 1 in a message taken from the start bit to the parity bit (included)

is always made even. After the last bit of data, the S-TDCM inserts a gap of 6 bits before

the next frame. Consequently, the maximum frame rate sent by the S-TDCM to the M-

TCM is 1/160 ns = 6.25 MHz.

The bit START_ACK indicates that the S-TDCM has successfully received the

SCA_START command from the M-TCM and that the ASICs on the front-end side are now

PARITY
TRIG<0>
TRIG<1>
TRIG<2>
TRIG<3>
SET_BUSY
CLEAR_BUSY
START_ACK
reserved
START BIT

S
T

P
A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

transmission order

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

34

sampling data. The SET_BUSY bit is used to acknowledge the reception of the current

trigger and indicates that the S-TDCM cannot perform a SCA_START command until it

sends CLEAR_BUSY. The bit CLR_BUSY is used to indicate that the FEs have completed

processing of the previous event and are now ready to resume the SCA write operation.

The TRIG<3..0> field is used to transfer self-trigger primitives from the S-TDCM to the

M-TCM. This is not defined at present.

5.3 LINE ENCODING
The TCM_CLK_P/N pair carries a free running 100 MHz clock. The TCM_MOSI_P/N

and TCM_MISO_P/N lines carry 10-bit frames (1 start bit + 8 bit data + 1 parity bit) at

100 Mbps. The transitions on TCM_MOSI_P/N are phase aligned by the M-TCM with the

transitions (rising edge or falling edge) of the primary clock TCM_CLK_P/N. The

messages sent by the S-TDCM on TCM_PISO_P/N are synchronous to the clock supplied

by the M-TDCM, but the phase on the M-TCM side is unknown. It depends on cable

length and the various delays of the active components on the path. To recover the

messages sent by the S-TDCM, the M-TCM must adjust locally the phase of the received

signal with respect to its own local clock.

Operation without any line encoding is only possible using DC-coupling on the

corresponding transport lines.

Optionally, a DC balanced protocol is also supported. This protocol can be used with

either AC-coupled or DC-coupled lines. (Note: a trivial, almost DC-balanced encoding can

be obtained by making a XOR between the non-encoded serial stream with a locally

generated bit pattern of alternating 1 and 0’s. A more sophisticated encoding scheme

will be defined later if needed). The DC balanced protocol can be enabled independently

for the S-TDCM to M-TCM link and for the M-TCM to S-TDCM link. Obviously, the settings

must be consistent between the M-TCM and the S-TDCM for correct operation.

5.4 BIT ERROR RATE TESTER

A bit error rate tester for checking the quality of the communication link between the

M-TCM and S-TDCM is implemented. The bit error rate tester supports four different

standard patterns: PRBS7, PRBS15, PRBS23 and PRBS31. Before any PRBS can be

received or transmitted, the S-TDCM must be set first to operate in the bit error test

mode by programming the MTCM_BERT_ENA bit to one. Once this is done, the bit error

test mode can also be engaged on the M-TCM side.

When the bit MTCM_BERT_RXEN is set to 1, the S-TDCM tries to look on the received

PRBS. As soon as lock is achieved, it compares the received bit stream with the expected

pattern, which is generated locally, and counts the eventual errors. Note that the

repetition period of the PRBS31 pattern at 100 Mbps is ~21 s. It may take up to this time

to gain synchronization.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

35

When the bit MTCM_BERT_TXEN is set to 1, the S-TDCM starts sending the selected

PRBS to the M-TCM. On the rising edge of bit MTCM_BERT_DOERR, a single bit error is

inserted.

The bit error rate tester can be run in either direction independently or both

directions at the same time, for as long as it is desired. In the current implementation,

the bit error counter of the receiver saturates at 255, and the received and transmitted

bit counters roll over at 224 Mbit, which corresponds to approximately 2 days at 100

Mbps. At the end of a test, the receiver side should be disabled first to avoid that

stopping the PRBS on the transmitter side is misinterpreted as bit errors by the receiver

side. After the PRBS transmitter and receiver sides of the S-TDCM have been disabled,

the bit MTCM_BERT_ENA should be cleared. This restores the normal operation of the

link between the S-TDCM and the M-TCM.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

36

6 INTERFACE TO A FRONT-END UNIT
6.1 PHYSICAL LAYER

The interface between the TDCM (standalone of slave) and each FE normally uses an

optical fiber media. Small Form factor Pluggable (SFP) transceivers in compliance with

the Multi-Source Agreement (MSA) are a recommended choice. Alternatively, or for

debugging purposes, a copper cable interface is also supported.

6.1.1 OPTI CAL TR AN S CEIV ER AND OPTI CAL F I BER INTER FACE

The physical layer mezzanine card supports standard SFP transceivers, either single

fiber bi-directional transceivers or common dual fiber transceivers. If bi-directional

transceivers are used, it is recommended to use 1310 nm TX / 1490 nm RX transceivers

on the TDCM side. These transceivers can operate with single mode or multimode fiber.

Alternatively, dual-fiber transceivers at 850 nm wavelength are also adequate. These

devices require multimode fiber. Other types of optical media (e.g. LED transceivers for

plastic optical fiber) will be supported if this is needed.

6.1.2 COPP ER IN T ER FACE US ING A RJ45 CABLE

The copper interface between the TDCM and a FE is physically almost identical to the

interface between the M-TCM and the S-TDCM. The four pairs of an RJ45 cable are

assigned the same functions. Cable usage is defined in Fig. 27.

Fig. 27. TDCM – FE cable pin assignment.

The same electrical schematic as the one shown in Fig. 23 can be used. However, it is

recommended to use AC-coupling by default for all differential pairs. In this case, LVDS

transceivers need not the tristate capability. The TCM_CLK_P/N carries the primary 100

MHz reference clock and the TCM_MOSI-P/N serial stream is synchronous to that clock.

Similarly, the serial stream sent by the FE to the TDCM on the TCM_MISO_P/N pair must

be synchronous to the same 100 MHz reference clock. Message format and line

encoding on TCM_MISO and TCM_MOSI for the S-TDCM – FE link are different from that

used for communication between the M-TCM and S-TDCM.

6.2 TDCM – FE COMMUNICATION PRINCIPLES

EIA/TIA T568B EIA/TIA T568A

1
2
3
4
5
6
7
8

TDCM_CLK_P
TDCM_CLK_N

TDCM_ENAREM
TDCM_MOSI_P
TDCM_MOSI_N
TDCM_REMDET
TDCM_MISO_P
TDCM_MISO_N

Male RJ45 connector

Wh/ Or
Orange
Wh / Gr

Blue
Wh / Bl
Green

Wh / Br
Brown

Wh / Gr
Green

Wh / Or
Blue

Wh / Bl
Orange
Wh / Br
Brown

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

37

Communication between the TDCM and the FEs use an asymmetric network. In the

TDCM to FE direction, a low-skew, multi-cast network is used. The same bit stream is

sent by the TDCM to all FEs simultaneously. In the FE to TDCM direction, each FE has its

own private point-to-point communication link with the TDCM.

Communication between the TDCM and the FEs requires transporting different types

of messages: isochronous information (trigger, time-stamp clear order), runtime

configuration parameters, read-back parameters, periodic monitoring requests,

responses with the value of the monitored variable, request for data, response

messages containing event data fragments, etc. All these different types of messages

are classified in three different categories. Using three virtual channels implemented

over the physical links using time division multiplexing, messages from the three

different classes are exchanged concurrently in both directions between the TDCM and

the FEs. The following virtual channels are defined:

 Virtual Channel A is used to transport isochronous messages (mostly trigger

information) from the TDCM to all FEs. In the opposite direction, it transports

trigger primitives, trigger acknowledge and other synchronous information.

 Virtual Channel B is used for runtime parameter configuration and read-back

as well as slow control monitoring of the variables measured by each FE (e.g.

voltage, current, temperature).

 Virtual Channel C is used for event data collection from the FEs under the

control of the TDCM.

 Each virtual channel is assigned a fraction of the total available link bandwidth. In

the TDCM to FE direction, 1:2 of the link bandwidth is allocated to virtual channel A, and

1:4 of the link bandwidth to virtual channel B and C. In the FE to TDCM direction, 1:2 of

the available link bandwidth is reserved for virtual channel C, while virtual channel A and

B are assigned 1:4 of the link bandwidth each. On the physical TDCM to FE link, each

group of four consecutive transmitted bits is composed of 1 bit from virtual channel A,

followed by one bit from virtual channel B, then one bit from virtual channel A again,

and then one bit from virtual channel C, i.e. the sequence is A, B, A, C, A, B, A, C, etc. For

the FE to TDCM links, the sequence of transmitted bits is the following: A, B, C, C, A, B,

C, C, etc.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

38

Fig. 28. TDCM – FE communication over time-multiplexed virtual channels.

Proper synchronization is required to ensure that the original bit streams on each

virtual channel in both directions are reconstructed properly. An illustration of the

principle of virtual channel multiplexing is shown in Fig. 28.

Table 7 . Virtual Channel link bandwidth allocation.

Direction Virtual Channel Fraction allocated Actual net bandwidth

TDCM to FE A 1:2 50 Mbps
 B 1:4 25 Mbps
 C 1:4 25 Mbps
FE to TDCM A 1:4 100 Mbps
 B 1:4 100 Mbps
 C 1:2 200 Mbps

The bandwidth allocated to each virtual channel is fixed and cannot be changed at

run time. The allocation of link bandwidth for the three virtual channels is shown in Table

7. It is assumed that link speed is 100 Mbps (before encoding) in the TDCM to FE

direction and that the return link runs at 400 Mbps (also before encoding).

6.3 MESSAGE FORMAT – VIRTUAL CHANNEL A

The format of messages exchanged over Virtual Channel A is almost similar to those

exchanged between the M-TCM and the S-TDCM. The format of the frames sent from

the TDCM to the FEs before line encoding is shown in Fig. 29.

transmit order

TX RX

Virtual Channel A
Trigger, Synchro.

Virtual Channel B
Config/monitoring requests

Virtual Channel C
Event data requests

A

B
C

TDCM_MOSI

RX TX

Virtual Channel A
Trigger primitives

Virtual Channel B
Config/monitoring responses

Virtual Channel C
Event data fragments

A

B
C

transmit order

TDCM_MISO

TDCM side FE side

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

39

Fig. 29. TDCM to FEs Virtual Channel A frame format.

The signification of the different bits is identical to that of the M-TCM to TDCM link.

Refer to the corresponding section for details. Note that some bits have a dual function

and are used by the bit error rate tester of the FE to TDCM link as detailed in section

6.10.

The format of the messages sent by the FEs to the TDCM on Virtual Channel A is

shown in Fig. 30.

Fig. 30. FE to TDCM Virtual Channel A frame format.

Each of the MULT bits corresponds to a self-trigger primitive elaborated by the FE by

applying a programmable threshold to the digitized hit multiplicity signal of an AGET

chip. The TDCM will combine this information among all FEs to elaborate a self-trigger

signals. The details of the algorithm is not defined yet.

PARITY
EV_TYPE<0> / BERT_STOP
EV_TYPE<1> / BERT_START
CLR_TSTAMP
CLR_EVCNT / BERT_DOERR
SCA_STOP
SCA_START
WCK_SYNCH
reserved
START BIT

S
T

P
A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

transmission order

PARITY
MULT<0>
MULT<1>
MULT<2>
MULT<3>
SET_BUSY
CLEAR_BUSY
START_ACK
reserved
START BIT

S
T

P
A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

transmission order

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

40

6.4 MESSAGE FORMAT – VIRTUAL CHANNEL B

Logically, the TDCM identifies each FE by a 5-bit ID that corresponds to the ID of the

physical port where the fiber or cable of that FE is attached. Port are numbered from 0

and up to 31 on the TDCM. A message sent on Virtual Channel B will normally be

interpreted only by the FE that has the ID that matches that indicated in the message.

When the broadcast bit (BC) is set in the message, all FEs shall receive and decode the

message. The TDCM sees the parameter configuration and variable monitoring registers

as a flat 16-bit address, 32-bit data read/write virtual memory space. All configuration

setting or retrieving operations and monitoring operations are performed by one or

series of read/write operations to the virtual memory space of the FE accessible by the

TDCM via Virtual Channel B.

The format of messages sent from the TDCM to the FEs on Virtual Channel B is shown

in Fig. 31. The message is composed of one start bit (ST), 62 payload bits, and one parity

bit (PA). The parity bit is computed so that the number of bit equal to 1, including the

start bit, is always even. A minimum gap of 4 bits equal to 0 must be present between

two successive frames on this virtual channel.

Fig. 31. TDCM to FE Virtual Channel B frame format.

The address supplied is a byte address but only transactions aligned on 32-bit

boundaries are supported. Access to individual bytes is possible using the four individual

Byte Enable. The address covers a range from 0x0000 to 0xFFFC. The operation to

perform, read or write, is indicated by setting the appropriate RD or WR bit. The FE shall

respond to messages where both RD and WR are set to 0, although this operation does

not perform any action. A transaction where both RD and WR are set to 1 is illegal. The

FE shall return an error in this case. The data field is set with the data to write in the case

of a write transaction. In case of a read, the 32 bits are still present, but they are set to

a value (normally 0x00000000) that should be ignored by the FE.

The FE is not allowed to send a frame on Virtual Channel B until it has received a

request from the TDCM. The FE must respond to each message received on Virtual

Channel B with a matching ID or the broadcast bit set by sending one and only one frame

on the same virtual channel. The format of a frame sent by a FE to the TDCM on Virtual

Channel B is shown in Fig. 32.

6
2

6
1

6
0

5
6

5
5

5
4

5
3

5
2

5
1

4
8

4
7

3
2

3
1

0

transmission order on Virtual Channel B

Data to Write or
0x00000000

Address (16-bit)
Byte

Enable
R
D

W
R

Target ID
B
C

S
T

0 0
P
A

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

41

Fig. 32. FE to TDCM Virtual Channel B frame format.

The frame is composed of a start bit (ST) followed by 62 payload bits and one parity

bit (PA). The BE bit (Bus Error) is set by the FE to indicate that the requested operation

was not successful: no device present at the requested address, misaligned access, etc.

The PE bit (Parity Error) is used to indicate that the FE has received the request frame

from the TDCM, but the parity was incorrect. The FE bit (Format Error) indicates that the

request did not have the expected number of gap bits. If the requested operation was

successful, bits BE, PE and FE will all be 0. The RD, WR, Byte Enable and Address fields

must be identical to that of the request. In case of a write, the Data field shall also echo

the data supplied in the request. In case of a read, the data field contains the content

retrieved from the local resource of the FE being addressed. The data byte

corresponding to the different Byte Enable may be set to 0x00 if the corresponding byte

enable is set to 0. It is also permitted to put valid data even for those bytes where Byte

Enable was inactive. However, the TDCM will ignore the bytes corresponding to disabled

bits in the Byte Enable field. If a parity error is detected by the TDCM on the received

frame, the response from the FE shall be ignored. If the TDCM does not receive any

response from a FE after a certain amount of time, a timeout error will be issued. All

errors are propagated to the upper level that may initiate a retry or inform the user to

perform diagnosis and recovery actions.

The resource map of each front-end is intended to be uniform across the different

hardware implementations. The core of the resource map of the FE is described in

Section 8 of this document. There may be specific variations for the different flavors of

front-end hardware. Access to specific resources should be assigned the address

locations that are currently not affected.

6.5 MESSAGE FORMAT – VIRTUAL CHANNEL C

This virtual channel is dedicated to the transfer of event data from the FEs to the

TDCM. The format of the frames sent by the TDCM to the FEs on Virtual Channel C is

shown in Fig. 33.

6
2

6
1

6
0

5
6

5
5

5
4

5
3

5
2

5
1

4
8

4
7

3
2

3
1

0

transmission order on Virtual Channel B

Data written or
read

Address (16-bit)
Byte

Enable
R
D

W
R

Target ID
B
E

S
T

P
E

F
E

P
A

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

42

Fig. 33. TDCM to FE Virtual Channel C frame format.

Each message is composed of a start bit, a 4-bit operation code, 32 bits indicating to

which FE the operation applies, and a parity bit. When receiving messages on Virtual

Channel C, each FE checks if the bit of the Target FE field that corresponds to its own ID

is set or not, and executes the operation specified in the body of the message

accordingly. The different operations to perform are listed in Table 8.

Table 8 . Commands sent by the TDCM to the FEs on Virtual Channel C.

Op-Code Value Action

NOP 0x0 No action. For test purpose only.
INC_CREDIT 0x1 Increments by 1 unit the number of packets the

FE is allowed to send.
CLR_CREDITS 0x2 Clear the number of credits to send packets.
- 0x3 to 0xF Reserved for future use

The protocol over Virtual Channel C implements the appropriate flow control to avoid

that the TDCM is overflowed by event data from the FEs. All data transfers are initiated

by the TDCM. The FEs are not allowed to send any data on this virtual channel until they

have obtained the required credits from the TDCM. Initially, the FEs do not have any

credit to send data packets to the TDCM. To begin data collection, the TDCM sends an

INC_CREDIT operation to the FEs. Each of the FE concerned shall increment by one unit

the counter of credits that corresponds to the number of packets it is allowed to send.

If event data are ready, a FE can send over Virtual Channel C the next packet of event

data, and it decrements by one unit its counter of credits. If no data is available, the FE

must sent an empty data packet to the TDCM after a pre-defined timeout selectable

among 1 ms, 10 ms, 100 ms or 1 s. Failure to do is considered as an error by the TDCM.

Note that the FE must decrement by one unit its credit counter even when sending an

empty data packet. When a FE has no credit left, it is not allowed to send any data

packet, empty or not, to the TDCM, even after the programmed timeout. The FE must

wait for credits to be received from the TDCM to resume data transmission on Virtual

Channel C. The TDCM may transmit several INC_CREDIT messages before it receives the

first data packet from a FE. Pipelining multiple data requests and data packets may

increase global throughput, but initially, the TDCM will not pipe-line multiple requests

to the same FE and the credit count at both ends should always be 0 or 1. In case of

3
6

3
5

3
2

3
1

0

transmission order on Virtual Channel C

Target FEs
(one bit per FE)

Operation
OP-Code

S
T

P
A

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

43

error, or to initialize the system, the TDCM can send a CLR_CREDITS instruction. All the

FE concerned must clear their credit counter and halt transmission on Virtual Channel C

after the packet currently under transmission (if any) has been sent.

Other operations may be defined in the future.

The structure of the data packets – when these are non-empty – sent by a FE to the

TDCM are shown in Fig. 34. A non-empty packet is composed of an even number of 16-

bit words. The header is composed of a START_OF_PACKET constant (currently 0xAC0F)

followed by a 16-bit word. The SOE flag (Start Of Event) is set to 1 to indicate that the

current packet is the first packet of data for this event. The EOE flag (End Of Event) is set

to indicate that the current packet is the last one for this event. The Packet Size field

indicates the total size, in bytes, of the payload words. The number of payload words

can be 0, must be a multiple of 2, and is limited to the capacity of the receive FIFOs on

the TDCM side, which is currently 2 KBytes. If the number of payload words to send is

odd, a null padding word must be added, but the Packet Size field must still indicate the

total number of payload words, including the null padding word.

Fig. 34. FE to TDCM Virtual Channel C packet format.

After the last payload word, a cyclic redundancy check word is appended. The

standard CRC-32 polynomial commonly used by many standard applications (ISO 3309,

ANSI X3.66, FIPS PUB 71, FED-STD-1003, ITU-T V.42, Ethernet, SATA, MPEG-2, Gzip,

PKZIP, POSIX cksum, PNG, ZMODEM…) is adopted:

x32 + x26 + x23 + x22 + x16 + x12 + x11 +x10 + x8 + x7 + x5 + x4 + x2 + x1 +x0

The CRC-32 is computed over all the header and data payload words. Optionally, CRC-

32 computation can be disabled on the FE and two null words should be instead in this

case. Verification of the CRC-32 is also optional on the TDCM side, although it is strongly

recommended to enable it.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

START_OF_PACKET

Payload Word #0

Payload Word #2*N-1

0

…

Payload Word #2*N or 0x0000 padding

Header

Data
payload

CRC-32 (high MSBs)

CRC-32 (low LSBs)

Packet Size (in bytes)
SO
E

EO
E

CRC

transmission order on Virtual Channel C

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

44

When a FE has a positive number of credits but no data to send, it must send an

empty data packet after a programmable timeout has elapsed. An empty data packet is

simply composed of a START_OF_PACKET header followed by a null 16-bit word

indicating that the size of the payload of this packet is null. This two word packet is

followed by its CRC-32, or 32 bits equal to zero if CRC-32 computation is disabled.

6.6 LINK CLOCKING AND GLOBAL CLOCKING
The diagram of global system clock distribution is shown in Fig. 35 for the case of

PandaX-III. The main reference clock of the system, M_REF_CLK, is supplied by a master

trigger and clock module (M-TCM) to all S-TDCM over point-to-point copper links (RJ-45

cables). This clock is transmitted without any encoding at the appropriate desired

frequency. By default, the TDCM assumes the reference clock is 100 MHz. In standalone

mode, the TDCM uses for M_REF_CLK a local clock derived from an on-board oscillator.

The TDCM use M_REF_CLK, or a multiple of M_REF_CLK obtained by multiplication with

a PLL, to produce TDCM_TX_CLK, which is the clock used to serialize the messages sent

to the FEs on the TDCM to FE link. When the physical media of the TDCM to FE link is

RJ45 copper cables, M_REF_CLK is transmitted on one cable pair that is distinct from the

data pair. When using optical fiber, TDCM_TX_CLK is encoded with data.

Each FE receives M_REF_CLK directly from the TDCM when copper cables are used,

or recovers TDCM_TX_CLK using a Clock and Data Recovery (CDR) circuit when using

optical fiber media. The clock recovered from the TDCM link by each FE, RX_REC_CLKi,

is synchronous to TDCM_TX_CLK and consequently M_REF_CLK. After the appropriate

division, each FE derives from RX_REC_CLKi the clock for sampling detector signals,

SAMP_CLKi and optionally the clock for the local ADC. All SAMP_CLKi have the same

frequency and are synchronous to M_REF_CLK. Because SAMP_CLKi may be obtained in

each FE by a divider that is initially not synchronous with that of the other FEs, the phase

of SAMP_CLKi needs to be aligned among all FEs. The synchronization of the clock divisor

of each FE is performed by the TDCM by sending a message on Virtual Channel A with

the bit WCK_SYNCH set to one.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

45

Fig. 35. Global system clocking scheme.

Each FE also uses its own REC_CLKi, after an optional multiplication, to derive

FE_TX_CLKi, which is the clock used on the TX side of the serializer transmitting messages

back to the TDCM.

The TDCM uses M_REF_CLK, or a clock derived from it to produce TDCM_RX_CLK, the

clock used to de-serialize the data received from each FE. Because each of the transmit

clock FE_TX_CLKi used by the FEs are synchronous to M_REF_CLK, the TDCM can de-

serialize data from all FEs using only one clock, TDCM_RX_CLK, and furthermore, this is

a local clock. The TDCM does not have sufficient resources (e.g. clock trees) to recover

a different receive clock from each of the FE and transport de-serialized data back in a

common clock domain synchronous to M_REF_CLK. Data capture from all FEs can only

be done directly in a clock domain synchronous to M_REF_CLK. This is not a limitation

and, when the system is configured for self-trigger using front-end data, the latency of

the links from the FEs to the TDCM must also be fixed so that trigger primitives from the

different FEs are combined in a time-coherent way. Hence the FE to TDCM links must

also be synchronous to the same common reference clock.

TDCM_RX_CLK

TX RX

M_REF_CLK

RX
M_REF_CLK
or local osc.

TX

PLL

TDCM_TX_CLK

M_REF_CLK

RXTX RXTX

Clock
Data

Data
Encoded

Clock + Data

MTCM

S-TDCM

FEjFEi

Data

FE_REC_CLKi
DATAi

SAMP_CLKi

TXRX

CDR

PLL

ADC_CLKi

FE_TX_CLKi

DIV

SYNCH_WCK

FE_REC_CLKj
DATAj

SAMP_CLKj

TXRX

CDR

PLL

ADC_CLKi

FE_TX_CLKj

DIV

SYNCH_WCK

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

46

The TDCM also uses M_REF_CLK to serialize messages back to the M-TCM and the M-

TCM also uses its own copy of this reference clock to de-serialize messages sent by the

TDCM.

6.7 LINE ENCODING

6.7.1 L INK FR OM T HE TDCM TO T HE FES

As previously explained, the link from the TDCM to the FEs transports time-

interleaved messages from three virtual channels, named Virtual Channel A, B, and C.

Line encoding before transmission over the physical media is performed in two steps. If

the bit to be transmitted pertains to virtual Channel A or C, the first step of the encoding

does not change this bit. If the bit to be transmitted pertains to Virtual Channel B, it is

inverted. In other words, the data of Virtual Channel A and C are transmitted as they are

and the data of Virtual Channel B are inverted before transmission. This first step of

encoding allows the delineation of the three virtual channels at the receiver side. When

no message is sent over the three virtual channels, the data send over the media (before

the second step of encoding) is a fixed repetitive pattern composed of 4 bit, “0100”,

where the bits equal to ‘1’ indicate the bits of Virtual Channel B. After the bits of Virtual

Channel B are identified, the previous bit and the next bit belong to Virtual Channel A,

and the second bit after the one that marks the position of Virtual Channel B is from

Virtual Channel C.

Data may be transmitted directly over the media after the first step of encoding when

using DC-coupled copper cables between the TDCM and the FEs. Because the first step

of encoding does not provide a null DC component, it may not be adequate for AC-

coupled media or transmission over optical fibers. In this case, a second step of encoding

is performed. The second step uses Manchester encoding. For every original bit to be

sent, two bits of data are transmitted: the original bit followed by its inverted value. The

bit stream is therefore guaranteed to have exactly an equal number of 1’s and 0’s.

However, the baud rate over the physical media is twice that of the original bit rate.

When no data are sent over Virtual Channel A, B and C, the fixed repetitive pattern

“01100101” is continuously transmitted on the physical media. Transmitter signals after

the two steps of the encoding are shown in the timing diagram Fig. 36.

Pre-encoding

Final encoding

a b a c a b a c a b a c a b a c
TX data

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

47

Fig. 36. Pattern on the media when no messages are transmitted by the TDCM.

To achieve data reception and alignment, a receiver scans the received bit stream

and perform bit slips until the above synchronization pattern is found. When

synchronization is reached, the receiver retains one bit every two, and invert the bits

that correspond to Virtual Channel B to retrieves the original bit stream. The serial bit

stream of each virtual channel is then fed to its own de-serializer to obtain the messages

sent over the three virtual channels.

One of the main advantages of the dual-step line encoding scheme proposed is that

it allows the receiver to gain synchronization easily and without the need to reset or

perform any specific training period on the transmitter side. Recall that in the TDCM to

FE direction, a hardwired broadcast network is used. If the transmitter part of the TDCM

is reset, all FE receivers must also be re-synchronized. With the proposed scheme, each

FE can be reset at any time without the need to reset the TDCM which would impose to

re-synchronize all the other FEs. To synchronize the receive link of a FE, it is sufficient

that the TDCM stops sending messages to the FEs, so that the synchronization pattern

is transmitted instead. The receiver on the FE side can gain synchronization on-the-fly,

i.e. determine the optimal sampling time for the received data, and find the appropriate

frame alignment of the received series of bits. Because the transmitted synchronization

pattern is constant and repetitive, this operation is simplified compared to other

encoding techniques like 8B/10B encoding or scrambling that do not produce both a

constant and short period pattern when no data are transmitted.

By default, the line rate for the TDCM to FE links is 100 Mbit/s, i.e. 200 Mbaud after

encoding. Sub-multiple or multiples of this base rate may also be supported in the

future.

The TDCM can send data without inversion (default normal operation), or with

inversion, to correct for the swap of the two sides of a differential pair for example.

Alternatively, instead of performing the inversion of data of Virtual Channel B, a

different option is to invert instead the data of Virtual Channel A. In this case, the default

pattern after the first step of encoding is “1010” which is precisely the clock to be

transmitted to the FEs and is already a perfectly DC-balanced pattern. Hence, the second

step of encoding may not be needed. This is shown in Fig. 37.

One step encoding

TX data
a b a c a b a c a b a c a b a c

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

48

Fig. 37. Line encoding with inversion of Virtual Channel A (no data being

transmitted over any virtual channel).

However, this scheme does not provide a method to differentiate the bits of Virtual

Channel B and C. Distinguishing if a message belongs to Virtual Channel B or C can easily

be done by adding an extra bit to each message after the start bit: for example, a second

‘1’ after the start bit indicates that the message belongs to Virtual Channel B, and a ‘0’

after the start bit indicates that it belongs to Virtual Channel C. A potential limitation of

this scheme is that the data stream becomes imperfectly DC-balanced when messages

are sent over any virtual channel if no further encoding is done. Tests are needed to

investigate if this imbalance can affect the operation or the robustness of the

transmission over AC-coupled electrical cables or optical fiber media. The advantage of

this scheme is that the baud rate on the transmission line is equal to the initial bit rate,

i.e. there is no additional overhead caused by line encoding. However, until further

investigations are made, this scheme is not selected and the baseline design of the

TDCM uses data inversion on Virtual Channel B followed by Manchester encoding

leading to a line rate of 200 Mbaud for the original 100 Mbps bit stream.

6.7.2 L INK FR OM T HE FE TO THE TDCM

In the front-end to TDCM direction, a set of point-to-point links is used. Each link

carries messages from the three Virtual channels A, B, C, as defined earlier in this

document. In the same way as it is done for the TDCM to FE link, message encoding

before transmission is done in two steps. At the first step, the bits that correspond to

Virtual Channel B are inverted. Consequently, when no traffic is sent by a FE, the data

transmitted after the first step of encoding is a repetitive fixed pattern equal to “0100”.

This allows the receiver, on the TDCM side, to synchronize and determine which bit

corresponds to which virtual channel. The bits equal to ‘1’ correspond to Virtual Channel

B. The bits preceding them belong to Virtual Channel A, and the two bits after the ones

marking Virtual Channel B belong to Virtual Channel C.

The second step of encoding uses a self-synchronizing scrambler. Although other

polynomials or a different encoding technique may be supported in the future, the

baseline design of the TDCM uses the polynomial x43 + 1. This polynomial is used by the

Asynchronous Transfer Mode (ATM) standard in telecommunication networks. As it is

shown in Fig. 38, the implementation of the scrambler and de-scrambler are very simple.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

49

Fig. 38. FE Transmit scrambler and TDCM receive descrambler.

Having a simple decoder is advantageous for the TDCM, because there must be one

decoder per port, and the TDCM is planned to support 32 ports. Other advantages are

that the encoding does not add any overhead and receivers are self-synchronized, which

means that the scrambler and the de-scrambler can be started at a different time and

with different initial seeds in their respective shift register. Self-synchronizing

scramblers are commonly used in telecommunications and various other applications.

They are generally preferred over additive scramblers because of their self-

synchronizing property. The main disadvantage of self-synchronizing scramblers, also

called “multiplicative scramblers”, is that a single bit error at the input causes multiple

bit errors at the output of the de-scrambler. In our case, additional protection on the

data (parity, CRC-32) and the expected low bit error rate will mitigate that effect.

Both ends of the link must use the same clock: in standalone mode, the TDCM uses

its own local reference clock or the clock supplied by the M-TCM to de-serialize and de-

scramble serial data from the FEs. Reciprocally, the FEs use the clock recovered from the

RX side of their FE-TDCM link not only to de-serialize the data received from the TDCM

but also to encode and serialize data transmitted back to the TDCM. See the section on

clocking for details.

By default the FE shall transmit data to the TDCM at 400 Mbps, leading to 400

Mbaud on the physical media. Running at a sub-multiple or a multiple of the base rate

may be supported in the future.

6.8 ESTABLISHING COMMUNICATION BETWEEN THE TDCM AND THE FES AND

HANDLING LOSS OF SYN CHRONIZATION

After powering up the system, none of the communication links between the TDCM

and the FEs are operational. By default, each FE constantly tries to establish

communication with the TDCM by searching for the synchronization pattern

“01100101” on its receiver. The transmitter part of the FE is kept idle, i.e. at a fixed level

without any transition.

to TDCM
TX data FEi

0 1 2 3
3
7

3
8

3
9

4
0

4
1

4
2

XOR

FE transmit scrambler

TDCM receive descrambler

RX data from FEi

FE_TX_CLKi

TDCM_RX_CLK

0 1 2 3
3
7

3
8

3
9

4
0

4
1

4
2

XOR

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

50

When the TDCM is ready, the default synchronization pattern starts to be sent to all

FEs. As long as the TDCM does not send any message over the three different virtual

channels, the fixed synchronization pattern appears on the physical media. After a FE

detects the synchronization pattern and successfully locks on it, the transmitter part of

that FE is enabled and it sends a synchronization pattern composed of alternating 1’s

and 0’s for a pre-defined fixed duration. After that, it switches to the scrambler mode.

The TDCM captures the data received from each FE using its own local clock which is

also used for transmitting data to the FEs. The TDCM does not have means to recover

the clock from the serial stream received from each FE. Consequently, all the FEs must

use the clock recovered from the TDCM to FE link to also clock the transmitter part of

the FE to TDCM link. The whole system must be synchronous to the clock supplied by

the TDCM, which originates from the M-TCM or some other master device. Nonetheless,

the phase shift introduced by a FE between the primary clock in the TDCM and the serial

data sent by this FE when it reaches the TDCM cannot be predicted. The TDCM must

therefore determine on a per-FE basis the optimal time for sampling the serial data

transmitted by the FEs. The initial value of this delay is determined by the TDCM when

communication with the FE is established using a training pattern composed of

alternating 1’s and 0’s. After a FE has acquired synchronization on the receive side, it

must transmit the synchronization pattern 010101… for a duration of 660 ms before it

switches to the self-synchronizing scrambler mode used for normal operation. During

the link training period, the TDCM determines the optimal delay for sampling the

received data. After this initial training period, the TDCM may need to adjust dynamically

the data sampling point to compensate for the possible drifts of the delay of the TDCM-

FE-TDCM communication loop. When the TDCM starts to find transitions on the receiver

side of a link connected to a FE, it determines the optimal delay to apply on the received

data to recover an alternating series of 1’s and 0’s. At 400 Mbps, the range for adjusting

the delay line is 2.5 ns. When the initial delay calibration phase has been completed, the

receiver part of the TDCM corresponding to the appropriate FE is switched to de-

scrambler mode. Synchronization is gained when the TDCM detects the repetitive

pattern “0100” in the received de-scrambled data. The ‘1’ indicates the position of

Virtual Channel B, and after these bits are inverted, the received data can be fed to the

own de-serializers of the three virtual channels of the appropriate FE in the TDCM.

Assuming that synchronization in both directions is established, the TDCM starts

transmitting messages to the FEs and gets replies back. This continues as long as

communication remains stable. If a FE or the TDCM receives an excessive number of

errors, or if the TDCM fails to receive a response from a FE, this indicates that the

communication is broken at some place.

To signal to the TDCM an abnormal situation, a FE should stop sending any data on

its transmitter. The TDCM monitors that transitions occurs on each of its receivers. If no

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

51

transition occur during more than a certain number of unit intervals, the TDCM

considers that communication with this FE is mal-functioning and an alarm flag is raised.

The TDCM may try to reset the FE by sending it some appropriate message. However, it

is possible that this operation will not succeed because the communication link may be

broken in the TDCM to FE direction. In this case, the only recovery action that can be

made is to power cycle the faulty FE and perform link synchronization again. If

synchronization still cannot be obtained, it may be a permanent hardware failure, on

either side, and the appropriate actions have to be made by the user: more advanced

diagnosis, hardware replacement, or fault isolation. Note that if the TDCM is reset, this

will also reset the communication with all the FEs and all links will need to be re-

synchronized.

The FE is also supposed to check that transitions occur on its receiver. It may verify

that every received bit is followed by its inverted value (Manchester encoding rule). The

exact method is not specified, but the absence of a sufficient number of transitions, the

observation of repeated violations of the encoding rules, the detection of parity errors

on received messages are some of the indicators that can be used by each FE to

determine a link fault condition. When faults exceed some alarm level, the FE shall

simply stop its transmitter: the TDCM will detect this situation and trigger the

appropriate recovery actions.

6.9 TDCM TO FE LINK BIT ERROR RATE TESTER

The TDCM comprises several pseudo-random bit stream generators for testing the

quality of the communication link from the TDCM to the FEs. The industrial and

telecommunication standard patterns PRBS7, PRBS15, PRBS23 and PRBS31 are

supported by the TDCM. These patterns can easily be generated with a linear feedback

shift register whose taps correspond to the coefficients of the polynomial:

PRBS7 = x7 + x6 + 1

PRBS15 = x15 + x14 + 1

PRBS23 = x23 + x18 + 1

PRBS31 = x31 + x28 + 1

These PRBS can be generated with or without the additional Manchester encoding

step used for the TDCM to FE link. The FE shall at least support checking errors with each

of these standard patterns at 100 Mbps data rate with Manchester encoding, i.e. 200

Mbaud on the physical media. This is the normal default mode of operation of the TDCM

to FE links. Other speeds and PRBS sent without further encoding are primarily meant

to test the serializers of the TDCM with an oscilloscope or some standard serial data

analyzer equipment.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

52

In the TDCM, the bit error rate tester in the TDCM to FE transmit direction is enabled

by setting the bit MT_BERT_ENA to one. The speed and pattern generated are

determined by the fields MT_RATE and MT_BERT_PAT respectively. The bit

MT_MANCH_ENA determines if Manchester encoding is enabled or disabled. For

operation with the FE, the bit should always be set to 1, but it may be set to 0 when an

oscilloscope or other test equipment is connected to the TDCM. The bit MT_INVERT is

used to optionally invert the data transmitted. The different patterns, speeds, and

encoding options supported by the TDCM are listed in Table 9 and Table 10.

Table 9 . TDCM to FE link bit error rate tester patterns.

MT_BERT_PAT (TDCM side)
FE_RX_BERT_PAT (FE side)

Resulting pattern

00 PRBS7
01 PRBS15
10 PRBS23
11 PRBS31

Table 10 . TDCM to FE link bit error rate speed and encoding.

MT_RATE MT_MANCH_ENA Resulting pattern

00 0 PRBSx 100 Mbps (100 Mbaud)
00 1 PRBSx 100 Mbps + Manchester (200 Mbaud)
01 0 PRBSx 200 Mbps (200 Mbaud)
01 1 PRBSx 200 Mbps + Manchester (400 Mbaud)
10 1 PRBSx 400 Mbps (400 Mbaud)
10 0 Not supported – generates

PRBSx 400 Mbps (400 Mbaud)
11 0 100 MHz clock
11 1 200 MHz clock

The TDCM can force the generation of a bit error by making a transition from 0 to 1

on MT_BERT_DOERR.

For proper operation of the bit error rate tester, it must be first enabled on the FEs.

This is accomplished by setting the bit FE_RX_BERT_ENA in each FE after the appropriate

pattern has been selected by setting FE_RX_BERT_PAT. The polarity inversion and

Manchester decoder must also be selected. When FE_RX_BERT_ENA is enabled on the

FE, it no longer routes the bit stream received from the TDCM to the de-serializers of

Virtual Channel A, B and C. Instead, the FE continuously tries to synchronize its own PRBS

pattern generator waiting for a specific value to appear in the received bit stream, for

example 7, 15, 23 or 31 consecutive bits equal to 1 according to the selected pattern.

When this seed value is found, the FE starts its own local PRBS generator and compares

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

53

its output on the fly against the received bit stream in order to detect and count errors.

The FE shall accumulate bit errors in a 16-bit saturating counter and count the number

of received bits, divided by 106, in a 32-bit counter. Assuming a bit rate of 100 Mbps, the

counter of received bits will roll-over after more than one year. The FE shall send to the

TDCM every 107 received bits a specific packet on Virtual Channel C that contains the

number of bit received and the number of errors detected. See packet format details in

the appropriate section. At 100 Mbps, the TDCM will receive one such packet from each

FE every 10 s. This procedure continues as long as it is desired.

To end a bit error test, the user must first stop the PRBS generator on the TDCM by

clearing bit MT_BERT_ENA. This causes the TDCM to switch transmission to the default

fixed repetitive synchronization pattern “01100101”. While in bit error rate tester mode,

each FE must not only detect bit errors but it must also search for multiple consecutive

occurrences of the periodic default synchronization pattern. When the number of the

consecutive occurrences of this pattern exceed the number of bits of the shift register

of the PRBS generator, it indicates that the TDCM has stopped the test. Then each FE

shall also stop running in bit error test mode and shall redirect received bits to the de-

serializers of Virtual Channel A, B and C so that normal communication with the TDCM

is restored. The TDCM ends the procedure by clearing the FE_RX_BERT_ENA bit in each

FE. Note that the FE must delay the accumulation of bit errors by the appropriate

amount of time to guarantee that when the TDCM switches from the PRBS pattern back

to the default synchronization pattern to indicate the end of the test period, the FE does

not interpret the occurrences of the synchronization pattern as bit errors.

6.10 FE TO TDCM LINK BIT ERROR RATE TESTER

In order to test the integrity of the FE to TDCM communication links, a bit error rate

tester is implemented. In many aspects, it is similar to the BERT used in the TDCM to FE

direction as described in the previous section. There are however a few differences. A

first difference comes from the fact that the TDCM to FE communication uses a

broadcast topology while the return path is based on a series of point-to-point links. A

second difference is that for the TDCM to FE BERT, normal communication from the

TDCM to the FE is interrupted during the test, while it is FE to TDCM communication

path that is suspended when the FE to TDCM BERT is running.

The FE to TDCM BERT implements the same PRBS as its counterpart, namely PRBS7,

PRBS15, PRBS23 and PRBS31. It is required that the FE supports at least the nominal

speed of 400 Mbps. Other speeds, may be supported in the future. When the BERT is

running, the output scrambler on the transmit side of the FE must be disabled. The

selected PRBS pattern drives directly the serial transmitter of the FE without any further

encoding. Note that the PRBS is a DC-balanced pattern that can be transmitted over AC-

coupled or optical media.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

54

The proper sequence of operation for using the FE to TDCM link BERT is the following.

Firstly, the same PRBS must be set at both ends by the FE_TX_BERT_PAT configuration

bits in the FEs (see the description of FE Register#6 on Fig. 82 for details) and

BE_RX_BERT_PAT configuration bits in the TDCM. The pattern generated according to

these configuration bits is given in Table 11.

Table 11 . FE to TDCM link bit error rate tester patterns.

BE_RX_BERT_PAT (TDCM)
FE_TX_BERT_PAT (FEs)

Resulting pattern

00 PRBS7
01 PRBS15
10 PRBS23
11 PRBS31

Secondly, the BERT must be armed in each of the FEs participating to this test. This

step is accomplished by setting the bit FE_TX_BERT_ENA to 1 in each of the desired FE.

Thirdly, the BERT must be armed in the TDCM by setting the bit BE_RX_BERT_ENA to 1.

At this point, none of the FEs have started the actual transmission of any PRBS and the

communication between the FEs and the TDCM is still operational in both direction.

The BERT is effectively started synchronously in all the participating FEs and the

TDCM by sending over Virtual Channel A a message with the bit BERT_START equal 1

during one clock period. At this time, each FE shall switch the input of its serializer from

the normal data scrambler mode to the selected PRBS generator. Simultaneously, the

TDCM shall disconnect the Virtual Channel deserializers from its receiver links and shall

try to acquire synchronization on the PRBS pattern. The TDCM only uses one PRBS

generator to check the pattern received from each FE. It is mandatory that all FEs start

simultaneously and use the same seed. This initial seed must be 11111..11 (the number

of 1 is 7 for PRBS7, 15 for PRBS15, etc.). To acquire synchronization, the TDCM applies a

programmable delay to the pattern received from each FE and locks when the received

pattern matches the locally generated PRBS. If the latency from the TDCM to each FE

and back is deterministic and is equal for every branch – which is what the system is

designed to normally achieve – the delay applied to the received PRBS of each FE shall

settle to the same value. Reading back this per-FE delay allows checking whether the

actual link latency is equal or not on every branch and quantifying any mismatch.

As soon as BERT_START is received, the TDCM starts incrementing a counter at a rate

of 400 million units per seconds. This represents the number of bit received. This is done

independently on whether locking on the PRBS for any FE is done or not. The benefit of

this scheme is that only one counter is needed for all FEs, while one receive bit counter

per FE would be needed to count exactly the number of bits received from each FE

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

55

starting from the instant when lock was achieved for each particular FE. In principle, if

the latency path from each FE is identical, locking on the PRBS for all FEs occurs

simultaneously, so the same offset on the received bit count applies to all FEs. This offset

corresponds to the number of bit received from the instant BERT_START was pulsed and

the TDCM achieves lock on the PRBS pattern. This number is small compared to the total

number of bits transmitted during a BER test measurement because locking normally

takes a small fraction of a second while a BER test lasts from minutes to hours.

When locking is achieved (on a per-link basis), the TDCM compares the received

pattern from each FE to its own locally generated version of the expected PRBS. It

increments a 16-bit saturating error counter in case of mismatch. A separate error

counter is used for the link of each FE.

The BER test continues until it is stopped by the TDCM synchronously by sending over

Virtual Channel C a message with the bit BERT_STOP equal to 1. When BERT_STOP is

received, each FE shall stop sending the PRBS pattern and return to the normal data and

scrambler operation. Similarly, the TDCM shall stop checking the received data against

the PRBS pattern and re-establish normal communication with the FEs.

It is permitted to start and stop a BER test an indefinite number of times by pulsing

BERT_START and BERT_STOP successively. To really finish a BER test, it is necessary to

disengage the tester after the last BERT_STOP by setting the bit FE_TX_BERT_ENA back

to 0 in every FE and setting the bit BE_RX_BERT_ENA back to 0 in the TDCM.

During a BER test, each FE shall force the generation of a single bit error when

receiving over Virtual Channel A a message with the bit BERT_DOERR equal to 1. This

feature is used to verify that the BER tester is effectively capable of detecting single bit

errors.

Note that the bits BERT_START, BERT_STOP and BERT_DOERR are dual function bits

in the messages sent by the TDCM to the FEs over Virtual Channel A. Sending messages

with any of these dual function bits set to FEs that are not running in BER tester mode

does not have any impact for them, except that the counter of events received will be

cleared when BERT_DOERR is pulsed. Anyway, this counter shall be cleared at the

beginning of every normal data taking run, so this small side effect occurring during

system test is insignificant.

6.11 FRONT-END IDENTIFICATION AND ENUMERATION PROCEDURE

The TDCM identifies each FE by a 5-bit index that corresponds to the index of the

physical port where the fiber or cable of that FE is attached. Port are numbered from 0

and up to 31 on the TDCM. Besides this index, each FE is required to have a unique serial

number that identifies it. This serial number is referred to as the DNA number of that

FE. There are many different options for implementing this DNA number. It may be

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

56

implemented in a dedicated chip (e.g. Maxim Integrated DS28CM00), it could be

programmed in a One-Time Programmable (OTP) register of the on-board FPGA (e.g.

Xilinx e-Fuse technology), it could be coded directly in the firmware or the FPGA, or it

can be set on-board by switches, etc. For example, Xilinx series 7 FPGAs implement a 57-

bit DNA number that identifies each chip – however it may not be unique and Xilinx says

that up to 32 chips can have the same DNA number, but this probability is supposed to

be extremely small in practice.

The TDCM assumes that the DNA number of each FE is 64-bit. However, provided

that this DNA number is different for each FE, it could be shorter (or even longer). If less

than 64-bit of DNA number can be provided, these should be prepended with the

appropriate number of 1’s or 0’s. If the DNA number available by the FE is more than 64

bits, the extra bits should be truncated, although it has to be verified that the 64

remaining bits are only found in one FE among all of those connected to the TDCM.

At power-up, the TDCM does not know which FEs are present, and the FEs themselves

do not know to which port of the TDCM they are connected. The purpose of the present

procedure is for the TDCM to know which FEs are connected and assign them the

appropriate 5-bit ID. Each FE will be assigned the 5-bit ID that corresponds to the port

of the TDCM where it is connected. The TDCM performs FE enumeration in two steps:

firstly, it requests the DNA number of all FEs. Secondly, it associates each of the DNA

number received with the appropriate port index. Then the TDCM sends all FEs the

correspondence table between each DNA number and its assigned FE index. In the

second step of the procedure, each FE captures from this table the index that is

associated with its own DNA number.

Both steps of the procedure are conducted over Virtual Channel B by series of read

and write operations broadcasted to every FEs. These operations are performed in the

appropriate configuration register of the FEs to implement the serial protocol defined

later in this text. The serial interface to retrieve the DNA number of the FE and obtain

the FE index assigned by the TDCM takes the signals given in Table 12. These signals are

internal to the FPGA of the FE and are mapped to Register #9 as shown in Fig. 84.

Table 12 . Signals to interface to the DNA number and FE index block.

Signal Direction Function

DNA_CLK TDCM -> FE DNA block serial clock
DNA_SEL TDCM -> FE DNA block active high select
DNA_RD_WR TDCM -> FE DNA block active low read / active high write
DNA_ID_KEY TDCM -> FE DNA block serial input for DNA and ID table keys

sent to all FECs
MY_DNA_ID FE -> TDCM DNA block serial output for the DNA and ID of

this FE

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

57

To retrieve, the DNA number of the FEs, the TDCM generates the sequence shown in

Fig. 39. After asserting, DNA_SEL high and DNA_RD_WR low, a series of 70 serial clock

cycles are made by pulsing DNA_CLK. At every clock cycle, from cycle #0 to #63, the FE

places on MY_DNA the next bit of its own DNA number, starting from the MSB. On clock

cycle #64, the FE places a bit set to 0 if the ID of this FE was not set, and a 1 if the ID of

this FE was set. On clock cycles #65 to #69, the FE places the five bits of its assigned ID

(MSB-first) if this ID was assigned, and 0 otherwise. Note that the FE asynchronously

places its DNA number and ID bits after the rising edge of the serial clock. These data

bits are therefore captured by the TDCM on the falling edge of the serial clock.

Fig. 39. FE DNA number read operation.

After retrieving all DNA numbers of the FEs, the TDCM broadcasts to all FEs on Virtual

Channel B the keys that are composed each of one DNA number and its corresponding

assigned FE index. The FEs must listen to all keys, and when each individual FE detects

its own DNA, it captures its associated index. The procedure of sending one DNA and

index key also takes 70 serial clock cycles as shown in Fig. 40. After asserting DEV_SEL

high and DEV_RD_WR high, the TDCM places on DNA_ID_KEY successively the 70 bits of

a DNA value at each serial clock cycle. On clock cycle #64, the TDCM normally places 1

to clear in the corresponding FE the bit that tells that the ID of this FE was set. It can also

place a 0 instead to preserve the state of this bit. On clock cycles #64 to #69, the TDCM

places the 5-bit FE index (MSB first) matched to the DNA number it has just sent. Note

that the TDCM places serial data on DNA_ID_KEY on the rising edge of the serial clock.

The FE should therefore capture this data on the falling edge of the serial clock. The FE

that recognized its own DNA in the first part of the message must assign its index to the

supplied value, and it must set to 1 the bit that tells that its own index was set after the

5-bits of the Key ID have been received.

My DNA

Bit 0
My DNA

Bit 1 0 / 1
My ID
Bit 4

My ID
Bit 3

My ID
Bit 2

My ID
Bit 1

My ID
Bit 0

My DNA

Bit 2
My DNA

Bit 61
My DNA

Bit 62
My DNA

Bit 63 XX

DNA_SEL

DNA_RD_WR

DNA_CLK

MY_DNA_ID

DNA_ID_KEY

…

…

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

58

Fig. 40. DNA number and FE index key write operation.

After the TDCM has pushed to the FEs all the DNA-index keys, every FE should have

its index assigned. To verify this, the TDCM requests again all DNA numbers of the FEs

and checks that in all cases the 64th bit is set and the 5-bit index that follows effectively

corresponds to the expected port index. If power is lost on any FE or on the TDCM, the

FE identification and enumeration procedure must be re-run for proper operation.

The 5-bit index of the FE is available in read-only in Register #9 as shown in Fig. 84

(field CARD_ID). This index is also placed in the header of every packet of event data

sent from a FE to the TDCM to identify the origin of the packet. For coherent event

building and global event data consistency, it is critical that each FE is assigned the

correct index. The 5-bit index of the FE is also used to determine to which particular FE

the operations transmitted over Virtual Channel B apply (except for broadcast

operations). For proper FE configuration and monitoring, it is also critical that each FE

knows its correct ID. Finally, the ID of the FEs are also used to determine to which FEs

the commands sent on Virtual Channel C apply. Again, it is critical that every FE knows

its correct ID so that transfer of event data to the TDCM works properly.

My DNA

Bit 0
My DNA

Bit 1 0 / 1
My ID
Bit 4

My ID
Bit 3

My ID
Bit 2

My ID
Bit 1

My ID
Bit 0

My DNA

Bit 2
My DNA

Bit 61
My DNA

Bit 62
My DNA

Bit 63 XX

DNA_SEL

DNA_RD_WR

DNA_CLK

MY_DNA_ID

DNA_ID_KEY
Key DNA

Bit 0
Key DNA

Bit 1 1
Key ID
Bit 4

Key ID
Bit 3

Key ID
Bit 2

Key ID
Bit 1

Key ID
Bit 0

Key DNA

Bit 2
Key DNA

Bit 61
Key DNA

Bit 62
Key DNA

Bit 63 XX

…

…

…

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

59

7 TDCM LOCAL REGISTER AND MEMORY MAP
The run-time configuration parameters of the TDCM and the interaction between the

embedded processor integrated in the local FPGA and the logic implemented in its fabric

are controlled via a set of registers and memory blocks.

7.1 CONFIGURATION REGISTERS

The TDCM implements a bank composed of thirty-two 32-bit wide control and status

registers. The first sixteen registers are accessible in read/write by the local processor,

with the exception of a few bit fields that are read-only, while the other half are read-

only registers. These give access to the processor to the status and monitoring

information on the downstream logic.

The configuration and status register bank is accessible over the AXI-4 bus and is

mapped to the user address space of the local processor. The list of registers is given in

Table 13 and Table 14.

Table 13 . TDCM register bank – Configuration registers.

Register Name Main function

#0 - Various configuration fields
#1 TX_B_DATA Virtual Channel B transmit data
#2 TX_B_ADDR Virtual Channel B transmit address
#3 - Various configuration fields
#4 DATA_PUMP Determine the set of FE included in DAQ
#5 Various configuration fields
#6 - Various configuration fields
#7 EVENT_GEN Local event data generator settings
#8 TRIG_LATENCY_01 Trigger latency settings (first half)
#9 TRIG_LATENCY_23 Trigger latency settings (second half)

#10 FE_ACTIVE Determine the set of active FE
#11 MULT_TRIGGER Self-trigger multiplicity settings
#12 - Available for future use
#13 MTCM Controls the interface to the Master TCM
#14 Various configuration fields
#15 - Available for future use

Table 14 . TDCM register bank – Status and monitoring registers.

Register Name Main function

#16 FE_UP Set of FE with whom communication is established
#17 FE_SAMPLING Set of FE currently sampling detector signals
#18 FE_BUSY Set of FE busy with the readout of the current event
#19 RX_BERT Mbit received by TDCM in bit error rate tester mode
#20 RX_BERT_ERR Received bit error count in bit error rate tester mode

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

60

#21 STAT_CNT Message statistics counter
#22 TX_CNT Count of message transmitted to FE
#23 PUMP_RUNNING Set of data pumps in the running state
#24 PUMP_STALLED Set of data pumps in the stalled state
#25 EB_SOE Set of Start-Of-Event expected by the event builder
#26 EB_EOE Set of End-Of-Event expected by the event builder
#27 - Event builder, packet mover, trigger generator status
#28 EVENT_RX Number of events/triggers received from M-TCM
#29 EVENT_TX Number of events/triggers sent to FE
#30 MTCM Status Multi-function register for status of M-TCM interface
#31 - Available for future use

General Configuration (Register #0):

This register is shown Fig. 41.

Fig. 41. TDCM General Configuration Register #0.

The field PORT_SEL determines which of the 32 front-end ports is currently selected

for various types of operation such as sending a message over Virtual Channel B, reading

a message counter, etc. All the operations that use this field must set it to the desired

value before performing the actual operation because it may have been changed by

some other previous operation.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PORT_SEL<4..0>
RXB_START_RD
RXB_RDY
RXB_PERR
RXB_PILEUP
RXB_TIMEOUT
TX_DATA_B_RDY
Available
RX_RESET
Available
PUMP_TIMED
PUMP_TIMEOUT
EB_RUN
EB_KEEP_FEM_SOE
EB_CHECK_EV_NB
EB_CHECK_EV_TS
EB_TS_TOLERANCE
EB_DO_EOF_ON_EOE
Available

TDCM Register #0

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

61

The field START_RX_RD is used to start the readout of a message received over Virtual

Channel B from the FE port selected by PORT_SEL. The field RXB_RDY (read-only)

indicates that a message on Virtual Channel B from the selected port is available for

receive. The field RXB_PERR (read-only) indicates that the current message received

over Virtual Channel B has a parity error. The field RXB_PILEUP (read-only) indicates that

a new message was received on Virtual Channel B of the selected port before the

previous message was readout. This is not allowed by the protocol. Only the last

message can be read-out and all the other previous messages received over Virtual

Channel B on that port are lost. The field RXB_TMEOUT (read-only) indicates that no

response message was received over Virtual Channel B from the selected port within

the expected time after the transmission of a request message. This is an error situation

because every front-end shall return a response message to each request received over

Virtual Channel B.

The field TX_DATA_B_RDY is used to initiate the transmission of a message over

Virtual Channel B. Transmission occurs when this bit is changed from 0 to 1. It must be

cleared to 0 before the next message can be sent. The destination and the content of

the message being sent is determined by the registers TX_B_DATA and TX_B_ADDR.

The field RX_RESET is used to reset the receive link of the port selected by PORT_SEL.

The receive link is held in reset as long as this bit is set to 1. When it is cleared, the TDCM

attempts to synchronize the receive link on the expected null traffic pattern.

The bit PUMP_TIMED determines if the Data Pump operates in timeout mode or

infinite wait mode. The field PUMP_TIMEOUT determines the timeout value when

operating in timeout mode. The values 00, 01, 10 and 11 correspond to 1 ms, 10 ms, 100

ms and 1 s respectively. See the description of the Data Pump for details.

The bit EB_RUN is used to start and stop the local event builder. The field

EB_KEEP_FEM_SOE determines if the event builder forwards to the DAQ or drops the

Start Of Event packet transmitted by each front-end at the beginning of each event. The

field EB_CHECK_EV_NB determines if the local event builder performs the verification

of the event numbers sent by each front-end in their respective Start-Of-Event packet.

The bit EB_CHECK_EV_TS determines if the local event builder performs the verification

of the event timestamp sent by each front-end in their respective Start-Of-Event packet.

The field EB_TS_TOLERANCE determines the allowed mismatch between timestamp

values when timestamp verification is enabled in the local event builder. The values 00,

01, 10 and 11 corresponds to an allowable mismatch of 0 units, 1 unit, 2 units and 4 units

respectively.

The field EB_DO_EOF_ON_EOE is used to instruct the event builder that, when an

End-Of-Event is emitted, no further data will be placed in the same Ethernet frame that

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

62

is sent to the DAQ PC. The means that, when EB_DO_EOF_ON_EOE is set to 1, End-Of-

Event markers can only be found at the end of the Ethernet frames received by the

control PC. Setting this option can simplify the design of the back-end PC software

because event boundaries can be found only by looking at the beginning and the end of

every frame. When EB_DO_EOF_ON_EOE is set to 0, Ethernet frame filling is optimal,

but the control PC may need to scan all the received frames to detect event boundaries

because Start-Of-Event and End-Of-Event markers are not confined to the beginning and

the end of frame in this case, and can occur anywhere within a frame. Note also that

when EB_DO_EOF_ON_EOE is set to 1, one Ethernet frame cannot contain more than

one complete event.

Virtual Channel B Transmit Data (Register #1):

This register is shown in Fig. 42.

Fig. 42. Virtual Channel B Transmit Data.

This registers contains the four bytes of data to be transmitted in a message over

Virtual Channel B. The content is only relevant for write operations. It is recommended

to set it to 0 for read operations.

Virtual Channel B Transmit Address and Control (Register #2):

This register is shown in Fig. 43.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TX_B_DATA[7..0]
TX_B_DATA[15..8]
TX_B_DATA[23..16]
TX_B_DATA[31..24]

TDCM Register #1

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

63

Fig. 43. Virtual Channel B Transmit Address and Control.

This registers contains the four bytes of the address to be transmitted in a message

over Virtual Channel B as well as the destination and control information.

The field TX_B_ADDR specifies the 16-bit address to which the remote read or write

operation will take place over Virtual Channel B. The field TX_B_BYTE_ENA determines

which of the 4 bytes in the 32-bit wide location addressed are concerned by the remote

operation. The field TX_B_READ specifies a remote read operation. The field

TX_B_WRITE specified a remote write operation. It is permitted to send a message with

neither TX_B_READ nor TX_B_WRITE set. No operation is performed in this case, but a

response message must be sent by the target front-end. However, setting

simultaneously TX_B_READ and TX_B_WRITE is not permitted. The field

RX_B_FORMAT_ERR and RX_B_PARITY_ERR are not used in the transmit direction and

are only assigned by the front-end in response messages. The field TX_B_TARGET

determines the destination front-end of the message. When the TX_B_BROADCAST bit

is set to 0, the destination field is a single node, and when this bit is se to 1, the message

targets all front-end nodes. In the receive direction, the RX_B_BUS_ERR bit indicates

that the requested operation could not be completed successfully. This typically indicate

an attempt to access an invalid remote address location. The bit RX_B_START_BIT

indicates the state of the receive start bit. In the transmit direction, the start bit is

automatically inserted by the firmware. Note also that the parity bit is automatically

computed and inserted at the end of a message, so that the total length of messages

exchanged over Virtual Channel B is 64 bits.

 General Configuration and Control (Register #3):

This register is shown in Fig. 44.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TX_B_ADDR[7..0]
TX_B_ADDR[15..8]
TX_B_BYTE_ENA[3..0]
TX_B_READ
TX_B_WRITE
RX_B_FORMAT_ERR
RX_B_PARITY_ERROR
TX_B_TARGET
TX_B_BROADCAST /
RX_B_BUS_ERR
RX_B_START_BIT

TDCM Register #2

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

64

Fig. 44. General Configuration and Control Register #3.

The STAT_CNT_ABC field is used to determine from which Virtual Channel A, B, or C,

the transmit and receive message counters and the receive error message counters will

be captured. The capture of the selected message and error counters occurs when

STAT_CNT_LATCH is changed from 0 to 1 and latching occurs on all ports simultaneously

on RX and on TX. For the receive direction, two counters per port are latched when the

selected Virtual Channel is A or B. These are: 1) the number of correct messages

received, 2) the number of messages received with an error. For Virtual Channel C, the

following receive counters are latched on each port: 1) the number of packets correctly

received, 2) the number of packets with overrun error, 3) the number of packets with a

format error, 4) the number of packets with a size error, 5) the number of packets with

a CRC-32 error. In the transmit direction, there is only one port because a multi-cast

network is used. For Virtual Channel A, B and C the number of transmitted messages or

packets is counted. After the RX counters of all ports on the selected Virtual Channel

have been latched, STAT_CNT_SEL and PORT_SEL can be changed to select for read-out

the RX message counter or the RX error counters of one or several of the desired ports.

Neither STAT_CNT_SEL nor PORT_SEL have any effect on the TX counter that was

latched. Once the set of receive and transmit message counters of a Virtual have been

captured, the latched values remain unchanged until a new transition from 0 to 1 occurs

on STAT_CNT_LATCH. The value of the TX and RX latched counters are available in the

Transmit Message Counter and Statistics Message Counter Register of the TDCM

respectively. See Register #22 and Register #21 for definition and details.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

STAT_CNT_ABC
STAT_CNT_SEL
STAT_CNT_CLR
STAT_CNT_LATCH
RX_CRC32_CHECK_ENA
RX_CRC32_INJECT_ERR
Available
MT_RESET
INV_TDCM_CLK
INV_TDCM_MOSI
MT_MANCH_ENA
BE_TX_BERT_ENA
BE_TX_BERT_PAT
BE_TX_RATE
BE_TX_BERT_DOERR
TX_RDY
BE_RX_BERT_ENA
BE_RX_BERT_PAT
Available

TDCM Register #3

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

65

The capture of message counters within the TDCM is summarized in Table 15.

Table 15 . Capture of TDCM receive message counters.

STAT_CNT_ABC STAT_CNT_LATCH Counters latched

XX 0 or 1 stable or ↓ unchanged
00 ↑ Virtual Channel A TX and RX message

and error counters for all ports
01 ↑ Virtual Channel B TX and RX message

and error counters for all ports
10 ↑ Virtual Channel C TX and RX message

and error counters for all ports
11 ↑ Reserved

When the bit STAT_CNT_CLR is set to 1, this clears simultaneously the TX and RX

counters of all ports for the Virtual Channel selected by STAT_CNT_ABC. The bit

STAT_CNT_CLR must be cleared to 0 to enable the message counters. When

STAT_CNT_ABC is set to “11”’ and STAT_CNT_CLR is activated, all message and error

counters for both TX and RX on all ports and the three Virtual Channels are cleared in

the TDCM.

The bit RX_CRC32_CHECK_ENA is used to enable (1) or disable (0) the verification of

the CRC-32 on the packets received over Virtual Channel C. Except for testing purposes,

it is advised to always enable CRC-32 verification. Obviously, the CRC-32 insertion

feature must also be enabled on all the front-ends.

The bit RX_CRC32_INJECT_ERR is used to force the verification of the CRC-32 of a

received packet to fail. The error is introduced for the next non-null packet received over

Virtual Channel C after this bit is set from 0 to 1. This feature is useful for testing the

behavior of the local event builder of the TDCM in case of errors.

The bit MT_RESET is used to reset the main transmitter of the TDCM. Because a multi-

cast network is used, setting this bit to 1 will affect the transmit link from the TDCM to

every FE. The transmit path is held in reset as long as MT_RESET is held at 1. When it is

cleared to 0, the TDCM starts transmitting the null-data synchronization pattern. If the

transmit path of the TDCM is reset, it is also necessary to reset the receive path of every

front-end and re-synchronize all links.

The bit INV_TDCM_CLK is used to optionally invert the clock transmitted from the

TDCM to the FEs. This setting is only used when the physical layer between the TDCM

and the FEs uses RJ45 cables where a dedicated wire-pair is used to transport the

reference clock. With the optical physical layer, the clock is embedded with data over

the same physical media.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

66

The bit INV_TDCM_MOSI is used to optionally invert the serial stream transmitted by

the TDCM to the FEs. This inverts only the data pair when the physical layer between

the TDCM and the FEs are RJ45 cables and it inverts the encoded clock and data with the

optical media. The inversion applies to all TDCM to FE links because the same copy of

the serial bit stream is used for multi-cast.

The bit MT_MANCH_ENA is used to enable or disable DC-balanced encoding of the

serial data sent to the FEs. At present, setting this bit to 1 enables Manchester encoding

as explained in section 6.7.1 of this document. Non-DC balanced encoding may only be

used when the interface between the TDCM and the FEs uses DC-coupled media or for

testing purposes in bit error tester mode.

The bit BE_TX_BERT_ENA is used to enable or disable the bit error rate tester of the

TDCM in the transmit direction. The field BE_TX_BERT_PAT, BE_TX_RATE and

MT_MANCH_ENA determine the type of pseudo-random bit sequence generated and

the transmission rate as explained in Table 9 and Table 10.

The bit BE_TX_BERT_DOERR is used to force the transmission of a single bit error to

the FEs in bit error tester mode. This bit is used to verify the error detection capability

of the FEs in the receive direction. Currently, BE_TX_BERT_DOERR has no effect in

normal running mode, but this may be changed in the future to be able generating errors

also in normal running mode.

The bit TX_RDY is a read-only value that indicates that the transmit path from the

TDCM to the FEs is operational after a reset.

The bit BE_RX_BERT_ENA is used to enable (1) or disable (0) the bit error rate tester

function of the TDCM in the FE to TDCM direction. It is used in conjunction with the field

BE_RX_BERT_PAT to determine which pseudo-random bit pattern is expected to be

received. See section 6.10 for details on this bit error rate tester.

Data Pump Enable (Register #4):

This register is shown in Fig. 45.

Fig. 45. Data Pump Enable Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PUMP_ENA[31..0]

TDCM Register #4

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

67

This register determines from which set of FEs the TDCM shall gather data to

assemble the events that are forwarded to the external data acquisition system. Every

bit in this register corresponds to one physical port to a FE. Setting a 1 at one position

means that the corresponding FE is part of the data acquisition of the current run.

When at least one bit is set in this register, the TDCM sends data requests over Virtual

Channel C to the FEs that are activated provided that enough space is available in the

corresponding receive FIFO buffer for storing at least one data packet of the maximum

expected size. Assuming that the Data Pump is set to operate in timeout mode, each of

the FE to whom data have been requested must respond within the allowable timeout

period with an empty or non-empty data packet. Failure to do so is considered as an

error that will freeze the local event builder until the underlying problem is solved.

 General Configuration (Register #5):

This register is shown in Fig. 46.

Fig. 46. TDCM General Configuration Register #5.

The field SFT_EV_TYPE, SFT_CLR_TSTAMP, SFT_CLR_EVCNT, SFT_SCA_STOP,

SFT_SCA_START and SFT_WCK_SYNCH are used to transmit a software made trigger or

command to all FEs using Virtual Channel A. Although it cannot be predicted precisely

when this software made command will be transmitted, it reaches all FEs synchronously.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

SFT_EV_TYPE<1..0>
SFT_CLR_TSTAMP
SFT_CLR_EVCNT
SFT_SCA_STOP
SFT_SCA_START
SFT_WCK_SYNCH
Reserved
SFT_RESTART
Reserved
UW_CLK
UW_DATA
UW_LE
UW_GOE
LMK_SYNC_N
LMK_LD
S_I2C_REQ
S_I2C_GRANT
MEZZ_LED_RFSH<1..0>
Reserved

TDCM Register #5

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

68

The bit SFT_RESTART is used to restart the operation of the trigger generator state

machine.

The bit UW_CLK, UW_DATA, UW_LE, UW_GOE are used to implement a micro-wire

serial interface. This port is only used to configure boards equipped with a PLL of the

LMK032xx family. The LMK_SYNC_N is used to synchronize this PLL if it is needed. The

bit LMK_LD is a read-only bit indicating the status of the PLL Lock Detect pin.

The bit S_I2C_REQ is used by the local processor to gain access to the master I2C

controller of the TDCM. When access is granted to the processor, the line S_I2C_GRANT

is activated by the underlying firmware. Operations initiated by the processor on the I2C

bus must always request and obtain access to that bus before attempting to read or

write some I2C slave device. The S_I2C_REQ line must remain active during the complete

transaction and must be released afterwards.

The field MEZZ_LED_RFSH is used to enable (1) or disable (0) the automatic refresh

of the front panel LEDs of the physical layer mezzanine boards of the TDCM. One

configuration bit is available for each of the two mezzanine cards. When refresh is

enabled, the firmware of the TDCM will continuously detect the lock state of each FE

link and the activity on that link to update the front panel LEDs accordingly.

 General Configuration (Register #6):

This register is shown in Fig. 47.

Fig. 47. TDCM General Configuration Register #6.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TRIG_RATE<8..0>
EVENT_CNT_LIMIT<2..0>
AUTO_TRIG_ENA
NIM_TRIG_ENA
MTCM_TRIG_ENA
TTL_TRIG_ENA
SS_TRIG_ENA
Available
DO_END_OF_BUSY
Available
EVENT_MAX_TIME
Available
MULT_TRIG_ENA
MULT_TRIG_DST
SDCARD_WP
BUSY_RESOL
BIOS_N

TDCM Register #6

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

69

The field TRIG_RATE determines the rate of the periodic trigger generator embedded

in the TDCM. The two upper bits determine the rate range and resolution, while the

seven lower bits determine the relative rate from 0 to 100. This is shown in Table 16.

Table 16 . Trigger generator range and resolution.

TRIG_RATE<8..7> Range Resolution

00 0 to 10 Hz 0.1 Hz
01 10 to 1000 Hz 10 Hz
10 100 Hz to 10 kHz 100 Hz
11 1 kHz to 100 kHz 1 kHz

The field EVENT_CNT_LIMIT determines the maximum number of event that can be

generated by the local trigger generator or some external trigger input. Settings and the

corresponding event count are given in Table 17. When the allowable event limit is

reached, the local trigger state machine will stop generating new events or accepting

external triggers until it is restarted. Limiting the number of event to a precisely defined

value can be useful for system test and debugging.

Table 17 . Event count limit.

EVENT_CNT_LIMIT<2..0> Event limit

000 infinite
001 1
010 10
011 100
100 1000
101 10,000
110 100,000
111 1,000,000

The bit AUTO_TRIG_ENA is used to enable (1) or disable (0) the local periodic trigger

generator. The bit NIM_TRIG_ENA, MTCM_TRIG_ENA and TTL_TRIG_ENA are used to

enable (1) or disable (0) the corresponding source of external triggers. Several trigger

sources may be enables simultaneously. The TDCM supports two bits for defining the

type of trigger. Usage depends on actual firmware implementation.

The bit SS_TRIG_ENA is used to enable or disable the “Single Shot Trigger” of the

TDCM. When this mode is enabled, the TDCM generates automatically a single shot

trigger with controlled latency from SCA_START. The total latency is the sum of the delay

programmed in SS_TRIG_LAT and TRIG_LAT_2. The Single Shot Trigger mode is intended

to be used when the calibration pulser is enabled on the front-end side.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

70

The bit DO_END_OF_BUSY determines the behavior of the external BUSY pin. When

DO_END_OF_BUSY is 0, the BUSY pin remains in the active state as long as the TDCM

and the FEs are not available to take the next trigger. When DO_END_OF_BUSY is set to

1, the BUSY pin will only be activated for a short period when the TDCM and the FEs are

ready to take the next trigger.

The EVENT_MAX_TIME field determines the maximum amount of time that is

allowed for the readout of an event from the FEs. It can be programmed from 1 s to 17

s. Following a trigger, if a FE has not returned to the TDCM a SET_CLEAR_BUSY message

over Virtual Channel A within the allowable event read-out time, the trigger generator

state machine will reach an error state.

The MULT_TRIG_ENA bit is used to enable (1) or disable (0) the self-trigger based on

the multiplicity bits sent by the FEs. The bit MULT_TRIG_DST determines the action to

perform when a multiplicity trigger occurs. When MULT_DST_TRIG is set to 0, self-

triggers based on multiplicity are transmitted to all FEs. When MULT_TRIG_DST is set to

1, the multiplicity trigger is sent to the M-TCM or some other external master trigger

module.

The bit SDCARD_WP is the write protection for the microSD card. When this bit is set

to 1, write to the SD memory card is not possible. On all TDCM firmware versions 0.0,

the function of this bit was inverted in the firmware so that this bit had to be set to 1 to

enable write operation to the SD card and 0 for write protection. By default, write

protection was active. The problem came when installing Linux on the TDCM: when the

root file system is stored on the SD card – which may not a practical configuration but is

useful for tests and development – it is mandatory that the Linux kernel gets read and

write access to the media where the root file system is stored. Starting from TDCM

firmware release 1.0, the register bit controlling the write protection for the SD card is

no longer inverted at the level of the firmware. The write protection is therefore

disabled by default. The software commands for controlling this bits remain unchanged.

The field BUSY_RESOL determines the resolution and range of the system dead-time

histogram accumulated by the TDCM as shown in Table 18.

Table 18 . Dead-time histogram range and resolution.

BUSY_RESOL<1..0> Range Resolution

00 0 to 1.023 ms 1 µs
01 0 to 10.23 ms 10 µs
10 0 to 102.3 ms 100 µs
11 0 to 1023 ms 1 ms

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

71

The bit BIOS_N is a read-only bit that indicates when low that the external BIOS

button has been pushed. The state of this button is scanned by the TDCM at startup to

enter the “minibios” program that is used to configure various parameters of the TDCM

that need to persist after reboot. See the relevant section for details.

 Event Data Generator Configuration (Register #7):

This register determines the configuration and behavior of the event data generator

embedded in the TDCM. This register is shown in Fig. 48.

Fig. 48. Event Data Generator Configuration Register #7.

The field EG_SAMP_NUM determines the number of samples contained in every

channel data packet that are generated. This number can be set from 0 to 512 inclusive.

When EG_SAMP_NUM is set to an odd value, two null bytes are added after the actual

samples to guarantee that payload size is a multiple of four bytes. The field

EG_CHAN_NUM and EG_CHIP_NUM determine the equivalent number of channels per

chip and the number of chips per FE respectively for the data generator. The field

EG_CHIP_NUM can be set from 0 to 16 inclusive, while the EG_CHAN_NUM can be set

from 0 to 79 inclusive. When full event are produced, the generator makes events that

comprise EG_CHIP_NUM x EG_CHAN_NUM packets of data per simulated FE. Each data

packet contains EG_SAMP_NUM data samples coded on two bytes each, and two null

bytes when EG_SAMP_NUM is odd.

The bit EG_ENABLE is used to enable (1) or disable (0) the local event data generator.

The generator may not be used when physical FEs are present and activated.

The bit EG_EMIT_LAST_CELL is used to optionally emit the last cell indicator of the

AFTER/AGET chip in the event header packet. The bit EG_EMIT_HIT_COUNT is used to

optionally emit the AFTER/AGET channel hit count in the event header packet. When

these settings are enabled, constant values are put at the corresponding locations in the

event header packets. The field EG_MODE determines the operating mode of the event

data generator. The event generator can produce events of constant or variable size.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

EG_SAMP_NUM<9..0>
EG_CHAN_NUM<6..0>
EG_CHIP_NUM<4..0>
EG_ENABLE
EG_EMIT_LAST_CELL
EG_EMIT_HIT_COUNT
EG_MODE<1..0>
Reserved

TDCM Register #7

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

72

The size of each data packet can be made constant for all channels, or it can also vary

from one channel to the next within the same event. However, the packets generated

always have the same size across all simulated FEs. Possible settings for EG_MODE are

listed in Table 19.

Table 19 . Event Data Generator operating mode.

EG_MODE<1..0> Event Generated

X0 Constant size
01 Fragment of random size but constant within one event
11 Fragment of a different random size from one channel to

the next within every event

When the event data generator is enabled, all the possible sources of trigger,

provided they are enabled, can trigger the generation of one event. Note that if the FIFO

buffer of any FE fills-up, the event generator skips received triggers until memory space

becomes available.

 Trigger Latency (Register #8 and #9):

These registers determines the additional latency applied to trigger signals for up to

four types of triggers. The value programmed in each field is expressed in clock units of

10 ns. The added latency for each type of trigger is programmable from 0 to 655.350 µs.

These registers are shown in Fig. 49 and Fig. 50. The values TRIG_LAT_0, TRIG_LAT_1,

TRIG_LAT_2 and TRIG_LAT_3 apply to trigger type 0, 1, 2 and 3 respectively.

Fig. 49. Trigger Latency Register #8.

Fig. 50. Trigger Latency Register #9.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TRIG_LAT_0[15..0]
TRIG_LAT_1[15..0]

TDCM Register #8

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TRIG_LAT_2[15..0]
TRIG_LAT_3[15..0]

TDCM Register #9

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

73

Front-end active Register (Register #10):

This register determines which front-ends are active and which are either not present

or disabled. This register is shown in Fig. 51. Setting bits to 1 in this register indicates

that the corresponding FEs are currently active.

Fig. 51. Front-End active Register #10.

When a FE is not active (i.e. masked) at the TDCM level, all messages will still be sent

to the associated port because a hardwired fanout to all FEs is used. However, any

incoming message coming from a masked port will be ignored.

Trigger Multiplicity Register (Register #11):

This register determines the conditions for the generation of a self-trigger based on

the multiplicity signals received from the front-ends. This register is shown in Fig. 52.

Fig. 52. Trigger Multiplicity Register #11.

When the multiplicity trigger is enabled at both ends, the TDCM continuously

receives from each FE 4 bits indicating if the multiplicity of the corresponding AGET chip

is above or below threshold. The TDCM makes the arithmetic sum of all these bits and

applies the above programmable thresholds to determine when a self-trigger occurs.

Register #12:

This read-write registers is currently unassigned and is available for future use.

M-TCM interface (Register #13):

This register is used to control various functions of the M-TCM interface. It is shown

in Fig. 53.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

FE_ACTIVE[31..0]

TDCM Register #10

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

MULT_MORE_THAN[6..0]
MULT_LESS_THAN[13..7]
Available

TDCM Register #11

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

74

Fig. 53. M-TCM interface register.

The field MTCM_BERT_PAT is used to select which pseudo-random bit pattern is

expected and sent when the bit error rate tester is engaged. Possible values: “00”:

PRBS7; “01”: PRBS15; “10”: PRBS23; “11”: PRBS31.

The bit MTCM_BERT_ENA is used to enable or disable the bit error rate tester

function between the TDCM and the M-TCM. When MTCM_BERT_ENA is set to 1, the

bit stream received from the M-TCM is not forwarded to the trigger logic, but is

interpreted by the bit error rate tester. The bit MTCM_BERT_ENA shall return to 0 only

after the M-TCM has stopped sending the PRBS pattern and the communication link has

returned to its normal operation mode.

The bit MTCM_BERT_RXEN is used to effectively start the receive part of the bit error

rate tester after MTCM_BERT_ENA has been set to 1. When MTCM_BERT_RXEN is set

to 1, the internal logic tries to capture from the received bits a particular seed value that

occurs only once in the selected PRBS pattern. If the seed pattern can be found, the local

pseudorandom pattern generator is started and received bits are compared against the

expected ones. When MTCM_BERT_RXEN is cleared, received bits are no longer

compared with the expected pattern. MTCM_BERT_RXEN may be set to 1 again to

continue the test.

The bit MTCM_BERT_TXEN is used to enable the transmitter part of the bit error rate

tester after MTCM_BERT_ENA has been set. When MTCM_BERT_TXEN is set to 1, the

TDCM starts transmitting the selected PRBS to the M-TCM. Transmission continues until

MTCM_BERT_TXEN is cleared. When a transition from 0 to 1 is detected on

MTCM_BERT_DOERR, the transmitter sends the complement value of the current bit of

the PRBS to generate a single bit error. The MTCM must be able to detect this error.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

MTCM_BERT_PAT<1..0>
MTCM_BERT_ENA
MTCM_BERT_RXEN
MTCM_BERT_TXEN
MTCM_BERT_DOERR
MTCM_CNT_CLR
MTCM_CNT_LATCH
MTCM_CNT_SEL
Reserved
MTCM_MOSI_INV
MTCM_MISO_INV
MTCM_MOSI_SEL
MTCM_LOOPBACK
Reserved

TDCM Register #13

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

75

Pulsing the bit MTCM_CNT_CLR from 0 to 1 clears the message counter selected by

MTCM_CNT_SEL. After a counter has been cleared, MTCM_CNT_CLR shall be cleared.

Pulsing the bit MTCM_CNT_LATCH from 1 to 0 captures the content of the counter

selected by MTCM_CNT_SEL. The value of the captured counter is readable on Register

#30. It is recommended to make a transition, 0, 1, 0 on MTCM_CNT_LATCH to capture

each counter.

The field MTCM_CNT_SEL is used to select which message counter is cleared or

captured. The possible values are: “00”: RX count from M-TCM; “01”: RX error count

from M-TCM; “10”: TX count to TCM; “11”: reserved.

The bit MTCM_MOSI_INV is used to optionally invert the serial data received from

the M-TCM. This setting applies in the normal mode of operation of the link and in bit

error rate tester mode.

The bit MTCM_MISO_INV is used to optionally invert the serial data sent to the M-

TCM. This setting applies in the normal mode of operation of the link and in bit error

rate tester mode.

The bit MTCM_MOSI_SEL is used to select which of the 4 samples captured from the

MTCM_MOSI line are de-serialized. This setting can be used to compensate for some

static phase offset between the clock received from the M-TCM and the serial data.

The bit MTCM_LOOPBACK is used to set the M-TCM interface of the S-TDCM in

loopback mode. In this mode, when received a message “SCA_START”, the S-TDCM

returns “START_ACK” with the shortest possible delay. And when received a message

“SCA_STOP”, the S-TDCM returns a message “SET_BUSY” followed a few clock cycles

later by “CLR_BUSY”. The loopback mode is intended to test the normal M-TCM to S-

TDCM protocol without forwarding any of the traffic to the front-end side.

Register #14:

This register is shown in Fig. 54.

Fig. 54. TDCM General Configuration Register #14.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

SS_TRIG_LAT[7..0]
EXTRA_DEAD_TIME[9..0]
Reserved

TDCM Register #14

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

76

The field SS_TRIG_LAT is used to program the latency of the generated trigger in the

“Single Shot Trigger” mode. The value is expressed in units of 10 µs. The programmed

value must be at least 1, leading to a minimum 10 µs delay between SCA_START and the

generated trigger. The maximum delay is 25.5 ms. Note that in addition to the delay set

by SS_TRIG_LAT, the value programmed in TRIG_LAT_2 is also applied. The Single Shot

trigger mode should be used when the calibration pulser is enabled on the front-end

side. The latency of the pulser needs to be set so that injection occurs within the data

capture window. It is not recommended to set the total latency of the single shot trigger

to less than one complete turn in the SCA matrix of the front-end chip because previous

data and the transient signal caused by the activation of SCA_WRITE should be

completely erased before a new event is captured.

The field EXTRA_DEAD_TIME is used to program additional dead-time after sampling

in all FE has been restarted and before the TDCM releases its external BUSY pin, and it

posts CLEAR_BUSY to the M-TCM (when it is used). The additional dead-time is

expressed in µs and it can be set from 0 to 1023 µs.

Register #15:

This read-write register is currently unassigned and is available for future use.

Front-End Link OK Register (Register #16):

This register indicates to which FEs communication is currently established. Every bit

in this register correspond to one physical port on the TDCM. When a bit is 0 in this

register, it indicates that no FE appears to be present or communication with that FE

could not be established or was lost. This register is shown in Fig. 55.

Fig. 55. Front-End Link OK Register #16.

Front-End is Sampling Register (Register #17):

This register indicates which FEs are currently in the “Sampling” state. Every bit

corresponds to one port on the TDCM. This register is shown in Fig. 56.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

FE_LINK_OK[31..0]

TDCM Register #16

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

77

Fig. 56. Front-End Sampling Register #17.

The “Sampling” state is when front-end ASICs are writing in the SCA the analog signals

from the associated detector.

Front-End is Busy Register (Register #18):

This register indicates which FEs are currently in the “Busy” state. Every bit

corresponds to one port on the TDCM. This register is shown in Fig. 57.

Fig. 57. Front-End is Busy Register #18.

Following a trigger, when a FE is in the “Sampling” state it changes it state to “Busy”.

The “Busy” state includes the time needed for the digitization on the SCA and all the

additional time until writing in the SCA resumes, i.e. the FEC returns to the “Sampling”

state.

 Bit Error Rate Tester – Receive Mbit Count (Register #19):

This register contains the number of Mbit receive from the front-end side in bit error

rate tester mode. This register is shown in Fig. 58.

Fig. 58. Bit Error Rate Tester – Received Mbit (Register #19).

The content of this register starts incrementing in bit error rate tester mode as soon

as BERT_START is detected. The nominal link rate from the FE to the TDCM is 400 Mbit/s.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

FE_IS_SAMPLING[31..0]

TDCM Register #17

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

FE_IS_BUSY[31..0]

TDCM Register #18

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

BERT_RX_MBIT[31..0]

TDCM Register #19

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

78

Consequently, this counter is incremented by one unit every 2.5 ms. It will roll-over after

106 × 232 bit are received, i.e. ~4 months.

Bit Error Rate Tester – Receive State and Error Counter (Register #20)

This register contains the number of Mbit receive from the front-end side in bit error

rate tester mode. This register is shown in Fig. 59.

Fig. 59. Bit Error Rate Tester – Receive State and Error Counter (Register #20).

The field RX_BERT_ERR_CNT contains the number of bit errors detected from the

selected FEC when in bit error rate tester mode. The field RX_BERT_DELAY contains the

delay applied on the pseudo-random received bit stream to align it to the locally

generated pattern. This is expressed in UI (i.e. 2.5 ns at the nominal rate of 400 Mbit/s).

The bit RX_BERT_LOCKED indicates whether the bit error rate tester has achieved lock

or not for the selected FE. Other fields in this register are invalid unless lock was

achieved.

Received Messages Statistics Counters (Register #21)

This register contains the receive statistics counters for one selected FE and one of

the three Virtual Channels. This register is shown in Fig. 60.

Fig. 60. Received Messages Statistics Counters (Register #21).

At first, the statistics counters of one Virtual Channel must be latched. This is

accomplished by setting STAT_CNT_ABC as desired and making a transition from 0 to 1

on STAT_CNT_LATCH. After this is done, the field RX_STAT_CNT is updated to the

statistics of the FE selected by PORT_SEL. The field and STAT_CNT_SEL determines which

of the received message counter or received message error counters are readout.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

RX_BERT_ERR_CNT[7..0]
RX_BERT_DELAY[15..8]
RX_BERT_LOCKED
Available

TDCM Register #20

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

RX_STAT_CNT[31..0]

TDCM Register #21

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

79

Transmit Message Counter (Register #22)

This register contains the counter of messages transmitted to the front-end. This

register is shown in Fig. 61.

Fig. 61. Transmit Message Counter (Register #22).

The field TX_STAT_CNT contains the number of messages sent over Virtual Channel

A, B or C according to STAT_CNT_ABC after the corresponding counter has been latched

by a transition from 0 to 1 on STAT_CNT_LATCH.

Data Pump Running (Register #23)

This register indicates which of the Data Pumps are in the “Running” state. This

register is shown in Fig. 62.

Fig. 62. Data Pump Running (Register #23).

Every bit in this register corresponds to one physical port on the TDCM. Each Data

Pump Running bit indicates that the TDCM is currently trying to get event data from the

corresponding FE. This is the normal expected state during data taking.

 Data Pump Stalled (Register #24)

This register indicates which of the Data Pumps are in the “Stalled” state. This register

is shown in Fig. 63.

Fig. 63. Data Pump Stalled (Register #24).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TX_STAT_CNT[31..0]

TDCM Register #22

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PUMP_RUNNING[31..0]

TDCM Register #23

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PUMP_STALLED[31..0]

TDCM Register #24

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

80

Every bit in this register corresponds to one physical port on the TDCM. Each Data

Pump Stalled bit indicates that the TDCM failed to get event data from the

corresponding FE. This is an error situation during data taking that indicates that the

corresponding FE is not responsive or did not return the expected empty data packets

within the allowable timeout period. This error must be resolved before normal data

acquisition can resume.

Event Builder – Start Of Event expected (Register #25)

This register indicates the set of FEs from which a Start Of Event packet is expected

for the event currently being read out. This register is shown in Fig. 64.

Fig. 64. Event Builder – Start Of Event expected (Register #25).

Every bit in this register corresponds to one physical port on the TDCM. Each

EB_SOE_EXPECTED bit indicates that the TDCM still expects the Start Of Event packet

from the corresponding FE to start the assembly of the current event. When the local

Event Builder is blocked because of an error, reading this register can help localize the

faulty FE or communication port.

Event Builder – End Of Event expected (Register #26)

This register indicates the set of FEs from which an End Of Event packet is expected

for the event currently being read out. This register is shown in Fig. 65.

Fig. 65. Event Builder – End Of Event expected (Register #26).

Every bit in this register corresponds to one physical port on the TDCM. Each

EB_EOE_EXPECTED bit indicates that the TDCM still expects the End Of Event packet

from the corresponding FE to finish the assembly of the current event. When the local

Event Builder is blocked because of an error, reading this register can help localize the

faulty FE or communication port.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

EB_SOE_EXPECTED[31..0]

TDCM Register #25

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

EB_EOE_EXPECTED[31..0]

TDCM Register #26

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

81

General Status Register (Register #27)

This register indicates the internal state of various components of the firmware of

the TDCM. This register is shown in Fig. 66.

The bit EB_COLLECTING_SOE indicates that the local event builder is collecting Start

Of Event packets for the current event.

The bit EB_WAIT_FE_PKT indicates that the local event builder is waiting for a packet

from the front-end indicated by the field EB_CURRENT_FE.

The status bit EB_MISSING_SOE indicates that the local event builder is in error

because it has not received the expected Start Of Event packet. The status bit

EB_MISSING_EOE indicates that one or several End Of Event packets are missing.

The status bit EB_EV_NB_MISMATCH indicates that the event builder detected that

at least one event number among all the Start Of Event packets for the current event do

not match. The status bit EB_EV_TS_MISMATCH indicates a timestamp mismatch that

exceeds the allowable limit.

The status bit PM_WAIT_GET_NXT_PKT indicates that the Packet Mover is currently

waiting before it can get the next data packet. The status bit PM_WAIT_PKT_FIFO_NE

indicates that the Packet Mover is currently waiting for a packet FIFO to be non-empty.

The status bit PM_WAIT_BUF_DESC indicates that the Packet Mover is currently waiting

for a buffer descriptor in order to start moving a received packet. The status bit

PM_WAIT_PKT_MOVED indicates that the Packet Mover is currently waiting for the end

of a message transfer from a Receive FIFO to some other memory location.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

82

Fig. 66. General Status Register (Register #27).

The status bit STANDBY indicates that the Trigger Handler is currently in some idle

state. The status bit WAITING_TRIG indicates that the Trigger Handler is currently

waiting for a trigger. This state is reached when all the front-ends are in the Sampling

state. The status bit WAITING_LAT indicates that the Trigger Handler has received a valid

trigger and is currently delaying this trigger by the programmed latency. This state is

transient and may not be observed. The status bit FE_BUSY indicates that one or several

FEs are currently busy. The status bit START_ACK_MISS indicates that one or several FEs

have not returned to the TDCM the expected acknowledge message following

SCA_START. The status bit TRIG_ACK_MISS indicates that one or several FEs have nor

returned to the TDCM the expected acknowledge message following SCA_STOP. The

status bit NO_BUSY_MISS indicates that one or several FEs have not sent a message with

the CLEAR_BUSY flag set within the allowable maximum event read out time.

Event Received Count (Register #28)

This register counts the number of valid trigger received by the TDCM. This register

is shown in Fig. 67.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

EB_COLLECTING_SOE
EB_WAIT_FE_PKT
EB_CURRENT_FE
EB_MISSING_SOE
EB_MISSING_EOE
EB_EV_NB_MISMATCH
EB_EV_TS_MISMATCH
Not assigned
PM_WAIT_GET_NXT_PKT
PM_WAIT_PKT_FIFO_NE
PM_WAIT_BUF_DESC
PM_WAIT_PKT_MOVED
Not Assigned
STANDBY
WAITING_TRIG
WAITING_LAT
FE_BUSY
START_ACK_MISS
TRIG_ACK_MISS
NO_BUSY_MISS
Not assigned

TDCM Register #27

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

83

Fig. 67. Event Received Count (Register #28).

This counter is incremented by one unit for each trigger, internally generated or

externally received.

Event Transmit Count (Register #29)

This register counts the number of valid trigger transmitted by the TDCM to the front-

end side. This register is shown in Fig. 68.

Fig. 68. Event Transmit Count (Register #29).

This counter is incremented by one unit for each trigger transmitted to the FEs. It

cannot exceed the number of events received.

Register #30

This register is used to display the status of the interface to the M-TCM. It is a multi-

format register as shown in Fig. 69. The 24 LSBs are updated when MTCM_CNT_LATCH

is pulsed, according to which counter is selected by MTCM_CNT_SEL. The TX and RX

counters count the number of “items” being sent or received. An item means one

message when the link between the S-TDCM and M-TCM operates in the normal mode.

Each item means 106 bits when the bit error rate tester mode is engaged.

When the RX error counter is selected, the 8 LSB’s contain the number of parity errors

detected in received messages when the link runs in normal mode, and the number of

bit errors when running in bit error rate tester mode. The bit RX_BERT_RUNNING

indicates that lock onto the received PRBS is achieved. In normal mode, this bit is

unused.

The 8 MSB’s of this register have a fixed signification. The bit MTCM_DETECTED is set

to 1 after a stable high level is detected on the cable signal MTCM_ENAREM and the DIP

switch “MTCM” is manually set to the ON position on the S-TDCM.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

EVENT_RX_CNT[31..0]

TDCM Register #28

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

EVENT_TX_CNT[31..0]

TDCM Register #29

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

84

Fig. 69. M-TDCM Status Register (Register #30)

Register #31

The definition of this register is shown in Fig. 70.

Fig. 70. TDCM Firmware Version Register (Register #31)

Starting from Software Version 3.32 of the TDCM (April 2021), a read-only field has

been defined to also keep track of firmware changes. The field FW_FAMILY is planned

to be used to distinguish between four possible different applications (e.g. T2K-II,

PandaX-III, PUMA or others). The fields FW_MAJOR_VERSION and FW_MINOR_VERSION

define the current version of the firmware.

7.2 RING BUFFER INTERFACE
Data transfers from the receivers of the links connected to front-end electronics to

the scatter-gather DMA Ethernet controller embedded in the FPGA of the TDCM are

handled by the “Ring Buffer Interface” where descriptors pointing to buffers located in

the SDRAM attached to the SoC are exchanged between the local processor and the

local FPGA logic. At system initialization, a pool of buffers is allocated in the SDRAM of

the SoC to contain event data. Each buffer is coupled to a buffer descriptor that contains

a pointer to it. Free buffer descriptors are posted by the local processor to the

programmable logic via a FIFO, called the out-bound FIFO – OFIFO in short, accessible

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

RX_ITEM_CNT[23..0]

RX_ERR_CNT[7..0]
Reserved
RX_BERT_RUNNING
Reserved

TX_ITEM_CNT[23..0]
Reserved
MTCM_DETECTED

TDCM Register #30

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

FW_MINOR_VERSION[4..0]
FW_MAJOR_VERSION[2..0]
FW_FAMILY[1..0]
reserved

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

85

through the AXI-4 bus. Free buffer descriptors are consumed by the FPGA logic as they

are needed to store the event data received from the front-end link receivers. When a

buffer does not have sufficient remaining space to store the next block of event data, or

when no data has been received after a programmable time out value has elapsed, its

associated buffer descriptor is posted by the FPGA logic to the local processor via a FIFO,

called the in-bound FIFO, IFIFO in short. The local processor is responsible for unloading

buffer descriptors from the IFIFO, pre-pend header information (e.g. Ethernet, IP and

UDP headers) to the filled buffers and post them to the Ethernet controller for DMA

transmission to the DAQ PC. When a buffer has been sent, the local processor returns

its associated buffer descriptor to the OFIFO for re-use.

The resource map of the ring buffer interface is shown in Table 20.

Table 20 . Ring Buffer Interface Resource Map.

Address range Access Function

RBF_Base+0x0 R/W Ring Buffer Control/Configuration
RBF_Base+0x4 R Logic to processor in-bound FIFO
RBF_Base+0x4 W Processor to logic out-bound FIFO

The RBF_Base is the 32-bit address assigned for this IP block via the Address Editor

panel of Xilinx tools at synthesis time. It cannot be changed afterwards. The

corresponding address range must not be made cacheable. At system initialization, the

local processor must program the Ring Buffer Configuration register first and then write

to the out-bound FIFO the set of free buffer descriptors. The Ring Buffer

Control/Configuration register is shown in Fig. 71.

Fig. 71. Ring Buffer Control/Configuration Register.

The field RBF_CAPA specifies (in bytes) the size of the buffers pointed by the buffer

descriptors exchanged over the in-bound and out-bound FIFOs. All buffers must have an

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

RBF_CAPA
reserved
RBF_RESET
RBF_RUN
RBF_RETPND
RBF_TIMED
RBF_TIMEVAL
reserved
RBF_BASE

Ring Buffer Control/Configuration Register

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

86

equal size and must be aligned to 8 KByte boundaries. The size must be a multiple of 4

bytes and must be greater than the Ethernet MTU. It is recommended to use 8 KByte

buffers so that Ethernet Jumbo frames up to that size can be accommodated.

The RBF_RESET field should be set and cleared by the local processor at startup to

initialize the programmable logic side of the interface properly.

The RBF_RUN bit must be set to 1 to start data transfers after configuration and after

a sufficient number of free buffer descriptors have been posted to the hardware. This

bit can be cleared to stop data transfers. The RBF_RETPND bit can be pulsed to force the

local logic to abort filling the current buffer descriptor and post it to the processor in-

bound FIFO.

The RBF_TIMED bit should be set to 1 to operate the ring buffer in a mode where

partially filled buffers are returned to the IFIFO after a timeout period has elapsed. The

field RBF_TIMEVAL determines the time to wait before sending a partially filled buffer.

The four possible timeout values are 1 ms, 10 ms, 100 ms and 1 s. When RBF_TIMED is

cleared, the ring buffer logic will wait indefinitely for data to optimally fill buffers before

sending them (unless RBF_RETPND is pulsed).

The RBF_BASE field gives the 8 MSB’s of the 32-bit memory base address where the

array of data buffers is placed. This base address must start on a 16-MByte boundary

and normally points to a region in the SDRAM attached to the SoC. Assuming 511 buffers

of 8 KByte are allocated, 4 MByte of memory storage have to be allocated.

The buffer descriptors exchanged over the in-bound and out-bound FIFOs are 32-bit

words. Hence fetching or posting a descriptor only requires a single 32-bit access. The

fields of a buffer descriptor are shown in Fig. 72.

Fig. 72. Buffer Descriptor.

The HW_OFFSET field is used in descriptors posted to the out-bound FIFO to indicate

to the embedded logic the location of the first free location in the corresponding buffer.

The embedded software should set a non-null value in this field to reserve the necessary

space to put Ethernet and other protocol headers (i.e. Ethernet frame header, IP and

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

HW_OFFSET /
WRITE_POS
BUF_MID_ADDR
reserved

Buffer Descriptor

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

87

UDP or TCP headers). Additional space can be reserved to pre-pend specific and user

defined header information in software after the core of data buffer has been filled by

the hardware. The value of HW_OFFSET must be multiple of 4. Assuming standard

Ethernet and UDP/IP framing, the header information is actually only 42 bytes. This must

be rounded up to 44 bytes and the first two bytes of the UDP payload must be set by

the local processor in the present implementation.

Starting from TDCM embedded software version 3.14, the potential support for other

network protocols (e.g. TCP/IP) is anticipated. In the perspective of protocol

independence, the field HW_OFFSET is set to 68 bytes to leave sufficient space for the

protocol header. The network protocol header must be placed at the appropriate offset

by the on-board software so that it is contiguous with the actual payload which is filled

by the hardware. In the case of UDP/IP, which is still the transfer protocol being used by

the TDCM, the 42 bytes of standard UDP/IP header and the first 2 bytes of UDP payload

are placed starting at on offset of 24 bytes from the origin of the buffer.

When descriptors are read from the in-bound FIFO, the 13 LSB’s of the buffer

descriptor are the current position of the pointer where additional data may be written.

Software may append trailing information starting from this offset. This field is also used

to determine the size of data that has been filled in the buffer pointed by the descriptor

(HW_OFFSET must be subtracted to get the actual size of data that was filled in the

buffer by the programmable logic side).

 The BUF_MID_ADDRESS is used in conjunction with the RBF_BASE address to

determine the physical memory base address of the buffer pointed by this descriptor.

The 32-bit base address of the buffer is formed by concatenating RBF_BASE,

BUF_MID_ADDRESS, and twelve padding 0’s. The resulting address is therefore aligned

on 8 KByte boundaries (i.e. the maximum capacity of a buffer). The maximum number

of buffer descriptors is 2048 corresponding to up to a 16-MByte buffer array. However,

the in-bound and out-bound FIFOs have only 511 positions each and it is recommended

to set the number of descriptors to 511 or less to avoid any overflow.

The relations between the Ring Buffer Configuration Register, a buffer descriptor and

the actual buffer are shown schematically on Fig. 73 and Fig. 74 for an empty buffer and

for a buffer filled with data respectively.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

88

Fig. 73. Forming the address of a free buffer.

Fig. 74. Forming the address of a buffer filled with data.

7.3 DUAL-PORTED MEMORY BLOCKS
In addition to its bank of configuration registers and the Ring Buffer Interface, the

processor side of the TDCM also shares with the programmable logic side several dual-

ported memory blocks. The base address of these memory blocks is assigned via Xilinx

tools at synthesis time and cannot be changed afterwards. The corresponding address

range must not be made cacheable. The dual-ported memory blocks used by the TDCM

are listed in Table 21.

Table 21 . TDCM variables mapped to dual-ported RAM locations.

Variable Element Type Function

hbusy[1024] unsigned int Dead-time histogram bins
hevper[1024] unsigned int Inter-event time histogram bins

hbusy:

3
1

2
4

1
3

0
2
3

1
3

1
2

0

Buffer Descriptor

3
1

2
4

2
3

1
3

1
2

0

RBF_BASE HW_OFFSETBUF_MID_ADDR

Ring Buffer Configuration Register

RBF_BASE BUF_MID_ADDR HW_OFFSET

Buffer

Buffer Address Pointer

Space for
headers

Buffer
Capacity
(e.g. 8 KB)

RBF_CAPA
3
1

3
1

2
4

1
3

0
2
3

1
3

1
2

0

Buffer Descriptor

3
1

2
4

2
3

1
3

1
2

0

RBF_BASE WRITE_POSBUF_MID_ADDR

Ring Buffer Configuration Register

RBF_BASE BUF_MID_ADDR WRITE_POS

Buffer

Buffer Address Pointer

RBF_CAPA
3
1

Space for
headers

Event data

Free space

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

89

This memory region is used to store the bins of the dead time histogram. Histogram

accumulation is handled by the firmware side but software is responsible for clearing

histogram bins. The dynamic range of each bin is 32 bits. Bin size is programmable

among four values: 1 µs, 10 µs, 100 µs and 1 ms. The last bin of the histogram (#1023)

is used to accumulate overflows. The range is selectable from 0 to 1.022 ms with 1 µs

resolution to 0 to 1.022 s with 1 ms resolution.

hevper:

This memory region is used to store the bins of the inter-event time histogram.

Histogram accumulation is handled by the firmware side but software is responsible for

clearing histogram bins. The dynamic range of each bin is 32 bits. Bin size is fixed to 1

ms. The range of this histogram is [0; 1.022 s] because the last bin (#1023) is used to

count overflows.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

90

8 FRONT END NODE RESOURCE MAP
The TDCM sees the configuration and monitoring register space of each FE as a virtual

memory organized in 16K-words of 32 bits. This memory space is accessible remotely by

the TDCM via read and write transactions serialized on the communication link between

the TDCM and the FEs using Virtual Channel B.

The configuration parameters of a FE and locally monitored variables are accessible

via:

 a set of sixteen 32-bit wide registers,

 six dual-port memory blocks.

The address map of these different resources is shown in Table 22.

Table 22 . Mapping of FE resources remotely accessible by TDCM.

Address range Region Type Function

0x0000-0x1FFF #0 Registers Configuration Registers
0x2000-0x3FFF #1 DPRAM Hit Register Rules Table
0x4000-0x5FFF #2 DPRAM Test Data Table
0x6000-0x7FFF #3 DPRAM SPI Flash controller data buffers
0x8000-0x9FFF #4 DPRAM Pedestal and Threshold Table
0xA000-0xBFFF #5 DPRAM Dead-time histogram bins
0xC000-0xDFFF #6 DPRAM Histograms of per event channel hit count
0xE000-0xFFFF #7 - available

8.1 INTERNAL CONFIGURATION REGISTERS

The internal register map of a generic FE is shown in Table 23. The base address is

0x0000. All addresses are aligned on 32-bit boundaries and little-endian byte ordering is

assumed.

Table 23 . Internal registers of a FE.

Address Register Access Function

Base+0x00 #0 R/W General configuration
Base+0x04 #1 R/W Front-end ASIC control
Base+0x08 #2 R/W Trigger configuration
Base+0x0C #3 R/W Pulser configuration
Base+0x10 #4 R/W Multiplicity thresholds
Base+0x14 #5 R/W Configuration Register
Base+0x18 #6 R/W S-TDCM interface
Base+0x1C #7 RO Free running clock cycle counter
Base+0x20 #8 R/W Multiplicity Limit
Base+0x24 #9 R/W Extended Configuration
Base+0x28 #10 R/W Link message counter

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

91

Base+0x2C #11 R/W Multiplicity Control
Base+0x30 #12 R/W SPI Flash Controller
Base+0x34 #13 R/W XADC Interface
Base+0x38 #14 R/W ADC receiver delays
Base+0x3C #15 RO Firmware Version

General Configuration (Register #0):

This register is shown in Fig. 75.

The SCA_CNT field determines the number of SCA cells to readout. This parameter

can be set from 1 to 511 and 1 to 512 in the AFTER mode and AGET mode respectively.

The MODE_AFTER bit determines if the FE is being used to readout AFTER chips

(MODE_AFTER=1) or AGET chips. This bit is 0 by default. Both modes may not be

supported by some hardware flavors of the FE.

The RST_CHAN_CNT bit is used in the AGET mode to define the number of reset cycles

that appear at the output of the device when switching from one column to the next.

The AFTER chip has a fixed number of reset cycles which is equal to 3. The AGET chip can

be programmed to have 2 or 4 reset cycles. In addition to programming the AGET chips

with the desired value, the configuration register of the FE must be set accordingly:

RST_CHAN_CNT=0 (default value) corresponds to 2 reset cycles.

Fig. 75. General Configuration Register (Register#0).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

SCA_CNT
MODE_AFTER
RST_CHAN_CNT
FORCE_ON_ALL
ZERO_SUPRESS
PED_SUBTRACT
EMIT_CH_HIT_CNT
KEEP_RST_CHAN
SKIP_RST_UNTIL
MODIFY_HIT_REG
SCA_ENABLE
SCA_AUTO_START
SFT_SCA_START
SFT_SCA_STOP
SFT_CLR_TSTAMP
SFT_CLR_EVCNT
BIOS_B
reserved

FE Register #0

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

92

When set, the FORCE_ON_ALL bit is used in the AGET mode to inform the local logic

that all 64 physical channels and 4 FPN channels of the AGET chips are being readout.

The AGET chips must be programmed accordingly. When this option is selected, the logic

of the FE expects to receive 70 or 72 ADC samples per time-bin (corresponding to 2 or 4

reset values + 64 channels + 4 FPN). The readout of the channel hit register is skipped

when this option is active. In the AFTER mode, this option need not be specified because

the AFTER chip does not support sparse channel readout and, in this mode, the FE logic

always expects 79 samples per time-bin (3 reset phases + 72 physical channels + 4 FPN).

The ZERO_SUPPRESS bit is used to optionally apply a zero-suppression algorithm on

channel data. When this bit is not set, all data are kept. See zero-suppression algorithm

details for more information. This option is valid in both AGET and AFTER modes.

The PED_SUBTRACT bit is used to optionally subtract a pre-loaded constant to each

channel. See pedestal subtraction section for details. This option is valid in both AGET

and AFTER modes.

The EMIT_CH_HIT_CNT is used to optionally add in the data stream sent to the TDCM

the number of channels that were hit in each of the ASICs controlled by the FE. This

information is useful for debugging. In the AFTER mode, the number of channel hit will

always be 79. In the AGET mode, the value returned will vary from 6 to 72 depending on

the number of reset channel count and hit register count (if it is not by-passed by other

settings). Note that the number of reset phases and FPN channels count are always

added to compute the total number of channel hit in a chip.

The KEEP_RST_CHAN bit can be optionally set to keep in the data stream sent to the

TDCM the data corresponding to the reset channels of the AFTER or AGET chips. Keeping

the data of these non-physical channels can be used for some specific debugging tasks.

The SKIP_RST_UNTIL field is used when KEEP_RST_CHAN is disabled to determine

which of the reset channel data are discarded and which are sent to the TDCM. Most

users will not want to keep any of the reset channel data. In the AGET mode, the

corresponding value for this field is “01” when the number of reset phases is

programmed to 2 and “11” when the number of reset phases is 4. In the AFTER mode,

this field should be set to “10” to skip transmitting the data of 3 reset channels.

The MODIFY_HIT_REG bit is used to enable/disable modification of the hit register

content before SCA digitization (only available in the AGET mode). When the

MODIFY_HIT_REG bit and FORCE_ON_ALL bit are cleared, the logic of the FE reads the

content of the Hit Channel Register of the active AGET chips it controls to determine the

subset of channels that are readout for the current event. When MODIFY_HIT_REG is

set to 1 while FORCE_ON_ALL is cleared, the logic of the FE reads the content of the Hit

Channel Register of the active AGET chips, preserves forces to 1 or forces to 0 each

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

93

individual bit, and writes to the AGET chips the altered value. After all Channel Hit

Registers have been updated, SCA digitization is initiated. The per-channel, PRESERVE,

FORCE_ON and FORCE_OFF settings are programmed during system configuration. See

the relevant section for details.

The SCA_ENABLE bit is used to enable/disable the operation of the ASICs controlled

by the FE. This bit must be set to 1 for normal operation, after system configuration.

The SCA_AUTO_START bit is used to determine when the write operation in the SCA

of the front-end ASICs can be started. When the SCA_AUTO_START bit is set to 1, the FE

will start the SCA write operation for the next event as soon as possible after the

digitization of the current event. When this bit is cleared, the FE will not restart the write

operation in front-end SCAs until this order has been received from the TDCM. In a

single, standalone FE setup, SCA_AUTO_START should be set to 1. It leads to the shortest

possible dead-time. In a setup with several FEs controlled by a TDCM, this bit should be

set to 0 for operation in a common dead-time mode, but it can also bit set to 1 if each

FE is allowed to handle its own dead-time independently.

The SFT_SCA_START bit is used to asynchronously start writing in front end SCAs. The

operation takes place on the transition from 0 to 1 of this bit. The user need not act on

this setting when SCA_AUTO_START is active or when the SCA start order is received

from the S-TDCM. This option is mainly used when the pulse generator of the FE is being

used.

The SFT_SCA_STOP bit is used to generate software triggers. It should be set to 1 and

then returned to 0. The SCA_START order must have been received (via the TDCM or the

SCA_AUTO_START flag) prior to SFT_SCA_STOP to effectively trigger SCA digitization.

The SFT_CLR_TSAMP bit is used to asynchronously clear the event time stamp

counter. The clear is performed when this bit is set from 0 to 1. The SFT_CLR_TSAMP bit

must be cleared to 0 before this function can be re-used.

 The SFT_CLR_EVCNT bit is used to asynchronously clear the event counter. The clear

is performed when this bit is set from 0 to 1. The SFT_CLR_EVCNT bit must be cleared to

0 before this function can be re-used.

The bit BIOS_B is a read-only bit that reflect the state of the corresponding push-

button on the FE. When this push button is pressed, BIOS_B is 0, and it is 1 when this

button is released. In the version of the ARC that uses an embedded processor, this push

button can be used to enter a special mode at startup which is used to configure some

specific parameters (e.g. IP and MAC address, card ID, etc). Other implementations of

the FE may not have this push button, or may use it for a different purpose.

Front-End ASIC Control (Register #1):

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

94

Initially, the interface to read and write to the registers of the ASICs of a front-end

was designed to support up to 4 ASICs per front-end card. This interface has been

upgraded to support up to 16 ASICs per front-end. The mapping of this register is shown

in Fig. 76 and Fig. 77 for the 4 ASIC per front-end and 16 ASIC per front-end versions

respectively. Even if a front-end only includes 4 ASICs, the 16-ASICs capable version of

the interface should be used. The 4-ASIC version is now deprecated.

Fig. 76. Front-end ASIC control register (Register #1) – 4 ASIC version. Deprecated.

In the 4-ASIC version of the interface, the ASFC_CS<3..0> bits are directly connected

electrically to the slow control Sc_en line of each individual ASIC controlled by the FE.

The ASFC_MISO<3..0> bits maps to the Sc_dout line of each individual ASIC. In the 16-

ASIC version of the interface, the ASFC_CS_MUX<3..0> bits drive a 16-bit demultiplexer

(implemented in firmware logic) that applies the state of bit ASFC_CS_VAL to one

selected ASIC among up to 16. The bit ASFC_MISO takes the state of the Sc_dout line of

the ASIC which is selected by ASCF_CS_MUX<3..0>. A 16-to-1 multiplexer implemented

in firmware logic selects the Sc_dout line of one ASIC among up to 16.

In both the 4-ASIC and 16-ASIC versions of the interface, the ASFC_SCLK bit maps

directly to the serial clock line (Sc_ck) of all ASICs, and the ASFC_MOSI bit maps to the

Sc_din line which is common to all ASICs.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

ASFC_CS<3..0>
ASFC_MISO<3..0>
ASFC_MOSI
ASFC_SCLK
SC_REQ
GEN_CS
PUL_LOAD
Reserved
SC_GRANT
SYNCH_REQ
KEEP_FCO
FEC_ENABLE
FEC_POW_INV
ASIC _MASK
OW_LDACT
OW_ACTION
OW_BUSY
OW_MISO
Reserved
TIME_PROBE

FE Register #1 (4 ASIC version)

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

95

Embedded software running on the TDCM is responsible for controlling these lines in

order to implement the serial protocol to read and write to the configuration registers

of the ASICs of front-ends. For performance reasons, read/write operations from/to the

Hit Channel Registers are implemented in firmware.

Fig. 77. Front-end ASIC control register (Register #1) – 16 ASIC version – Active.

The SC_REQ bit is used to determine which of the remote processor or local firmware

can access the slow control lines of the ASICs. When the TDCM wishes to perform a slow

control operation on ASIC registers, it sets the SC_REQ bit to 1. The SC_GRANT bit will

then be set by the local firmware to indicate that the slow control lines of the ASICs can

be used. The SC_REQ should be held high until the end of the slow control operation. In

the AGET mode, software is responsible for setting the slow control lines in the “slow

control mode” just after access to these lines has been granted, and must configure

these lines in the “channel address control mode” before releasing them. After system

power-up, the embedded software should at least perform one slow control operation

in each ASIC to ensure that the slow control lines are set in the “channel address control

mode”.

The GEN_CS bit is used as a chip select signal for programming the amplitude value

of the on-board pulse generator of the FE. The lines ASFC_MOSI and ASFC_SCLK are used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

ASFC_CS_MUX<3..0>
ASFC_CS_VAL
Reserved
ASFC_MISO
ASFC_MOSI
ASFC_SCLK
SC_REQ
GEN_CS
PUL_LOAD
Reserved
SC_GRANT
SYNCH_REQ
KEEP_FCO
FEC_ENABLE<1..0>
FEC_MASK<1..0>
reserved
OW_LDACT
OW_ACTION
OW_BUSY
OW_MISO
OW_SEL
TIME_PROBE

FE Register #1 (16 ASIC version)

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

96

as the serial data input and serial clock when programming this generator. For

implementation reasons, the value programmed in the pulse generator cannot be read

back. In order to program the DAC of the pulse generator, access to slow control lines

must be obtained using the SC_REQ/SC_GRANT hand-shake protocol.

The PUL_LOAD bit is used to immediately update the DAC of the pulse generator to

the pre-loaded value by pulsing signal GEN_GO. This bit is normally used to set/restore

the baseline output level of the DAC of the pulse generator before the desired pulse

amplitude is pre-loaded and automatically updated when pulse injection occurs.

The SYNCH_REQ bit is used to re-synchronize the ADC de-serializer logic. Only expert

users should use this bit.

The KEEP_FCO flag is used to optionally replace the samples of ADC channel #3 (or #7

and #15 in the T2K-II FEM) by the framing pattern delivered by the ADC (signal “FCO” =

“111111000000”). This option is used for advanced debugging of the ADC interface.

The FEC_ENABLE bit field is used to control power on up to two FECs attached to the

front-end unit. By default, this bit is cleared and both FECs are OFF. One or both bits

must be set to 1 to power ON the corresponding FECs. This operation must be done prior

to any read/write operation in ASIC registers and data taking. For a hardware

configuration that have only one FEC, only the LSB of this field is active. The control of

power via this bit is not supported by all hardware implementations of the front-end

card.

The FEC_MASK bit field is used to optionally mask one of the two FECs or both of

them in case of the T2K FEM. When one bit is set to 1 in this field, the FEM will not wait

until this FEC is powered up to resynchronize the associated ADC reception logic. In the

normal operation of the FEM with two FECs, this field should be left to its default value

“00”. This ensures that the FEM will wait for the two FECs to be powered up before data

acquisition can be performed.

The OW_LDACT bit is used to initiate an action on the OneWire controller that drives

the FEx_ID pin selected by OW_SEL (if the FE contains several OneWire devices). The

action to be performed is specified by the OW_ACTION field as follows: “00” performs

reset and presence pulse detection; “01” reads one bit from the OneWire device, “10”

and “11” write 0 and 1 respectively to the device. After posting an action to the OneWire

controller, the flag OW_BUSY is active until completion and the bit read from the

OneWire device is available in OW_MISO.

The bit TIME_PROBE bit is intended to be routed to a spare FPGA output pin on the

FE. Changing the state of this field in software can be used to measure precise time

intervals with an oscilloscope connected to the corresponding pin. This function shall

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

97

only be used by developers and a comparable pin may not be available in other front-

end designs.

Trigger Control (Register #2):

This register is shown in Fig. 78.

Fig. 78. Trigger Control Register (Register #2).

The TRIG_DELAY field is used to apply a fixed latency to the SCA_STOP order. The

delay is expressed in 10 ns units and is programmable from 0 to 1.3 ms. This field

supports two ranges, determined by the MSB of TRIG_DELAY. When TRIG_DELAY(15) is

0, the supported range is [0; 327.67 µs] in steps of 10 ns. When TRIG_DELAY(15) is 1, the

supported range is [0; 1.31068 ms] in steps of 40 ns.

The TRIG_RATE field and TRIG_RATE_RANGE field are used to specify the trigger rate

when the embedded periodic trigger generator is used. Four frequency ranges are

available with 100 values per range. Range “00” is from 0.1 Hz to 10 Hz in steps of 0.1

Hz; range “01” is from 10 Hz to 1 kHz in steps of 10 Hz; range “10” is from 100 Hz to 10

kHz in steps of 100 Hz; range “11” is from 1 kHz to 100 kHz in steps of 1 kHz.

The EVENT_CNT_LIMIT is used to allow that only a pre-defined number of events flow

through the system after SCA_ENABLE is asserted. This feature is useful for system

debugging. When EVENT_CNT_LIMIT is set to “000”, there is no limitation on the

number of events that are allowed to pass though the FE. When EVENT_CNT_LIMIT is

set to “001” or other values up to “111”, the FE card will not respond to triggers after 1;

10; 100; 1000; 10,000; 100,000 or 1,000,000 events have been acquired. To resume

operation, the SCA_ENABLE bit must be cleared and set back to 1. Setting a pre-defined

number of events is useful for system development and debugging.

The AUTO_TRIG_ENABLE bit is used to start/stop the embedded periodic trigger

generator. When enabled, the generator will start after an initial delay of ~1 s. Note that

the readout system may not be able to sustain the desired trigger rate and some of the

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TRIG_DELAY
TRIG_RATE
TRIG_RATE_RANGE
EVENT_CNT_LIMIT
AUTO_TRIG_ENABLE
EXT_TRIG_ENABLE
PUL_TRIG_ENABLE
TDCM_TRIG_ENABLE

FE Register #2

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

98

periodic triggers may be lost. The periodic generator is mostly used for system test and

performance evaluation.

The EXT_TRIG_ENABLE bit is used to enable or mask triggers coming from the

EXT_TRIG pin of the FE. This pin may not be available in other front-end card designs.

The PUL_TRIG_ENABLE bit is used to enable or disable the generation of a trigger

when the pulse generator of the FE is fired. When this bit is active, the

AUTO_TRIG_ENABLE bit and SCA_AUTO_START bits must be cleared and the

PUL_ENABLE bit must be set.

The TDCM_TRIG_ENABLE bit is used to enable or mask the triggers received from the

TDCM via its optical or cable link.

Pulser and General Control (Register #3):

The content of this register is shown in Fig. 79.

Fig. 79. Pulser and General Control (Register #3)

The field PUL_DELAY is used to specify the delay from when the SCA write signal is

asserted to when the pulse generator is fired. The delay is expressed in 10 ns and 40 ns

units when PUL_DELAY_RANGE is 0 and 1 respectively. The maximum value is 327.67 µs

with 10 ns resolution and up to 1.31068 ms with 40 ns resolution. Note also that it takes

several clock cycles for the internal logic to actually fire the pulser. Pulse injection in the

very first SCA cells is not possible when the SCA write clock is 100 MHz.

The bit PUL_ENABLE is used to enable/disable the use of the pulser. When this bit is

set and PUL_TRIG_ENABLE is set, a trigger will automatically be generated when the

pulser fires. When PUL_ENABLE is set without PUL_TRIG_ENABLE being set, the

multiplicity trigger should be enabled.

The bit GEN_FT_TEST is used to optionally inject the output of the pulser to the

functional test input of the front-end ASIC of the FE. When this bit is set to 0, the

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PUL_DELAY
PUL_DELAY_RANGE
PUL_ENABLE
GEN_FT_TEST
Available
POLARITY
Available

FE Register #3

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

99

functional test input of the front-end ASICs shall be grounded. Nonetheless, the output

of the pulser shall still be fed via a precision capacitor to the calibration input of the

front-end ASICs. When GEN_FT_TEST is set to 1, the output of the calibration pulser is

fed to both, the functional test input and the calibration input of the front-end ASICs.

The actual behavior of this bit depends on the implementation of the pulser of the FE.

The POLARITY field is used to determine, on a per-chip basis, the behavior of the zero-

suppressor depending on the polarity of detector signals. When a POLARITY bit is 0, the

zero-suppressor keeps samples that are above threshold. This is intended to be used

with detectors that deliver negative signals. When a POLARITY bit is 1, the zero-

suppressor keeps samples that are below threshold. This mode is used with detectors

that deliver positive signals. The polarity of each of the four AFTER or AGET chips

controlled by the ARC can be programmed independently. This capability may differ in

other front-end designs.

Multiplicity Thresholds (Register #4):

The FE can generate a local multiplicity trigger by applying a programmable threshold

to each of the multiplicity signal of the four AGET chips. Each threshold is an 8-bit

unsigned integer. Each threshold is only applied if it is greater than 0. The content of

Register #4 is shown in Fig. 80.

Fig. 80. Multiplicity Enable and Threshold (Register #4).

Configuration (Register #5):

This register is described in Fig. 81.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

MULT_THR[0]
MULT_THR[1]
MULT_THR[2]
MULT_THR[3]

FE Register #4

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

100

Fig. 81. Configuration (Register #5)

The field SAMP_BEF is used to specify how many samples should be kept before

threshold is passed in zero-suppressed readout mode. The acceptable value is in [0; 15].

The field SAMP_BEF_AFT specifies the sum of the sample count kept before and after

threshold is passed in zero-suppressed readout mode. The acceptable value is in [0; 31].

The TEST_ENABLE bit is used to select the source of data before the zero-suppression

block. This bit should be cleared for normal operation where the data to process comes

from the ADC of the external front-end card. When the TEST_ENABLE bit is set to 1,

internally generated test data are used instead of ADC data.

When TEST_ENABLE is set to 1, the TEST_MODE bit is used to choose one of two types

of test data. When TEST_MODE is 0, test data are formed with the 12-LSBs of the

memory address of the ADC sample being readout. This setting is for advanced users

only. When TEST_MODE is 1, test data are formed by sequentially reading-out an

internal memory array. This memory array can be configured by the user with arbitrary

values or some pre-defined simple patterns. Refer to the relevant section for details.

The bit TEST_ZBT is used to select the data written to the ZBT SRAM event buffer.

When TEST_ZBT is 0, the data received from the ADC of the FE are written to this

memory. When TEST_ZBT is set to 1, the 12-LSB’s of the write pointer to the event buffer

are written instead. This setting shall only be used for debugging or diagnosis.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

SAMP_BEF
SAMP_BEF_AFT
TEST_ENABLE
TEST_MODE
TEST_ZBT
GEN_USE_LIMIT
EMIT_LST_CELL_RD
EOF_ON_EVENT_END
EMIT_EMPTY_CH
WCK_DIVISOR
ALIGNED
SCA_WRITE
SCA_READ
DEV_BUSY
DEV_READY
ZBT_FULL
EVF_FULL
RBF_OFIFO_EMPTY

FE Register #5

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

101

The bit GEN_USE_LIMIT determines how the field EVENT_CNT_LIMIT is interpreted.

When GEN_USE_LIMIT is set to 1, it is assumed that the internal event generator

determines the number of events to generate. When SCA are enabled, the generator

will make the desired number of events at the programmed rate and will stop. Events

that could not be recorded by the SCAs will be dropped. When GEN_USE_LIMIT is 0, the

internal generator or other sources of trigger will remain active until the SCAs have

captured the programmed number of events.

The bit EMIT_LST_CELL_RD determines if the last cell read pointer retrieved from

each ASIC are added or not to the stream sent to the TDCM. The value of the last cell

read pointer of all ASICs can be compared at the DAQ level or later off-line to verify the

correct synchronization of the front-end ASICs.

The bit EMIT_EMPTY_CH determines the content of the output stream sent to the

TDCM for channels that were digitized but whose data has been entirely removed by

the zero-suppression stage of the FE. When EMIT_EMPTY_CH is set to 1, empty channels

will be sent to the TDCM. The information send for an empty channel comprises a 16-

bit word to identify the channel index followed by a null 16-bit word to indicate that

there is no data for this channel. When EMIT_CH_EMPTY is cleared, channels that have

no data above threshold are not sent to the TDCM. This makes events more compact.

The field WCK_DIVISOR is used to set the value of the divisor to generate the SCA

write clock. The SCA write clock is obtained by dividing the 100 MHz reference clock by

WCK_DIVISOR. Valid values for WCK_DIVISOR are [1; 255] leading to discrete frequency

values of 100 MHz, 50 MHz, 33 MHz, 25 MHz, etc., down to ~392 kHz.

The ALIGNED flag indicates that the ADC correctly delineates received data from the

framing signal FCO. The binary pattern received on this line is six 1’s followed by six 0’s.

The SCA_WRITE and SCA_READ flags indicate that the front-end ASICs are currently

in the write mode and read mode respectively.

The DEV_BUSY flag indicates that the FE is currently busy with the readout of the

current event and is not ready to put front-end SCAs in the write state. The DEV_READY

flag indicates that the FE is ready to change its internal state to put front-end SCAs in

the write state.

The ZBT_FULL flag indicates that the memory for storing event data is full and cannot

accept the next event. The EVF_FLAG indicates that some of the internal FIFOs used to

store intermediate event information are full. The FE will not resume SCA write until

space is available in the event memory and in these FIFOs.

Configuration (Register #6):

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

102

This register contains various settings related to the communication link with the

TDCM. It is described in Fig. 82.

Fig. 82. TDCM interface register.

The STAT_CNT_ABC field is used in conjunction with STAT_RX_TX_SEL to determine

on which Virtual Channel A, B, or C and on which direction, transmit to the TDCM or

receive from the TDCM, the message counter and error message counter will be

captured and read-out. The capture of the selected message and error counter occurs

when STAT_CNT_LATCH is changed from 0 to 1. In the transmit direction, there is no

error counter and only the number of transmitted messages over Virtual Channel A, B

or C will be latched. In the receive direction, three counters will be latched for the

selected Virtual Channel. These are: 1) the number of correct messages received on the

selected Virtual Channel, 2) the number of messages received with a parity error, 3) the

number of messages received with a format error. After the RX counters of one Virtual

Channel has been latched, STAT_CNT_SEL can be changed to select for read-out the RX

message counter or the two RX error counters. The field STAT_CNT_SEL has not effect

when the TX counter is read-out. Once a counter, or a set of counters have been

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

STAT_CNT_ABC
STAT_RX_TX_SEL
STAT_CNT_SEL
STAT_CNT_LATCH
STAT_CNT_CLR
TX_CRC32_INSERT_ENA
Available
FE_RX_BERT_ENA
FE_RX_BERT_PAT
FE_TX_BERT_ENA
FE_TX_BERT_PAT
I2C_TARGET<1..0>
ADC_CS
ADC_SCLK
ADC_SDO
ADC_SDI
ADC_SDT
MMPOL<1..0>
I2C_SCL_O/T
I2C_SDA_O/T
I2C_SDA_I
Available
TSTAMP_CLR_ISSET (W)
TSTAMP_ISSET (R)
TS_INIT_SCLK
TS_INIT_SDAT
FRA_TIMEOUT<1..0>

FE Register #6

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

103

captured, the latched value remains unchanged until a new transition from 0 to 1 occurs

on STAT_CNT_LATCH. The value of the latched counter(s) is available in the Message

Count Register of the FE, see Register #10 definition for details.

The behavior of the various settings for controlling the read out of the messages

counters of the FE are summarized in Table 24.

Table 24 . FE message counters readout control settings.

STAT_CNT_ABC STAT_CNT_SEL STAT_TX_RX_SEL Counter for readout

00 0 0 RX message count A
00 1 0 RX error count A
01 0 0 RX message count B
01 1 0 RX error count B
10 0 0 RX message count C
10 0 0 RX error count C
11 X 0 Reserved
00 X 1 TX message count A
01 X 1 TX message count B
10 X 1 TX message count C
11 X 1 Reserved

The capture of message counters is summarized in Table 25.

Table 25 . FE message counters capture.

STAT_CNT_ABC STAT_TX_RX_SEL STAT_CNT_LATCH Counter latch

XX X 0 or 1 stable or ↓ unchanged
00 0 ↑ RX message and

error counters A
01 0 ↑ RX message and

error counters B
10 0 ↑ RX message and

error counters C
11 0 ↑ Reserved
00 1 ↑ TX message count A
01 1 ↑ TX message count B
10 1 ↑ TX message count C
11 1 ↑ Reserved

When the bit STAT_CNT_CLR is set to 1, this clears simultaneously the TX and RX

counters of the Virtual Channel selected by STAT_CNT_ABC. The bit STAT_CNT_CLR

must be cleared to 0 to enable the message counters. When STAT_CNT_ABC is set to

“11”’ and STAT_CNT_CLR is activated, all message and error counters on both TX and RX

and the three Virtual Channels are cleared in the FE.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

104

The bit TX_CRC32_INSERT_ENA determines if CRC-32 is appended at the end of

packets transmitted by the FE to the TDCM over Virtual Channel C. It is recommended

to always keep this bit equal to 1 so that CRC-32 generation is enabled on the FE

transmitter side.

The field FE_RX_BERT_ENA, FE_RX_BERT_PAT, FE_TX_BERT_ENA and

FE_TX_BERT_PAT are used to enable/disable and select the PRBS pattern of the bit error

rate tester for the TDCM to FE and FE to TDCM direction respectively.

The field I2C_TARGET is used on FE that have multiple I2C ports and ADC slow control

ports. It selects which I2C external bus and ADC slow control bus are active for the

transaction to be accomplished. The T2K FEM has three I2C interfaces and two ADC slow

control interfaces. Setting I2C_TARGET to “00” and “01” activates the I2C and ADC slow

control interfaces of FEC#0 and FEC#1 respectively. Setting I2C_TARGET to “10”

activates the I2C interface of the FEM. When I2C_TARGET is set to “11”, all I2C and ADC

slow control interfaces are disabled. For FE that only have one I2C interface, I2C_TARGET

must be set to “00”.

The bit fields ADC_CS, ADC_SCLK, ADC_SDO, ADC_SDI and ADC_SDT are used to

control a SPI like port used to configure special functions of the on-board ADC of the FE,

if the equipped model supports this interface (e.g. Analog Devices AD9928). Note that

the bit ADC_CS is inverted before driving the corresponding FPGA output pin which is

therefore name ADC_CS_B: setting the bit ADC_CS to a logic “1” translates into a low

level on the associated FPGA output pin ADC_CS_B. The bit ADC_SDI is read-only. The

bit ADC_SDT controls the tri-state function of the bi-directional FPGA I/O pin ADC_SDIO

which is physically connected to the external ADC. This interface can be left unconnected

if the model of ADC used on the FE is not configurable via this kind of serial interface, or

it can be used to control some other serial device on-board the FE. Some FE may have

several ADC slow control interface ports. The ADC slow control port which is active is

determined by the state of I2C_TARGET<1..0> (commonly shared with I2C port

selection).

The bit field MMPOL is used to control the PhotoMos relay that ground or leave

floating the polarization resistors connected every input channel of the FE. Assuming a

256-channel FE, each PhotoMos relay controls the grounding of 128 channels. During

normal operation, MMPOL should be set to “11” for the correct polarization of the

resistors connected to input channels. In case of an unacceptable spark rate of the

detector, or a permanent short between the high voltage mesh and one or several pads,

the polarization of a group of 128 pads can disconnected from ground by setting the

corresponding MMPOL bit to 0. Note that these pads do not produce meaningful data

in this case. The feature to control protection circuits is primarily intended for use with

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

105

metallic Micromegas detectors. It is normally not needed with resistive Micromegas and

other types of detectors.

The bit I2C_SCL_O/T, I2C_SDA_O/T and I2C_SDA_I control the two external pins that

implement an I2C master interface within the FPGA of the FE. The bit I2C_SCL_O/T maps

directly to the serial clock line. An external pull-up resistor is normally required. The bit

I2C_SDO/T maps to the serial output line and the tri-state control of the corresponding

bi-directional I/O pin of the FPGA. To configure the serial data line in input for the

master, the bit I2C_SDO/T must be set to 1. The serial data is then retrieved in the read-

only bit I2C_SDA_I. This I2C port is used to control some of the devices on-board the FE

(e.g. the monitoring interface of the SFP optical transceiver). Some FE may have several

I2C interface ports. The I2C port which is active is determined by the state of

I2C_TARGET<1..0> (commonly shared with ADC slow control port selection).

The field FRA_TIMEOUT is used to select the value of the timeout for sending an

empty data packet over Virtual Channel C when no event data is available to be sent.

Setting FRA_TIMEOUT to “00”, “01”, “10” and “11” sets the timeout value to 1 ms, 10

ms, 100 ms and 1 s respectively.

Free running clock cycle counter (Register #7):

This register is a free running counter which is incremented every 20 ns. It provides

the time reference needed to measure time intervals in software. This timer rolls over

every 1’ 25”.

Multiplicity Limits (Register #8):

Two comparators are used on the multiplicity signal delivered by each AGET chip. To

generate a multiplicity hit, it is required that the multiplicity signal is above a

programmable threshold and is simultaneously less than a programmable limit.

The multiplicity limits are mapped to Register #8 as shown in Fig. 83. Each multiplicity

limit is an 8-bit unsigned integer. It must be different from 0 if multiplicity trigger is used.

Fig. 83. Multiplicity limit register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

MULT_LIMIT[0]
MULT_LIMIT[1]
MULT_LIMIT[2]
MULT_LIMIT[3]

FE Register #8

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

106

Extended Configuration Register (Register #9):

This register is shown in Fig. 84.

Fig. 84. Extended configuration register (Register#9).

The field BUSY_RESOL sets the resolution of the timer for the accumulation of the

dead-time histogram. Four resolutions are available: 1 µs (“00”), 10 µs (“01”), 100 µs

(“10”) and 1 ms (“11”).

The field CARD_ID contains the index of the card assigned by the TDCM after the card

enumeration based on the DNA number of each card has been completed. This field is

cleared after power-up. The bit CARD_ID_SET indicates if the index stored in CARD_ID is

valid or not.

The bit DNA_CLK is the serial input clock for the operation to read/write the DNA

number and FE index. The bit DNA_SEL is set to 1 to perform a read or write operation

in the DNA number block. The bit DNA_RD_WR is set to 0 and 1 to perform a read or

write operation respectively in the DNA number block. The bit DNA_ID_KEY is the input

to serially load a DNA number to be compared with the local DNA number, as well of the

corresponding FE index. The bit MY_DNA is used to serially output the local DNA and FE

index.

The ASIC_MASK field is used to optionally disable one or several ASICs. Masked ASICs

cannot be configured and readout. Reading and modifying their Channel Hit Register is

skipped. Masking ASICs should be done when using partially equipped FE or to increase

readout performance when only a fraction of the available channels of a FE are used.

The user should always leave at least one un-masked ASIC for proper operation.

 Message Counter Register (Register #10):

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

BUSY_RESOL
CARD_ID
CARD_ID_SET
DNA_CLK
DNA_SEL
DNA_RD_WR
DNA_ID_KEY
MY_DNA
Reserved
ASIC_MASK

FE Register #9

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

107

This register contains the value of the message counter that was latched. Note that

the TX or RX message counters will roll over to 0 after reaching 232-1 while the RX error

counters will saturate at 255 until they are cleared. The content of this register is shown

in Fig. 85.

Fig. 85. Message Counter Register.

Multiplicity Control Register (Register #11):

This register controls several functions related to multiplicity processing. The content

of this register is shown in Fig. 86.

Fig. 86. Multiplicity Control Register.

The bit MULT_TRIG_ENA is used to enable or disable the self-trigger based on

multiplicity. When this bit is set, a self-trigger will be generated whenever the

multiplicity output of one or several of the four AGET chips controlled by the FE passes

the multiplicity threshold programmed.

The bit SND_MULT_ENA is used to enable or disable the transmission of the

multiplicity-over-threshold bits to the TDCM. When this bit is active, the TDCM can be

programmed to generate a trigger based on system-level multiplicity-over-threshold

bits.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TX or RX message count

RX Parity error count
RX format error count
Reserved

FE Register #10

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

MULT_TRIG_ENA
SND_MULT_ENA
ERASE_HIT_ENA
Reserved
ERASE_HIT_THR_0
ERASE_HIT_THR_1
ERASE_HIT_THR_2
ERASE_HIT_THR_3
Reserved

FE Register #11

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

108

The bit ERASE_HIT_ENA is used to enable the function that clears the content of the

hit register before digitization for chips that have a number of channel hit above a

programmable threshold. This bit is only active in the AGET mode and when

MODIFY_HIT_REG is also set.

The fields ERASE_HIT_THR specify for each AGET chip the maximum number of

channel hit that are retained when ERASE_HIT_ENA and MODIFY_HIT_REG are set. In

this mode, the content of the hit channel register is cleared if the number of hit channel

is above the specified threshold. The threshold is a 3 bit value programmable from 0x0

to 0x7 and corresponds to a maximum allowable number of hit channels of 4 to 32 in

increments of 4 channels.

SPI Flash Controller (Register #12)

This register is used with its associated DPRAM block by the SPI Flash Controller block

that allows read-back and programming of the non-volatile memory device that stores

the FPGA bitstream, and possibly other parameters. The content of this register is shown

in Fig. 87.

Fig. 87. SPI Flash Controller Register.

The fields SFC_WR_BYTE_CNT and SFC_RD_BYTE_CNT are used to define respectively

the number of bytes to write to and read from the SPI Flash memory. The write data

must be programmed in the associated BRAM before the transfer is initiated and the

read data is available in the BRAM buffer after the transfer is complete. The bit

SFC_DO_TRANSFER initiates a transfer to/from the SPI flash memory when a transition

from 0 to 1 is performed. The user must return SFC_DO_TRANSFER from 1 to 0 before a

new transfer can be initiated. This can be done at any time. The bit SFC_BUSY is a read

only bit which is set to 1 when a transfer is in progress and cleared when it is completed.

No transaction request can be accepted when SFC_BUSY is active. Note that when

SFC_BUSY is released, this only means that the desired command has been posted to

the flash memory, but this does not mean that this device has effectively completed the

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

SFC_WR_BYTE_CNT
Reserved
SFC_RD_BYTE_CNT
Reserved
SFC_DO_TRANSFER
SFC_BUSY
Reserved

FE Register #12

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

109

execution of this command and is ready to accept a new one. Polling on the status

register of the flash memory is needed to determine the completion status of some

commands (e.g. write, erase sector, etc.).

XADC Interface (Register #13)

This interface register is used to program the ADC embedded in the FPGA, “XADC” of

the FE. The same interface is used to read back monitored variables. The content of this

register is shown in Fig. 88.

Fig. 88. XADC Interface Register.

The field MONI_ADDR is used to select the desired XADC register on the Dynamic

Reconfiguration Port (DRP). The bit MONI_WE is used to specify that the transaction is

a write. If MONI_WE is set low, it is a read transaction. The field MONI_DAT_RD /

MONI_DATA_WR is a written with the data to be loaded in the XADC for write

transactions and contains the data read from the XADC upon read transactions. The

MONI_REQ bit is set to a high level to initiate the actual transaction and shall be cleared

upon completion. The bit MONI_PENDING is a read only field that is set to a high level

when a transaction is pending. When the current transaction is completed the bit

MONI_DONE is set. In case of error, the bit MONI_TIMEOUT is set.

ADC receiver delays (Register #14)

This register is used to adjust the various delays of the receiver logic connected to

the ADC that digitizes the ASICs (AFTER, AGET, or others) of the FE. Currently, this

register is only used for the T2K2 FEM which controls 2 octal-channel ADCs (Analog

Devices AD9637) for the readout of 16 AFTER chips. The content of this register is shown

in Fig. 89.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

MONI_ADDR
MONI_WE
MONI_REQ
MONI_DONE
MONI_TIMEOUT
MONI_PENDING
Reserved
MONI_DATA_RD
MONI_DATA_WR

FE Register #13

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

110

Fig. 89. ADC receiver delay adjustments.

The fields ADC_DCO_DELAY_0/_1 are used to delay the corresponding DCO clock

signal received from the ADC of a T2K2 FEC. The delay is implemented in an IDELAY

primitive of the Artix 7 FPGA that equip the T2K2 FEM. Sixteen settings are made

available in the present implementation, providing an adjustable range of 0 ps to 2496

ps with 186 ps resolution.

The fields ADC_FCO_DELAY_0/_1 set the delay lines for the FCO framing signal and

the eight data signals received from the ADC of the FEC. The adjustable range is identical

to the above.

The field ADC_PIPE_DELAY is used to adjust the delay of the logic that compensates

for the latency of the ADC of the FECs when the SCA of the front-end ASICs are read out.

Currently, this settings is common to the two FECs driven by the FEM, but individual

settings may be required (still under development and test). The adjustment of this

delay is from 0 ns to 150 ns in steps of 10 ns. Given that the clock period of the ADC is

80 ns, the adjustable range for this delay is close to two ADC samples.

 All the above delays have to be set to the recommended values for correct

operation. These values are determined experimentally on the hardware and are

expected to be identical for all boards, but this cannot be verified at the current time.

Firmware Version Register (Register #15):

This read-only register contains the version number of the firmware currently loaded

in the front-end. The content of this register is shown in Fig. 90.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

ADC_DCO_DELAY_0
ADC_DCO_DELAY_1
ADC_FCO_DELAY_0
ADC_FCO_DELAY_1
ADC_PIPE_DELAY
Reserved

FE Register #14

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

111

Fig. 90. Firmware Version Register.

The field FW_FAMILY is used to distinguish among several types of FE of several

different projects. This field should be set to zero it is not used. The fields

FW_MAJOR_REV and FW_MINOR_REV are used to specify the major and minor revision

number of the current firmware. The firmware revision number can range from version

0.0 to version 7.31. The firmware revision number is managed manually at compilation

time. The designer of the front-end firmware is responsible for assigning the major and

minor revision number and updating them appropriately.

8.2 DUAL-PORTED MEMORY BLOCKS
In addition to a bank of configuration registers, the FE is also controlled through

several dual-ported memory blocks. Each memory block is mapped to an 8 Kbyte region

within the 64 Kbyte virtual memory space accessible by the TDCM on Virtual Channel B.

Table 26 . FE variables mapped to dual-ported RAM locations.

Variable Element Type Function

pedthrlut[4][128]
or
pedthrlut[16][128]

short, ushort Pedestal and Threshold Table

hitregrule[4][128] ushort, ushort Hit Register Rules Table
testdata[4096] unsigned short Test Data Table
sfcbuffer[2][1024] unsigned char SPI Flash Controller W/R data

buffers
hbusy[1024] unsigned int Dead-time histogram bins
hhitcnt[4][128] unsigned int Histogram of per event channel

hit count

pedthrlut:

This table is used to store the constant pedestal and threshold value for each channel

of the 4 (or 16) ASICs controlled by the FE. Although 128 entries are available for each

ASIC, only 70, 72 or 79 entries are used depending on the selected mode (AGET or

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

FW_MINOR_REV
FW_MAJOR_REV
FW_FAMILY
Reserved

FE Register #15

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

112

AFTER) and the number of reset cycles (2 or 4 in the AGET mode). The per channel

pedestal value is a 9-bit signed integer that is added to channel data when the bit

PED_SUBTRACT of the configuration register is set. The available range for pedestal

values is [-4096; +4095] ADC counts. Pedestals are coded in 2’s complement. Threshold

values are used to perform zero-suppression when the ZERO_SUPPRESS configuration

bit is set. The zero-suppression phase takes place after the optional pedestal

subtraction. Threshold values are 9-bit unsigned integers. The available range is [0;

4095] ADC counts.

hitregrule:

When operating in the AGET mode, this table is used to store the rules that determine

how to optionally alter the content of the Hit Channel Register before SCA digitization.

Each 32-bit entry in this table maps to two binary fields, ForceOn (bit 0) and ForceOff

(bit 16). When ForceOn and ForceOff are cleared, the content of the corresponding bit

in the Hit Channel Register is unaltered. When ForceOn is set to 1, the corresponding

channel will be readout even if it was not hit. Reciprocally, when ForceOff is set to 1, the

corresponding channel will be skipped from readout even if it was hit. ForceOn and

ForceOff bits may not be set simultaneously. The table contains 128-entries per AGET

but only 70 or 72 entries are used. Note that the channels corresponding to the reset

sequence of the SCA (2 or 4 channels) cannot be skipped at this stage and the

ForceOn/ForceOff flags have no effect on these channels. The readout of FPN channels

is controlled by register settings in the AGET chips but the relevant ForceOn/ForceOff

entries must also be programmed in a coherent way.

testdata:

This table is used to store a programmable pre-defined pattern of data to operate the

FE in test mode. Each table entry is interpreted as a 12-bit unsigned ADC value

corresponding to the successive time-bins of the channels being hit. The table has 4096-

entries. Assuming that the user wishes to exercise the readout with 512 time-bins per

channel, different arbitrary data for up to 8 channel hit can be programmed. Table

entries are re-scanned from the first address for each event, and wraparound occurs

when the number of channel hit multiplied by the number of time bins per channel

exceeds table size. When accessing this table from the TDCM, the supplied address must

be aligned on 4-byte boundaries. Selecting the two upper bytes or lower bytes allows

the access to the desired 16-bit word.

sfcbuffer:

This memory area is the write buffer (lower half) and read buffer (upper) half needed

by the SPI Flash Controller. The write buffer and read buffer can contain up to 1024 bytes

each. The address supplied by the TDCM to read or write this area must be aligned on

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

113

4-byte boundaries. The four byte enable bits supplied with the address must be used to

select which of the four addressed bytes are affected.

hbusy:

This memory region is used to store the bins of the dead time histogram. Histogram

accumulation is handled by the firmware side but software is responsible for clearing

histogram bins. The dynamic range of each bin is 32 bits.

hhitcnt:

Some implementations of the FE (e.g. the ARC) accumulates the histogram of the

number of channels hit per event and per ASIC (i.e. 4 histograms are stored). The

maximum number of channels hit is 72 and 79 in the AGET and AFTER mode respectively

(recall that pedestal channels and reset channels are also counted), but enough space

for 128 bins per histogram is reserved. Each histogram bin is a 32-bit unsigned value.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

114

9 FORMAT OF MESSAGES AND DATA PACKETS
The front-ends communicate with the TDCM over point-to-point links with

proprietary encoding while the TDCM communicates with the DAQ PC over a standard

UDP/IP socket interface. Commands sent from the DAQ PC to the TDCM are encoded in

plain ASCII text according to the syntax described in section 10. Commands are executed

locally in the TDCM or translated into binary messages sent to the front-ends over virtual

channels A, B or C. Responses from the front-ends are coded in binary format and are

either reformatted in ASCII by the TDCM or simply packed and encapsulated in Ethernet

frames before they are sent to the DAQ PC.

Data sent from the front-end to the TDCM assumes Little-Endian byte ordering. The

same byte order is kept for communication with the DAQ PC. Contrary to the Internet

convention, data sent by the TDCM use Little-Endian byte ordering.

The TDCM card supports standard Ethernet frame length (up to ~1500 bytes) for

10/100/1000 Mbps speed and Jumbo frames up to 8 KByte in Gigabit Ethernet mode.

Messages sent by the TDCM to the front-ends have a fixed size. Messages sent from the

front-ends to the TDCM also have a fixed size on virtual channel A and B, but data

packets sent on virtual channel C have a variable size. The maximum size of a packet

sent on virtual channel C is typically around 2 KByte. It corresponds to the size of the

data of one front-end channel in uncompressed readout mode.

9.1 PREFIX-CODE FORMAT

The basic information datum is a 16-bit short word. For coding compactness, the

front-end cards and TDCM uses a prefix-code where a variable fraction of the 16-bits of

an information datum is used to define the type of data being encoded and the

remaining bits (followed by one or several 16-bit words if needed) are used to encode

the data itself. In order to decode data, application software needs to identify the prefix

of each data element. The scan should be done starting from the shortest prefix then

trying longer ones until a match is found. Once the prefix has been identified, the size of

the data element is determined implicitly or can be retrieved from the data itself. If

decoding software does not find a matching prefix in a data item, this is a serious error

that indicates data transmission corruption, software bugs, non-synchronized protocol

versions, or similar problems that need to be resolved for proper operation. The list of

available prefix is listed in Table 27.

Table 27 . List of prefix.

Prefix Name Function and Data Field

2-bit prefix 14-bit data field

11xxxxxyyzzzzzzz PFX_CARD_CHIP_CHAN_HIT_IX Specify that sub-sequent data belong to channel
<zzzzzzz> of chip <yy> of front-end <xxxxx>

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

115

10xxxxxxxxxxxxxx Available for future use
01xxxxxyyzzzzzzz PFX_CARD_CHIP_CHAN_HISTO Specify that sub-sequent data is pedestal

histrogram of channel <zzzzzzz> of chip <yy> of
front-end <xxxxx>

4-bit prefix 12-bit data field

0011xxxxxxxxxxxx PFX_ADC_SAMPLE Encodes a 12-bit ADC sample value
0010xxxxxxxxxxxx PFX_LAT_HISTO_BIN 12-bit count of the current bin of the dead-time

latency histogram

5-bit prefix 11-bit data field

00011xxyyyyyyyyy PFX_CHIP_LAST_CELL_READ The last cell read pointer of ASIC <xx> is
<yyyyyyyyy>

6-bit prefix 10-bit data field

000101xxxxxxxxxx Available for future use

7-bit prefix 9-bit data field

0000111xxxxxxxxx PFX_TIME_BIN_IX The ADC samples that follow start at time-bin
<xxxxxxxxx>

0000110xxxxxxxxx PFX_HISTO_BIN_IX Specifies the bin index in the current histogram

0000101xxxxxxxxx PFX_PEDTHR_LIST List of pedestals or thresholds

0000100xxxyzzzzz PFX_START_OF_DFRAME Start of data frame. Encoding version is <xxx>
source type is <y> source index is <zzzzz>

0000011xxxyzzzzz PFX_START_OF_MFRAME Start of frame with monitoring information.
Encoding version is <xxx> source type is <y>
source index is <zzzzz>

0000010xxxyzzzzz PFX_START_OF_CFRAME Start of configuration reply frame. Encoding
version is <xxx> source type is <y> source index is
<zzzzz>

0001001xxyyyyyyy PFX_CHIP_CHAN_HIT_CNT Specifies that the total channel hit count of chip
<xx> is <yyyyyyy>

0001000xyyyyyyyy PFX_FRAME_SEQ_NB Frame sequence number. When x is ‘1’ the
receiving end shall synchronize its own frame
sequence counter with <yyyyyyyy>. Otherwise, it
shall compare <yyyyyyyy> with its local sequence
number counter to detect frame losses

8-bit prefix 8-bit data field

00000011xxyzzzzz PFX_START_OF_EVENT Start of event of type <xx> sent by source of type
<y> and index <zzzzz>

00000001xxxxxxxx PFX_ASCII_MSG_LEN Specifies that the length of the ASCII string that
follows is <xxxxxxxx> bytes.

10-bit prefix 6-bit data field

0000001011yzzzzz PFX_END_OF_EVENT End of event sent by source of type <y> and index
<zzzzz>

0000001010yzzzzz PFX_BERT_STAT Bit error rate tester statistics packet sent by
source of type <y> and index <zzzzz>

0000001001 Available for future use

0000001000 Available for future use

12-bit prefix 4-bit data field

000000001111xxxx PFX_START_OF_EVENT_MINOS (deprecated) Start of event. Even type is <xxxx>.
48-bit event time-stamp and 32-bit event count
follow.

000000001110xxxx PFX_END_OF_EVENT_MINOS (deprecated) End of Event. MSB of 20-bit event
size is <xxxx>, 16-LSB of event size follow

000000001101xxxx PFX_EXTD_CARD_CHIP_LAST_C
ELL_READ

Last cell read in SCA of chip <xxxx>. Supports up
to 16 chips per front-end

000000001100xxxx unspecified Available for future use

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

116

000000001011xxxx unspecified Available for future use

000000001010xxxx unspecified Available for future use

000000001001xxxx unspecified Available for future use

000000001000xxxx unspecified Available for future use

14-bit prefix 2-bit data field

00000000011111xx PFX_CH_HIT_CNT_HISTO Channel hit count histogram. ASIC index is <xx>

0000000001111110 Unspecified Available for future use

… … …

00000000010000xx unspecified Available for future use

15-bit prefix 1-bit data field

000000000011111x unspecified Available for future use

… … …

000000000001010x unspecified Available for future use

16-bit prefix Implicit data

0000000000010011 unspecified Available for future use

0000000000010010 PFX_EXTD_CARD_CHIP_CHAN_
H_MD

Header for pedestal mean and standard
deviation. Card, chip and channel indexes are
given in the following 16-bit word

0000000000010001 PFX_EXTD_CARD_CHIP_CHAN_
HIT_IX

Header for channel data. Card, chip and channel
indexes are given in the following 16-bit word

0000000000010000 PFX_EXTD_CARD_CHIP_CHAN_
HISTO

Header for channel pedestal histogram. Card,
chip and channel indexes are given in the
following 16-bit word

0000000000001111 PFX_END_OF_FRAME End of frame indicator

0000000000001110 PFX_DEADTIME_HSTAT_BINS Dead time statistics and histogram follow

0000000000001101 PFX_PEDESTAL_HSTAT Pedestal histogram full statistics follow

0000000000001100 PFX_PEDESTAL_H_MD Pedestal histogram short statistics follow

0000000000001011 PFX_SHISTO_BINS (deprecated) Channel hit probability versus
threshold histogram follow

0000000000001010 PFX_CMD_STATISTICS Command statistics counter follow

0000000000001001 PFX_START_OF_BUILT_EVENT (deprecated) Event start boundary when event
builder active

0000000000001000 PFX_END_OF_BUILT_EVENT (deprecated) Event end boundary when event
builder active

0000000000000111 PFX_EVPERIOD_HSTAT_BINS Inter-event time statistics and histogram follow

0000000000000110 PFX_SOBE_SIZE Start Of Built Event with Size – only used with final
event builder stage

0000000000000101 PFX_LONG_ASCII_MSG Long ASCII message – The size of the message is
given in the following 16-bit word

0000000000000100 PFX_EXTD_PEDTHR_LIST List of pedestal or thresholds with up to 16 chips
per front-end

… … …

0000000000000001 unspecified Available for future use

0000000000000000 PFX_NULL_CONTENT Null word to be skipped

The TDCM sends frames that can be classified in three different groups:

 Frames that contain the reply to a configuration command. These contain an

error status code and a string message in ASCII format.

 Frames that contain event data for the DAQ. These are encoded in binary

format.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

117

 Frames that contain monitoring information (e.g. pedestal histograms,

latency measurements, etc). These are also encoded in binary format.

Frame classification is done by scanning the first 16-bit word of the frame. The TDCM

card tries to optimally fill Ethernet frames with data but it guarantees that the data

samples of one channel (up to ~512-time bins) never spans across two frames.

9.2 FRAME ENCODING FOR CONFIGURATION COMMAND REPLIES

This type of frame is typically exchanged between the DAQ PC and the TDCM or a

front-end that supports configuration over Ethernet. The format of the frame sent in

response to a configuration command is shown in Fig. 91.

Fig. 91. Reply frame to a configuration command.

A null word is always present after the UDP header. It is followed by the start of

configuration frame prefix, PFX_START_OF_CFRAME, the protocol encoding version, the

type of source sending this frame (0: front-end; 1: back-end) and the index of the TDCM.

The following word is 16-bit signed error code. A negative value indicates that the

command failed. A null or positive value indicates that the command completed

successfully. The error code is followed by a prefix that indicates that subsequent data

is an ASCII string. There are two format flavors: either the 8-bit prefix

PFX_ASCII_MSG_LEN followed by the size of the ASCII string coded with 8-bit, or the 16-

bit prefix PFX_LONG_ASCII_MSG followed by the size of the ASCII string coded on a 16-

bit short integer. The length includes the size of the trailing carriage return (if any) but

it does not include the size of the null terminating character which is always appended.

If the length of the encoded string is even, two null characters (instead of one) are added

so that the length of the message is always an even number of bytes. Depending on

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Message length

null word

Ethernet + IP + UDP Headers

char #0 char #1

‘\n’ or ‘\0’ ‘\0’

…

PFX_ASCII_MSG_LEN

PFX_START_OF_CFRAME

16-bit signed error status code

PFX_END_OF_FRAME

Char #N or ‘\n’

Version source_indexST

Message length

null word

Ethernet + IP + UDP Headers

char #0 char #1

‘\n’ or ‘\0’ ‘\0’

…

PFX_LONG_ASCII_MSG

PFX_START_OF_CFRAME

16-bit signed error status code

PFX_END_OF_FRAME

Char #N or ‘\n’

Version source_indexST

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

118

which prefix is used, strings of up to 255 or 65535 characters can be encoded. However,

it is currently required that a response string fits in a single Ethernet frame, reducing the

maximum length to ~1480 characters with the standard MTU and ~8100 bytes with 8 KB

Jumbo frames.

9.3 EVENT DATA ENCODING

The data of an event is composed of:

 An event header that contains the type of the event, a 48-bit timestamp, a

32-bit event count, and some optional fields.

 The body of the event which is composed of a series of packets, where each

packet contains the data of one front-end channel.

 An event trailer that contains the total size of the event and other

information.

The front-ends send the event header, each part of the event body and the event

trailer in distinct individual packets. The TDCM performs local event building to assemble

fragments that have the same event number and time stamp. The individual event

header and trailer of each front-end are normally dropped and are replaced by a

common event header and trailer. The different packets of the body of the event are

simply concatenated. Although a packet of event data sent from a front-end to the

TDCM can only contain an event header, the data of one channel, or an event trailer, an

Ethernet frame sent by the TDCM to the DAQ PC may contain an event header and the

data packets of several channels and an event trailer. The TDCM tries to optimize the

filling of Ethernet frames depending on the allowable Maximum Transfer Unit (MTU)

and the size of the packets received from the front-ends. The following rules apply:

 The front-ends are not allowed to split an event header, the data of one

channel, and the event trailer across several packets. Each must be entirely

contained in one packet.

 The TDCM is not allowed to split any event header, the data of one channel,

or the event trailer across several Ethernet frames.

 Each front-end normally delivers event data in the incrementing order of

channels, starting from the first channel of the first chip until the last channel

of the last chip. However, sending channels in a different order is also

permitted.

 The TDCM does not guarantee that the same order is kept. Normally, if the

data packets of all channels are of equal size, the order will be: first channel

of the first chip of the first front-end, followed by the first channel of the first

chip of the second front-end, until the last channel of the last chip of the last

front-end is reached. However, if a front-end responds faster than the others,

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

119

if zero-suppression is enabled and makes the size of the data of each channel

variable, or if only hit channels are read out, channel ordering may vary.

Nonetheless, for each given front-end, channels are guaranteed to appear in

the same incremental order that is used for transmission between the front-

end and the TDCM.

Although the content of the packets sent from the front-ends to the TDCM remain

unchanged when they are transferred by the TDCM to the DAQ PC, encapsulation differs

because the front-end links use a proprietary communication protocol while the TDCM

uses Ethernet to communicate with the DAQ PC. The encapsulation of a packet on these

two different type of links is shown in Fig. 92.

Fig. 92. Packet encapsulation. (a) on the front-end links. (b) on the Ethernet link.

When a packet is transported by the link from a front-end to the TDCM, the protocol

header is composed of a START_OF_PACKET synchronization word (16 bits) followed by

a second 16-bit word where the field SOE indicates if this packet is a start-of-event, the

field EOE indicates if this packet is an end-of-event packet, and the field PACKET_SIZE

(13 bits) indicates the size of the packet payload in bytes. The size excludes the size of

the protocol header words themselves and the size of the protocol trailer. The protocol

trailer is composed of the CRC-32 of the packet, computed from the first word of the

protocol header until the last word of the packet payload. If CRC-32 generation is

disabled in the front-end, two null 16-bit words must be emitted instead. The TDCM

shall normally be set to check CRC-32 on the fly and will only accept packet that have a

correct CRC-32. For test purposes, CRC-32 verification can be disabled in the TDCM, and

all packets will be accepted in this case.

When a packet is sent from the TDCM to the DAQ PC, the standard Ethernet, IP and

UDP headers are immediately followed by a 16-bit word which transports a sequence

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

START_OF_PACKET

Payload Word #0

Payload Word #2*N-1

0

…

Payload Word #2*N or 0x0000 padding

Protocol
Header

Packet
Payload

CRC-32 (high MSBs)

CRC-32 (low LSBs)

Packet Size (in bytes)
SO
E

EO
E

Protocol
Trailer

Ethernet and UDP headers

version

Frame payload size

PFX_START_OF_DFRAME Source_Index

Payload Word #0

…

Payload Word #2*N-1

Payload Word #2*N or 0x0000 padding

PFX_END_OF_FRAME

Protocol
Header

Packet
Payload

Ethernet CRC and frame gap

Optional

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

(a) (b)

ST

Trailer

PFX_FRAME_SEQ_NB SY Sequence_Number

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

120

number to help identifying potential Ethernet frame losses. When PFX_FRAME_SEQ_NB

is detected, and if the flag SY is set, the receiving end shall synchronize its local frame

sequence counter with the supplied Sequence_Number. If the SY flag is not set, the

receiving end shall compare the received Sequence_Number with the expected value

fetched from its local frame sequence counter. The difference between the two values

indicates how many frames may have been lost. The sequence number counter is 8-bit

wide and rolls over to zero after 255. The frame sequence number feature may not

always be active. If it is turned off, the prefix PFX_FRAME_SEQ_NB will not be found and

the first short word of a received frame will be a null word. The frame sequence number

word (or null word) is followed by a START_OF_DFRAME prefix followed by a 3-bit

protocol version number, a one bit indicator for the type of source emitting the frame

(0: front-end; 1: back-end) and the index of the source coded with 5 bits. It is followed

by a payload size word which represents the size in bytes of the packet starting from the

null word of the protocol header until the last payload word or the optional

PFX_END_OF_FRAME trailer word. The rest of the protocol trailer, Ethernet checksum

and frame gap, are automatically inserted by the MAC layer of the TDCM and stripped

by the receiving PC.

The format of an event header packet is shown in Fig. 93. The protocol header is

mandatory and depends on which physical link is used to transport the packet. After the

prefix PFX_START_OF_EVENT, the field ETYPE indicates the type of event. Four different

event types are supported. The field ST determines the type of source that emitted this

packet: 0 when the packet originates from a front-end, 1 when it originates from a back-

end card or device (e.g. the TDCM). The field SOURCE_ID is the index of the emitter,

either a front-end node or a back-end node. This is followed by a 48-bit event time stamp

and a 32-bit event count. No additional information is present when the packet

originates from the back-end. When the packet originates from a front-end, additional

information may be appended. The optional data specifies the total number of channel

hit in each chip of the front-end, and the last position of the read pointer in the SCA

matrix of each chip.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

121

Fig. 93. Event header packet (4 ASICs per front-end version).

Two versions for encoding the last read pointer are available: for front-end hardware

implementations that have 4 ASICs, the prefix PFX_CHIP_LAST_CELL_READ can be used.

For front-ends that supports up to 16 ASICs, the prefix

PFX_EXTD_CARD_CHIP_LAST_CELL_READ shall be used. Because this type of front-end

only supports the AFTER chip, the number of channel hit per ASIC is not encoded in the

header because the detection of hit channels is not available in the AFTER chips. The

event header for a front-end with up to 16 AFTER chips is shown in Fig. 94. Note that the

last cell read pointer may be emitted for 0 or up to 16 ASICs, depending on the hardware

configuration, and the EMIT_LST_CELL_RD and ASIC_MASK settings.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FEM)
Previous packet in same Ethernet frame or

protocol header (TDCM)

PFX_START_OF_EVENT SOURCE ID

48_bit time stamp (16-LSBs)

48_bit time stamp(16-middle)

48_bit time stamp(16-MSBs)

32-bit Event Count (16-LSBs)

32-bit Event Count (16-LSBs)

PFX_CHIP_CHAN_HIT_CNT Chip/Channel Hit Count

Event
Header

FE: optional data
TDCM: not present

PFX_CHIP_LAST_
CELL_READ

Chip / Last Cell Read Pointer

ETYPE ST

FE: optional data
TDCM: not present

Protocol Trailer (FEM)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

FE: mandatory
TDCM: case dependent

Mandatory

PFX_CHIP_CHAN_HIT_CNT

PFX_CHIP_CHAN_HIT_CNT

PFX_CHIP_CHAN_HIT_CNT

Chip/Channel Hit Count

Chip/Channel Hit Count

Chip/Channel Hit Count

Chip / Last Cell Read Pointer

Chip / Last Cell Read Pointer

Chip / Last Cell Read Pointer

PFX_CHIP_LAST_
CELL_READ

PFX_CHIP_LAST_
CELL_READ

PFX_CHIP_LAST_
CELL_READ

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

122

Fig. 94. Event header packet (16 ASICs per front-end version).

A protocol trailer always terminates the packet when it is transported between the

front-end and the back-end. When this packet is transported over Ethernet, the

following packet may be stored in the same Ethernet frame, or the corresponding

protocol trailer information is placed to terminate this frame. Every front-end card is

required to send an event header packet for every event, even if it has no data for this

event. The TDCM is also required to send one event header per event. The TDCM

normally drops silently the individual header of each front-end card, but retains all of

them for diagnosis in case of event count or time stamp mismatch, or simply when this

feature is enable for debugging. Consequently, the event header of the TDCM may be

followed by all the individual event headers of each front-end card (including the

optional data) before the actual data of all channels.

After the event header(s), the body of an event is composed by a series of packet,

where each packet contains the entire data of one channel. The data packet of one

channel in non-zero-suppressed read out mode is shown in Fig. 95.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FEM)
Previous packet in same Ethernet frame or

protocol header (TDCM)

PFX_START_OF_EVENT SOURCE ID

48_bit time stamp (16-LSBs)

48_bit time stamp(16-middle)

48_bit time stamp(16-MSBs)

32-bit Event Count (16-LSBs)

32-bit Event Count (16-LSBs)

Event
Header

PFX_EXTD_CARD_CHIP_LAST_CELL_READ Chip #0

ETYPE ST

FEM: optional data
TDCM: not present

Protocol Trailer (FEM)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

FEM: mandatory
TDCM: case dependent

Mandatory

Last Cell Read Pointer #0000000

PFX_EXTD_CARD_CHIP_LAST_CELL_READ Chip #1

Last Cell Read Pointer #1000000

PFX_EXTD_CARD_CHIP_LAST_CELL_READ Chip #N

Last Cell Read Pointer #N000000

…

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

123

Fig. 95. Packet of data of one channel in non-zero-suppressed readout mode.

The prefix “11” (PFX_CARD_CHIP_CHAN_HIT_IX) is followed by the ID of the sending

front-end card (5 bits), the index of the chip (2 bits), and the index of the channel (7

bits). It is followed by the series of ADC samples (4-bit prefix PFX_ADC and 12-bit ADC

data) corresponding to the successive time bins, in incremental order, starting from the

oldest one. A null word is added if the number of time bins is even, so that the size of

the packet is always an integral number of 32-bit words. After the last ADC sample or

the null padding, the protocol trailer (FE to TDCM link) is added or the following packet

is placed if the Ethernet frame can accommodate it (TDCM to DAQ PC Ethernet

connection). The number of ADC samples may be less than 512 if only a fraction of the

SCA depth of the front-end ASIC is read out. Note that time bins are delivered in

incremental order and that the data of the corresponding channel must be entirely

contained in the packet.

The format of the data packet of one channel in zero-suppressed readout mode is

given in Fig. 96. It is similar to the format in non-zero-suppressed mode except that the

index of the first SCA cell above threshold (prefix PFX_TIME_BIN followed by a 9-bit SCA

cell index) is placed before each group of ADC samples that are kept by the zero-

suppressor. Depending on channel activity and the applied threshold, there may no

sample at all above threshold, one series of samples (possibly containing every time-

buckets), or multiple series of samples. Note also that the zero-suppressor can be

programmed to keep samples below threshold around those that passed threshold. The

ADC sample of a given time bucket is never duplicated among two adjacent pulses, but

the zero-suppressor may produce several null samples in addition to the ADC values of

a channel in the particular case when one or several of the first time buckets are above

threshold and the zero-suppressor is programmed to keep samples before threshold is

passed. Refer to the section that describes zero-suppressor for details.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FE)
Previous packet in same Ethernet frame

or protocol header (TDCM)

Data of one
Channel

FE: mandatory
TDCM: case dependent

…

1 1 Card / Chip / Channel Hit Index #0

PFX_ADC ADC value Time bin #0

PFX_ADC ADC value Time bin #1

PFX_ADC ADC value Time bin #N-1

null word (if N is even)

Protocol Trailer (FE)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

FE: mandatory
TDCM: case dependent

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

124

Fig. 96. Packet of data of one channel in zero-suppressed readout mode.

The body of the event is composed of multiple packets as shown in Fig. 95 or Fig. 96.

In full readout mode, the number of these packets is equal to the number of front-end

cards (from 1 to 32) multiplied by the number of chip per cards (typically 4) and

multiplied by the number of channels per chip (64 or 72 for AGET and AFTER respectively

when only physical channels are read out, 72 or 79 if FPN channels and “reset” channels

are also read out). In partial read out mode, only hit channels are present.

The format described in Fig. 95 and Fig. 96 is adapted to front-ends that have 4 ASICs.

The TDCM also supports and extended data format for front-ends that have up to 16

ASICs. The format of a packet of channel data in the extended format is given in Fig. 97.

It can be seen that compared to the regular format, the extended format takes 32 bits

instead of 16 bits to specify the type of packet, card index, chip index and channel index.

The same modification applies to channel data packets with zero-suppression in the

extended format.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FE)
Previous packet in same Ethernet frame

or protocol header (TDCM)

Always present

FE: mandatory
TDCM: case dependent

…

1 1 Card / Chip / Channel Hit Index #0

PFX_ADC ADC value Time bin #X

PFX_ADC ADC value Time bin #X+1

PFX_ADC ADC value Time bin #Y+1

null word

Protocol Trailer (FE)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

First pulse
above threshold

PFX_TIME_BIN Time Bin Index

PFX_TIME_BIN Time Bin Index

PFX_ADC ADC value Time bin #Y Last pulse
above threshold

FE: mandatory
TDCM: case dependent

If needed

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

125

Fig. 97. Packet of data of one channel, non-zero-suppressed, extended format.

After all the packets of channel data, the event is terminated by an end-of-event

trailer packet. The format of this packet is shown in Fig. 98. After the end-of-event prefix,

PFX_END_OF_EVENT, the field ST indicates the type of source emitting this packet (0:

front-end; 1: back-end), and the field SOURCE_ID indicates the index of the source in the

interval 0 to 31. The next two bytes are reserved for future use. These should be set to

0x0000 by front-ends. These bits will indicate error conditions when the packet is sent

by a back-end card. This is followed by the size of the event coded on 32 bits. When the

end-of-event packet is sent by a front-end, the size indicated is the total size of the data

sent for the current event by this front-end. When the end-of-event packet is sent by

the TDCM (or some other back-end device), the size indicated is the total event size

across all front-ends. Normally, the TDCM does not propagate to the DAQ PC the end-

of-event packet of each front-end, but only sends its own end-of-event packet based on

the actual size of the event it sent. Optionally, the end-of-event packets of each front-

end can be kept for debugging or in case of size mismatch. Note that the total size of an

event normally differs from the sum of the event size of all front-ends because the start-

of-event header and end-of-event trailer of the front-ends are generally not transmitted

to the DAQ PC and because the TDCM also adds its own locally generated start-of-event

header and end-of-event trailer.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FEM)
Previous packet in same Ethernet frame

or protocol header (TDCM)

Data of one
Channel

FEM: mandatory
TDCM: case dependent

…

PFX_EXTD_CARD_CHIP_CHAN_HIT_IX

PFX_ADC ADC value Time bin #0

PFX_ADC ADC value Time bin #1

PFX_ADC ADC value Time bin #N-1

null word (if N is odd)

Protocol Trailer (FEM)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

FEM: mandatory
TDCM: case dependent

Card # Chip # Channel Hit #

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

126

Fig. 98. End of event packet.

Empty events require at least two packets at the output of each front-end card: one

start-of-event packet and one end-of-event packet. At the output of the TDCM, an

empty event will also contain at least a start-of-event header and an end-of-event

trailer, but these will most likely be stored in the same Ethernet frame which may

contain several consecutive events, or a mixture of empty and non-empty events

depending on its capacity. An event may be empty because none of the ASIC channels

were hit, or because none of the waveforms were retained after zero-suppression.

9.4 ENCODING OF FRAMES FOR MONITORING INFORMATION DATA
Monitored variables that are simple scalar types (e.g. the supply voltage, current or

temperature of a front-end or back-end card) are normally sent by the TDCM to the

control PC in ASCII format, like configuration reply frames. More complex data types are

transported in binary format in the so-called “monitoring frames”. These frames have

no equivalent on the front-end to TDCM links because monitoring information is

retrieved from the front-ends by the TDCM using messages sent over virtual channel B.

It usually takes multiple transactions on virtual channel B to retrieve even a scalar

configuration word (e.g. the content of the register of an ASIC on a front-end card), a

monitored variable, or a histogram accumulated on-line. But after this information is

retrieved by the TDCM, it can be formatted in a single Ethernet frame that is sent at

once. The different types of monitoring frames are detailed below.

9.4.1 PEDEST AL H IS TOGR AMS

The TDCM can accumulate the histograms of pedestal data of every front-end

channel. This is accomplished during specific runs. These histograms are used to

calculate the equalization constant for pedestal equalization and the thresholds for

zero-suppression. These two operations are performed on-line by the front-ends, but

the computations of the appropriate equalization constants and thresholds are done by

the TDCM. The pedestal histograms of each given channel can be sent to the DAQ PC in

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FE)
Previous packet in same Ethernet frame

or protocol header (TDCM)

FE: mandatory
TDCM: case dependent

PFX_END_OF_EVENT

Reserved for future use

ST SOURCE ID

32-bit event size (16-LSBs)

32-bit event size (16-MSBs)

Protocol Trailer (FE)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

Always present

FE: mandatory
TDCM: case dependent

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

127

a condensed or detailed format. The detailed format contains the list of all the bins that

contain a non-null count. The format of this frame is shown in Fig. 99.

Fig. 99. Pedestal Histogram in non-null bin list format.

In this format, an Ethernet frame contains the pedestal histogram of only one

channel. The list of bins may be truncated if the histogram does not fit in one Ethernet

frame (the current limit is fixed at ~1400 bytes because the corresponding section of the

current code does not use Gigabit Ethernet Jumbo frames). The list of bins may also be

empty. The frame payload size is the size in bytes counted from the START_OF_MFRAME

prefix to END_OF_FRAME (including both of them).

The format described in Fig. 99 is adapted to front-end cards that have 4 ASICs. An

extended version of the format allows to support up to 16 ASICs per front-end card. This

is shown in Fig. 100.

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

PFX_HISTO_BIN_IX 9-bit Bin Index

…

PFX_START_OF_MFRAME

0 1 Card / Chip / Channel Histo Index

16-bit Bin Value

PFX_END_OF_FRAME

header

for every
non-null
bin valuePFX_HISTO_BIN_IX 9-bit Bin Index

16-bit Bin Value

pedestal
histogram

Source indexST

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

128

Fig. 100. Pedestal Histogram, non-null bin list, extended format.

A pedestal histogram can also be sent in a more condensed format as shown in Fig.

101.

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

PFX_HISTO_BIN_IX 9-bit Bin Index

…

PFX_START_OF_MFRAME

PFX_EXTD_CARD_CHIP_CHAN_HISTO

16-bit Bin Value

PFX_END_OF_FRAME

header

for every
non-null
bin valuePFX_HISTO_BIN_IX 9-bit Bin Index

16-bit Bin Value

pedestal
histogram
header

Source indexST

Channel #Card # Chip #

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

129

Fig. 101. Pedestal histogram detailed statistics frame.

 Pedestal histogram detailed statistics can also be formatted in extended format that

supports up to 16 ASICs per front-end. This frame is shown in Fig. 102. Note that the

pedestal histogram header includes a 16-bit padding word to guarantee the alignment

of subsequent 32-bit integers on 32-bit boundaries.

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

PFX_PEDESTAL_HSTAT

PFX_START_OF_MFRAME

0 1 Card / Chip / Channel Histo Index

32-bit Min_Bin (16-LSBs)

PFX_END_OF_FRAME

header

for one
channel

pedestal
histogram

32-bit Min_Bin (16-MSBs)

32-bit Max_Bin (16-LSBs)

32-bit Max_Bin (16-MSBs)

32-bit Bin_Width (16-LSBs)

32-bit Bin_Width (16-MSBs)

32-bit Bin_Count (16-LSBs)

32-bit Bin_Count (16-MSBs)

32-bit Min_Non_Null_Bin (16-LSBs)

32-bit Min_Non_Null_Bin(16-MSBs)

32-bit Max_Non_Null_Bin (16-LSBs)

32-bit Max_Non_Null_Bin (16-MSBs)

32-bit Mean*100 (16-LSBs)

32-bit Mean*100 (16-MSBs)

32-bit Std_Dev * 100 (16-LSBs)

32-bit Std_Dev * 100 (16-MSBs)

32-bit Entry_Count (16-LSBs)

32-bit Entry_Count (16-MSBs)

Source_indexST

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

130

Fig. 102. Pedestal histogram detailed statistics frame, extended format.

Pedestals histograms statistics can be sent in a shorter version that only contains the

mean value and standard deviation. In this format, a frame can contain the pedestal

mean/deviation of several channels. This is shown in Fig. 103. The frame payload size is

the size in bytes counted from the START_OF_MFRAME prefix to END_OF_FRAME

(including both of them).

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

Card #

PFX_START_OF_MFRAME

PFX_EXTD_CARD_CHIP_CHAN_HISTO

header

Pedestal
histogram
features
for one
channel

pedestal
histogram
header

32-bit Min_Bin (16-LSBs)

PFX_END_OF_FRAME

32-bit Min_Bin (16-MSBs)

32-bit Max_Bin (16-LSBs)

32-bit Max_Bin (16-MSBs)

32-bit Bin_Width (16-LSBs)

32-bit Bin_Width (16-MSBs)

32-bit Bin_Count (16-LSBs)

32-bit Bin_Count (16-MSBs)

32-bit Min_Non_Null_Bin (16-LSBs)

32-bit Min_Non_Null_Bin(16-MSBs)

32-bit Max_Non_Null_Bin (16-LSBs)

32-bit Max_Non_Null_Bin (16-MSBs)

32-bit Mean*100 (16-LSBs)

32-bit Mean*100 (16-MSBs)

32-bit Std_Dev * 100 (16-LSBs)

32-bit Std_Dev * 100 (16-MSBs)

32-bit Entry_Count (16-LSBs)

32-bit Entry_Count (16-MSBs)

Source_indexST

0x0000

PFX_PEDESTAL_HSTAT

Chip # Channel #

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

131

Fig. 103. Pedestal histogram condensed statistics frame.

The condensed form of the pedestal histogram is also available in the extended

format that supports 16 chips per front-end card instead of 4. This is shown in Fig. 104.

Fig. 104. Pedestal histogram condensed statistics frame. Extended format.

9.4.2 DEAD-T I ME H I STO GRAMS

The TDCM activates its BUSY pin when it receives a valid trigger and releases it when

all the active front-end cards have returned a message indicating that they are ready to

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

PFX_PEDESTAL_H_MD

PFX_START_OF_MFRAME

0 1 Card / Chip / Channel Histo Index

32-bit Mean * 100 (16-LSBs)

PFX_END_OF_FRAME

header

pedestal
histogram
short
statistics
of one
channel

32-bit Mean * 100 (16-MSBs)

32-bit Std_Dev * 100 (16-LSBs)

32-bit Std_Dev * 100 (16-MSBs)

…

Source_indexST

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

PFX_START_OF_MFRAME

Card # Chip # Channel #

32-bit Mean * 100 (16-LSBs)

PFX_END_OF_FRAME

header

pedestal
histogram
short
statistics
of one
channel

32-bit Mean * 100 (16-MSBs)

32-bit Std_Dev * 100 (16-LSBs)

32-bit Std_Dev * 100 (16-MSBs)

…

Source_indexST

PFX_EXTD_CARD_CHIP_CHAN_H_MD

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

132

capture the next event. The duration of the BUSY signal represents the dead-time of the

readout system. The dead-time measured for each event is accumulated in a 1024-bin,

32-bit amplitude count histogram. Resolution is programmable among four values: 1 µs,

10 µs, 100 µs and 1 ms. The measurement range scales accordingly (i.e. 1.022 ms, 10.22

ms, 102.2 ms or 1.022 s. For all resolution settings, the last bin (bin #1023) accumulates

overflows. The frame payload size is the size in bytes counted from the

START_OF_MFRAME prefix to END_OF_FRAME (including both of them). The format of

this histogram is shown in Fig. 105.

Fig. 105. Dead-time histogram frame.

9.4.3 INT ER-EV EN T T I ME H I STO GR AM

For each event, starting from the second one, the TDCM measures the interval of

time between the current trigger and the next one. This value in accumulated in a 32-

bit amplitude, 1024-bin histogram. The resolution of each bin is fixed to 100 µs leading

to a measurement range of 0 to 102.2 ms. The last time bin accumulates the overflows.

The format of this histogram is identical to that of the dead-time histogram except that

the prefix word in the header is PFX_EVPERIOD_HSTAT_BINS instead of

PFX_DEADTIME_HSTAT_BINS. The average value of this histogram represents the

average event taking rate of the system.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

Ethernet + IP + UDP Headers

Frame payload size

PFX_DEADTIME_HSTAT_BINS

Min_Bin (16-LSBs)

0010

header

for all
non-null
bins

latency
histogram
statistics

Min_Bin (16-MSBs)

Max_Bin (16-LSBs)Max_Bin (16-MSBs)

Bin_Width (16-LSBs)Bin_Width (16-MSBs)

Bin_Count (16-LSBs)Bin_Count (16-MSBs)

Min_Non_Null_Bin (16-LSBs)Min_Non_Null_Bin(16-MSBs)

Max_Non_Null_Bin (16-LSBs)Max_Non_Null_Bin (16-MSBs)

Mean*100 (16-LSBs)Mean*100 (16-MSBs)

Std_Dev * 100 (16-LSBs)Std_Dev * 100 (16-MSBs)

Entry_Count (16-LSBs)Entry_Count (16-MSBs)

null word

PFX_START_OF_MFRAME version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

PFX_END_OF_FRAME

Bin Value (16-LSBs)

Bin Value (16-MSBs)

10-bit Bin Index

…

Source_indexST

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

133

9.4.4 CO MMAN D ST ATI STI CS

The TDCM accumulates the number of configuration and monitoring command

received, number of errors (syntax error in the command or execution failure) and

number of command replies. Also, the number of “daq” requests received and served is

counted separately. The structure of the monitoring frame that contains the commands

statistics counters is show in Fig. 106. The frame payload size is the size in bytes counted

from the START_OF_MFRAME prefix to END_OF_FRAME (including both of them).

Fig. 106. Command statistics counter frame.

9.4.5 PER ASIC CHANN EL H I T COUNT H IST OGRAM

Some types of front-end cards, e.g. the ARC, accumulate for each of the 4 ASICs

controlled the histogram of channel hit count per event. These histograms can be

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

PFX_CMD_STATISTICS

PFX_START_OF_MFRAME

32-bit RX command count (16-LSBs)

PFX_END_OF_FRAME

header

command
statistics
counters

32-bit RX command count (16-MSBs)

32-bit RX daq request count (16-LSBs)

32-bit RX daq request count (16-MSBs)

32-bit RX cmd error count (16-LSBs)

32-bit RX cmd error count (16-MSBs)

32-bit command reply count (16-LSBs)

32-bit command reply count (16-MSBs)

32-bit daq reply count (16-LSBs)

32-bit daq reply count (16-MSBs)

Source_index

32-bit RX daq timeout count (16-MSBs)

32-bit RX daq timeout count (16-LSBs)

32-bit RX daq delayed count (16-LSBs)

32-bit RX daq delayed count (16-MSBs)

32-bit RX daq missing count (16-LSBs)

32-bit RX daq missing count (16-MSBs)

32-bit daq resend count (16-LSBs)

32-bit daq resend count (16-MSBs)

ST

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

134

retrieved by the TDCM and forwarded to the DAQ PC. The structure of the monitoring

frame that contains the histogram of the number of channels hit in one ASIC of one

front-end is show in Fig. 107. The frame payload size is the size in bytes counted from

the START_OF_MFRAME prefix to END_OF_FRAME (including both of them). The index

of the chip is indicated after the appropriate prefix and the index of the front-end is

placed in the following 16-bit word.

Fig. 107. Channel hit count histogram frame

9.4.6 L IST O F PEDEST AL EQUALI ZATION CO NST ANT S AN D ZERO SUPPR ESSION

THR ES HO LDS

Assuming that a pedestal run has been performed and that the appropriate

commands to compute pedestal equalization constants and thresholds for zero-

suppression have been executed, the TDCM can send to the DAQ PC the list of pedestal

equalization constants and thresholds that it has computed. The format of the

corresponding frame is given in Fig. 108.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

Ethernet + IP + UDP Headers

Frame payload size

PFX_CH_HIT_CNT_HISTO

Min_Bin (16-LSBs)

header

for all bins
(80)

Channel
hit count
histogram
statistics

Min_Bin (16-MSBs)

Max_Bin (16-LSBs)Max_Bin (16-MSBs)

Bin_Width (16-LSBs)Bin_Width (16-MSBs)

Bin_Count (16-LSBs)Bin_Count (16-MSBs)

Min_Non_Null_Bin (16-LSBs)Min_Non_Null_Bin(16-MSBs)

Max_Non_Null_Bin (16-LSBs)Max_Non_Null_Bin (16-MSBs)

Mean*100 (16-LSBs)Mean*100 (16-MSBs)

Std_Dev * 100 (16-LSBs)Std_Dev * 100 (16-MSBs)

Entry_Count (16-LSBs)Entry_Count (16-MSBs)

null word

PFX_START_OF_MFRAME version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

00000000000

PFX_END_OF_FRAME

Bin Value (16-LSBs) Bin Value (16-MSBs)

…

Source_indexST

ChipCard

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

135

Fig. 108. Pedestal or threshold list.

The next 16-bit word after the prefix PFX_EXTD_PEDTHR_LIST contains from MSB to

LSB: 5 unaffected bits, the index of the front-end (5 bits), the index of the chip (4 bits),

the type of chip (1 bit: 0 for AGET and 1 for AFTER), the type of data in the list (1 bit: 0

for pedestals and 1 for thresholds). It is followed by a fixed number of 16-bit values, 72

in the AGET mode and 79 in the AFTER mode, where each value represents a pedestal

equalization constant or threshold. Pedestal equalization constants are signed short

integers while thresholds are unsigned short integers.

9.4.7 B IT ERRO R RAT E TEST ER ST ATI STI CS

The TDCM implements a bit error rate tester for measuring the stability of the

communication links with the FEs. In the TDCM to FE direction, each FE compares the

received pattern from the TDCM with the expected locally generated reference pattern

to determine if bits were altered during transmission. Periodically, e.g. every 10 million

bits have been received, the FE sends to the TDCM over Virtual Channel C a specific

packet that contains the number of receive errors and the number of millions of received

bits. The format of this packet is shown in Fig. 109.

version

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

null word

Ethernet + IP + UDP Headers

Frame payload size

Pedestal or Threshold #0 (16-bit)

PFX_START_OF_MFRAME

PFX_EXTD_PEDTHR_LIST

Card / Chip index / Chip_type / Data_type

…

header

Pedestal or
thresholds
of one chip

Pedestal or Threshold #N (16-bit)

PFX_END_OF_FRAME

Source indexST

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

136

Fig. 109. Bit Error Rate Tester statistics packet.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Protocol Header (FE)
Previous packet in same Ethernet frame

or protocol header (TDCM)

FE: mandatory
TDCM: case dependent

PFX_BERT_STAT

Bit Error Count (16-bit)

ST SOURCE ID

Received bit (in millions) (16-LSBs)

Received bit (in millions) (16-MSBs)

Protocol Trailer (FE)
Following packet in same Ethernet frame or

protocol trailer (TDCM)

Always present

FE: mandatory
TDCM: case dependent

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

137

10 COMMAND SERVER REFERENCE
The tcm_server application is a command server program running on the embedded

processor of the TDCM. This server processes the commands received from a remote

DAQ PC over a standard Ethernet connection and returns results via the same path. All

commands are formatted in ASCII and perform basic to complex operations on the

TDCM itself, or one or several front-ends via the appropriate virtual channel of the

physical distribution links. Commands can be classified into three categories: 1)

configuration commands, 2) monitoring and run control commands, 3) data acquisition

commands. A distinction must also be made in the scope of the commands: some apply

to the TDCM, some apply to one of several FEs, and several of them control the behavior

of the client program running on the control PC. Most of the commands that apply to

the TDCM are prefixed with the string “be “, meaning back-end, while the commands

that apply to the FEs are prefixed with the string “fe “, meaning front-end. A command

for the front-end can be sent to a single FE, or it can be duplicated within the TDCM and

sent to a subset of FEs, or all of them.

The TDCM uses only one UDP/IP socket when the client program running on the DAQ

PC performs all the tasks of system configuration, monitoring, run control and data

acquisition. The TDCM uses two UDP/IP sockets when different programs, possibly

running on different hosts, are used for the tasks mentioned above. In this case, one

socket is dedicated to the data acquisition path while the second one handles other

types of commands.

10.1 COMMANDS THAT APPLY TO THE TDCM

Important note: Almost all the commands that are directed to the TDCM start with

the prefix “be”. This prefix can optionally be followed by the placeholder character “.“,

surrounded by one space character before and after, or by the index of the TDCM to

which the command shall apply. This optional argument after the prefix “be” is intended

to facilitate the control of multiple TDCMs from the same client program. This feature is

not implemented yet and the TDCM will execute all the commands prefixed with “be”

that it receives, independently of the placeholder character or index that is supplied in

the command.

10.1.1 GENER AL CONT RO L OF THE TDCM

The general control commands that act on the TDCM are listed in Table 28.

Table 28 . TDCM general control commands.

Command Argument Action

be version

 Returns major/minor software version and
compilation date of the TDCM embedded software

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

138

version Same as “be version” but also prints the version of
the client software running on the control PC

be fw_version Returns the family, major and minor version of the
currently installed firmware (supported for TDCM
software releases starting from April 2021)

be cmd clr Clears command sent/replies counters
be cmd stat Shows command statistics counters
be reg <r> Reads TDCM register <r>
be reg <r> <0xdata> Writes TDCM register <r> with hexadecimal data

<0xdata>
be fe_workset <0xSet> Defines the work set of FEs
be fe_workset Shows the current work set of FEs
be sel_fe Shows to which FE(s) the interpreter commands

currently apply
be sel_fe <*|fe_workset|

0xSet|index>
Sets to which FE(s) subsequent relevant
interpreter commands will be directed.

The command “be fe_workset <0xSet>” is normally used at startup to define which

FEs are involved in the system. The argument 0xSet is a 32-bit unsigned integer where

each bit indicates that the corresponding FE is part of the current system. The work set

of FEs is normally set once and is not modified during runtime.

The command “be sel_fe …” defines to which FE(s) subsequent interpreter

commands may apply. The “*” wildcard can be used to selects all FEs (even non-existing

ones), but the user will normally use the argument “fe_workset” which corresponds to

all FEs in the system. Alternatively, a subset of FEs can be selected using an argument

with the hexadecimal prefix “0x”: multiple FEs are selected according to which bit is set

in binary representation of this 32-bit argument. To select only one particular FE, it is

also possible to supply the argument in decimal format, in the interval [0; 31].

10.1.2 CONT RO L O F CO MMUNI CAT ION LINK S WIT H FR ONT -EN D

The commands in Table 29 are used to configure and monitor the communication

links with the front-end cards.

Table 29 . Commands related to communication links with FEs.

Command Argument Action

be tx_reset Shows the state of the reset signal of the
TDCM to FE fanout link

be tx_reset <0 | 1> Sets or releases the reset signal of the
TDCM to FE fanout link. This applies to
all TDCM to FE links.

be rx_reset <fe_workset|port_id>
<0 | 1 | cycle>

Sets or releases the reset signal for the
RX side of the desired FE to TDCM link
port. When the keyword fe_workset is

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

139

supplied, this command is looped for
every active port. When the keyword
cycle is supplied, a ‘1’ followed by a ‘0’
are written. Note that the value set
cannot be read-back.

be inv_tdcm_clk Shows if the primary clock sent by the
TDCM is send with inversion or not to
the FEs

be inv_tdcm_clk <0 | 1> Sets the optional inversion of the
primary clock before it is fanout to all
FEs. This command is only relevant
when copper links are used between the
TDCM and FEs.

be inv_tdcm_mosi Shows if the serial data sent by the
TDCM to all FEs is inverted or not before
being fanout.

be inv_tdcm_mosi <0 | 1> Sets the optional inversion of the serial
data sent by the TDCM to all FEs. This
command is relevant whether the links
between the TDCM and the FEs are
copper or optical.

be dcbal_enc Shows if DC-balanced encoding is
enabled for the TDCM to FE fanout links.

be dcbal_enc <0 | 1> Sets DC-balanced encoding for the
TDCM to FE fanout links. This must be
enabled when optical media is used and
is optional with copper media.

be tx_bert_ena Shows if the bit error rate tester for the
TDCM to FE link direction is enabled or
disabled in the TDCM

be tx_bert_ena <0 | 1> Enables or disables in the TDCM side the
bit error rate tester in the TDCM to FE
link direction.

be tx_bert_pat Shows the pattern used by the TDCM for
the bit error rate tester in the TDCM to
FE link direction

be tx_bert_pat <0, 1, 2, 3> Sets the pattern used by the TDCM for
the bit error rate tester in the TDCM to
FE link direction. Argument:

0: PRBS7
1: PRBS15
2: PRBS23
3: PRBS31

be tx_bert_doerr Force the generation of a single bit error
on the bit error rate tester in the TDCM
to FE link direction.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

140

be tx_rate Shows the speed of the transmission in
the TDCM to FE link direction

be tx_rate Sets the speed of the transmission in the
TDCM to FE link direction. Possible
values:

0: 100 Mbps (normal operation)
1: 200 Mbps (for BER test only)
2: 400 Mbps (for BER test only)
3: not supported (defaults to 400
Mbps)

be rx_bert_ena Shows if the bit error rate tester for the
FE to TDCM link direction is enabled or
disabled in the TDCM

be rx_bert_ena <0 | 1> Enables or disables in the TDCM the bit
error rate tester for the FE to TDCM link
direction

be rx_bert_pat Shows the pattern expected by the
TDCM for the bit error rate tester in the
FE to TDCM link direction.

be rx_bert_pat <0, 1, 2, 3> Sets the pattern expected by the TDCM
for the bit error rate tester in the FE to
TDCM link direction. Argument:

0: PRBS7
1: PRBS15
2: PRBS23
3: PRBS31

be rx_bert_stat <port> Shows the statistics of the bit error rate
tester in the FE to TDCM link direction
for the selected RX port.

be
crc32_check_ena

 Shows if CRC32 verification is enabled
for data packets received from the FEs
by the TDCM over Virtual Channel C.

be
crc32_check_ena

<0 | 1> Enables or disables CRC32 verification
for data packets received from the FEs
by the TDCM over Virtual Channel C.

be crc32_inject_err Force the generation of a CRC32 error
on a data packet received from a FE.

10.1.3 CO MMAN DS FO R T HE AS SIGNMENT OF IN DEXES TO T HE FES

In order to communicate with FEs after all communication links have been

synchronized in both directions, the TDCM must assign to each FE the index that

corresponds to the physical port where it is connected. In a first step, the TDCM reads

the serial DNA number of each FE and builds the table that makes the correspondence

between DNA numbers and port indexes. In a second step, the TDCM sends this

correspondence table to all FEs so that each FE can determine its own index when the

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

141

table entry that matches its DNA number is encountered. The commands related to that

identification and enumeration process are listed in Table 30.

Table 30 . Commands for FEC identification and enumeration.

Command Argument Action

be dna get Retrieves the DNA number of all the FEs detected
by the TDCM

be dna push Multicast to all FEs all the DNA numbers received
by the TDCM and the card index associated to each
of them

At system startup, after all links have been synchronized, the TDCM must perform a

“dna get” followed by a “dna push” to enumerate all FEs and assign them the index that

correspond to the physical port of the TDCM where each of them is connected. It is also

recommended to perform a second “dna get” after “dna push” to verify that each FE is

assigned the correct index. Whenever a FE is power-cycled, the complete enumeration

must be re-done to detect the new FE and assign it the correct index.

10.1.4 MES S AGE CO UNT ER S

The commands in Table 31 are used to show the counters of message

received/transmitted from/to the FEs. These message counters are maintained on the

TDCM side.

Table 31 . Commands related to message counters.

Command Argument Action

be port <* | first:last | id>
<* | a | b | c>
clr

Clears the message counter(s) of the selected
port(s) and virtual channel(s). The first
argument can specify all ports, a range of
ports (it must be in [0;31]), or a specific port.
The second argument can specify all 3 virtual
channels or only one of them. The third
argument is fixed and mandatory

be port <id> <a | b | c> Shows the message counter of the selected
port and virtual channel. Contrary to the
counter clear command, the counter read
command only accepts one port and one
virtual channel at a time.

10.1.5 FRONT-END P R ES ENCE AN D ST A T E

The commands in Table 32 are used to set which FE are present and display their

state as it is memorized in the TDCM. If the system loses synchronization, the actual

state of a FE may be different from that currently read in the TDCM.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

142

Table 32 . Commands related to FEC presence and status.

Command Argument Action

be fe active Displays which FEs the TDCM supposedly controls.
be fe active

<fe_workset |
0xVal>

Sets which FEs are supposedly active in the system.
The argument can be “fe_workset” or a 32-bit
unsigned integer where each bit set to 1
corresponds to a FE with that index being present.

be fe linkup Displays which FEs are effectively detected, i.e.
communication is currently established.

be fe sampling Displays which FEs are thought by the TDCM to be
in the data sampling state

be fe busy Displays which FEs are thought by the TDCM to be
in the busy state

Note that the internal variable that is set by the command “be fe active” is different

from that set by the commands “be fe_workset” and “be sel_fe”. The command “be

fe_workset” should be used once at startup to define the complete set of FEs that

compose the current system, while the command “fe active” and “be sel_fe” may select

some subset of all the FEs comprised in the system. In practice, “be fe active” will

normally take the reserved keyword “fe_workset” as an argument to specify that all the

FEs of the system are active. Similarly, “be sel_fe” may take as an argument the keyword

“fe_workset” if all FEs require identical configuration. Otherwise, the command “be

sel_fe 0xSet” can be used to successively select different subsets of FEs and apply

different configuration commands to each subset.

10.1.6 SYN CHRONO US SIGN AL FANOUT

The commands in Table 33 can be used to send synchronously to all FEs a message

over Virtual Channel A. These commands are for test only and some values must not be

used during normal operation because these messages are normally automatically

generated by the firmware part of the TDCM without the intervention of the user.

Table 33 . Commands to send synchronous messages to all FECs.

Command Argument Action

be isobus <0xVal> Sends the message <0xVal> to all FEs
synchronously. Argument <0xVal> is a 8-bit
hexadecimal value obtained by a combination of:
Bit 7 (MSB): reserved
Bit 6: WCK_SYNCH (synchronize write clock phase)
Bit 5: SCA_START (acquisition start or restart)
Bit 4: SCA_STOP (acquisition stop, a.k.a. trigger)
Bit 3: CLR_EVCNT (clear event counter)
Bit 2: CLR_TSTAMP (clear timestamp counter)
BIT 1-0: EV_TYPE (event type)

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

143

10.1.7 TDCM FINI T E ST AT E MACHIN E S

The commands in Table 34 are used to display the state of several of the state

machines driving the TDCM.

Table 34 . Commands related to TDCM internal finite state machines.

Command Argument Action

be state tg Displays the current state of the trigger
generator of the TDCM

be state eb Displays the current state of the local event
builder

be state pm Displays the current state of the data packet
mover

be state sc Displays the current state of slow control
be state sc <0xVal> Sets the state of slow control to the specified

value
be state dt Displays the current state of data taking
be state dt <0xval> Sets the state of data taking to the specified

value
be state pa Displays the current state of the pedestal

accumulator
be state pa <0xVal> Sets the state of the pedestal accumulator to the

supplied value
be restart Clears all pending error on the trigger generator

and restarts its operation
be max_readout_time Shows the maximum allowable event readout

time.
be max_readout_time <time> Sets the maximum allowable event readout time.

The value <time> is an integer between 0 and 16
and represents an actual time of 1 s to 17 s.

The state of several internal state machines of the TDCM can be displayed with the

commands “be state <tg | eb | pm>”. The values that are returned are read-only and

the corresponding registers cannot be modified directly.

On the other hand, the commands “be state <sc | dt | pa>” act on variables that are

maintained in the software of the TDCM and their state can be changed as it is required

to signal some specific conditions.

The Pedestal Accumulator is the part of the TDCM embedded software that is

responsible for receiving noise events during pedestal runs and accumulate these data

in the histogram of the corresponding channels. The processing time for each event is

difficult to predict. The processor can signal via a state variable the completion of the

processing of the current pedestal event by clearing the busy value set by the user when

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

144

the end of event is found. By polling on this state variable, the user can determine that

the current pedestal event has been processed and the TDCM is available for generating

the next event. The pedestal accumulator can take only two states: Standby (0x0) when

it is not processing pedestal data, and Busy (0x1) when pedestal data processing will

start shortly or is still underway. The user shall set the Pedestal Accumulator in the Busy

state before enabling the internal trigger generator (for generating one event only). The

user shall poll on the state of the pedestal accumulator until the Busy state has been

cleared before reading pedestal histograms or generating the next event.

In the deployment of the TDCM for the upgrade of T2K, several MIDAS front-end

programs will drive the TDCM concurrently: on for slow-control configuration and

monitoring, and one for run-time settings and data acquisition. The two MIDAS front-

end programs must cooperate to avoid conflicts in resource usage. At power-up, the

TDCM slow control is in the “PowerOnDefault” state (0x0). When slow control

configuration is in progress, it will switch to the state “BusyConfiguring” (0x1). In case of

error, state “ConfigurationFailed” (0x2) will be reached. When the system is ready for

the run-time configuration in view of data taking, it shall be in the state

“ConfigurationSuccess” (0x3), “MonitorRunning” (0x4), “MonitorPaused” (0x5). Until

one of these states is reached, it is not guaranteed that all FEMs and FECs are powered

up and that the TDCM can communicate with them. Hence no commands shall be issued

to the TDCM for run-time configuration and/or data taking until the slow control side

has reached some appropriate state.

Conversely, the Data Taking state variable is used to inform the Slow Control side of

his on-going operations. The default state is “PowerOnDefault” (0x0) until the transition

to “WaitingSlowControlConfigDone” (0x1) occurs. After the Slow Control side has

reached an adequate state, the Data Taking side is allowed to make transitions to

“BusyConfiguring” (0x2), “ConfigurationFailed” (0x3), “ConfigurationSuccess” (0x4),

“Running” (0x5), “Paused” (0x6), “Stopped” (0x7), “Disconnected” 0x8, etc. The exact

definition and usage of the state variables for the Slow Control side and the Data Taking

side is not completely defined and this part of the embedded TDCM software is still

evolving.

The maximum event readout time is the allowable time from the reception of the

trigger acknowledge from every FEC until all FEs have returned their own clear busy

message. If a FE is still presumably in the busy state for readout and the allowable

maximum readout time has elapsed, the TDCM enters an error state and stops data

acquisition until this error is cleared.

10.1.8 TRI GGER GEN ER ATOR AN D TRI GGER CONT RO L

The commands in Table 35 are used to control the trigger and trigger generator of

the TDCM.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

145

Table 35 . Trigger generator and trigger control.

Command Argument Action

be trig_rate Shows the current trigger rate of the
embedded constant interval trigger
generator

be trig_rate <range> <rate> Sets the rate of the embedded trigger
generator. Four ranges are available:

0: 0.1 Hz to 10 Hz in steps of 0.1 Hz
1: 10 Hz to 1000 Hz in steps of 10 Hz
2: 100 Hz to 10 kHz in steps of 100 Hz
3: 1 kHz to 100 kHz in steps of 1 kHz

The argument <rate> is from 1 to 100 for
each possible range.

be event_limit Shows the current event limit of the
embedded event generator

be event_limit <limit> Sets the event limit of the embedded event
generator. Eight settings are supported:

0: infinity
1: 1 event
2: 10 events
3: 100 events
4: 1000 events
5: 10.000 events
6: 100.000 events
7: 1.000.000 events.

The embedded event generator will stop
producing new triggers when the allowable
limit is reached.

be event rx Shows the number of valid triggers received
by the TDCM

be event tx Shows the number of triggers sent by the
TDCM to the FECs. The value can be less than
the number of trigger received if system
dead-time is excessive.

be trig_delay <type> Displays the current value of the trigger
latency setting for the type of event
specified.
Four types of event are supported (0, 1, 2, 3).

be trig_delay <type> <delay> Sets the trigger latency to <delay> for the
type of event specified.
Trigger delay is an unsigned 16-bit integer
value that specifies the delay in units of 10
ns. The maximum trigger delay is 655.35 µs.

be trig_ena Shows which trigger sources are enabled in
the TDCM

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

146

be trig_ena <0xTrig_mask> Sets which trigger sources are enabled in the
TDCM. Parameter <0xTrig_mask> is an
hexadecimal 4 –bit combination of:

Bit 0: embedded periodic generator
Bit 1: NIM level trigger input
Bit 2: MTCM serial trigger input
Bit 3: TTL level trigger input

be ss_trig_ena Shows if the Single Shot trigger mode is
enabled or disabled

be ss_trig_ena <0 | 1> Disables or enables the single shot trigger
mode

be ss_trig_delay Shows the trigger delay for the Single Shot
Trigger mode

be ss_trig_delay <Delay> Sets the trigger delay for the Single Shot
Trigger mode. <Delay> must be in [1; 255]
corresponding to a delay of 10 µs to 25.5 ms
in steps of 10 µs.

be mult_trig_ena Shows if the trigger based on multiplicity is
enabled or not

be mult_trig_ena <0 |1> Enables or disables the trigger based on
multiplicity.

be mult_trig_dst Shows the target of the trigger based on
multiplicity

be mult_trig_dst <0 | 1> Sets the target of the trigger based on
multiplicity. 0: send to FECs directly; 1: send
to external device

be mult_more_than Shows the lower bound of the window
comparator that elaborates the trigger based
on multiplicity signals

be mult_more_than <low_mult> Sets the lower bound of the window
comparator that elaborates the trigger based
on multiplicity signals. Parameter
<low_mult> is an integer in [0, 127]

be mult_less_than Shows the upper bound of the window
comparator that elaborates the trigger based
on multiplicity signals

be mult_less_than <high_mult> Sets the upper bound of the window
comparator that elaborates the trigger based
on multiplicity signals. Parameter
<high_mult> is an integer in [0, 127]

be extra_dead_time Shows the value of the extra dead-time
be extra_dead_time <dead_time> Sets the extra dead-time. The argument

<dead-time> is in [0; 1023] and is expressed
in µs.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

147

The TDCM comprises an embedded periodic trigger generator with programmable

frequency and maximum event count. This generator is useful for system debugging and

performance evaluation. Others sources of trigger are: the TTL level trigger input, the

NIM level trigger input, the serial trigger from the MTCM, the self-trigger based on

multiplicity. Multiple sources of trigger may be enabled when the TDCM acts as a master

device, but the TDCM shall only enable triggers from the MTCM when it is a slave device.

When a trigger occurs, the latency programmed in TRIG_LAT_x is applied, according to

the 4 possible types of event. Currently, the periodic generator, the TTL and NIM trigger

inputs, the multiplicity self-trigger and the manual push button trigger generate events

of type “11” – this may be changed in the future. When the trigger comes from the

MTCM, the type of event is provided by the MTCM.

The TDCM has also a special mode of self-trigger called the “Single Shot Trigger”. This

mode is intended to be used when the TDCM is a master device and the calibration

pulser is enabled on the front-end side. When SCA_START occurs (manual push button

START, or “isobus” software command with the appropriate bit set), the TDCM elapses

the latency programmed in SS_TRIG_LAT and finally generates a trigger of type “10”.

This trigger is further delayed by the value set in TRIG_LAT_2. After this Single Shot

trigger has been generated, SCA_START must be generated by the user to produce a

new event. On the contrary, when the TDCM is used in standalone master mode with

the TTL, NIM or periodic trigger input, SCA_START need only be generated once at the

start of run by the user. When a trigger occurs, the TDCM generates automatically the

required SCA_START to resume operation after all front-ends have signaled that they

are ready. When the TDCM is a slave device, all SCA_START commands come from the

MTCM.

The TDCM can add some additional dead-time after SCA write in all FE have been

restarted and before its BUSY pin is released (and before it sends CLEAR_BUSY to the M-

TCM when it is used). This additional dead-time can be set from 0 to 1.023 ms.

10.1.9 DAT A P UMP

The commands in Table 36 are used to control the “Data Pump” embedded in the

TDCM.

Table 36 . Commands related to the Data Pump.

Command Argument Action

be pump ena Displays from which subset of FEs the Data Pump
tries to gather event data

be pump ena
<fe_workset
|0xPat>

Sets from which FEs the Data Pump have to gather
event data. The argument can be the keyword
“fe_workset” to select all declared FEs or a 32-bit

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

148

hexadecimal value <0xPat> where a 1 is set to every
position that correspond to an active FE.

be pump stalled Shows for which subset of FEs the Data Pump is in
the stalled state

be pump running Shows for which subset of FEs the Data Pump is in
the running state

be pump timed Shows if the Data Pump operates in time-out mode
or not.

be pump timed <0 | 1> Sets the Data Pump for operation in time-out mode
or not

be pump timeout Shows the value of the time-out for the Data Pump
be pump timeout <Val> Sets the value of the time-out for the Data Pump.

Argument:
0: 1 ms
1: 10 ms
2: 100 ms
3: 1 s

10.1.10 EVENT BUI LDER AN D PACK ET FR AMER

The commands in Table 37 are used to control the Event Builder and Packet Framer

embedded in the TDCM.

Table 37 . Commands related to the Event Builder.

Command Argument Action

be eb run Shows if the Event Builder is enabled or disabled
be eb run <0 | 1> Enables or disables the Event Builder.
be eb keep_fem_soe Shows if the Event Builder keeps or discards the

Start Of Event packet sent by each FE
be eb keep_fem_soe

<0 | 1>
Sets whether the Event Builder keeps or discards
the Start Of Event packet sent by each FE

be eb check_ev_nb Shows if the Event Builder verifies or ignores if the
event number matches across all FEs at each event

be eb check_ev_nb
<0 | 1>

Sets whether the Event Builder verifies or ignores
if the event number matches across all FEs at each
event

be eb check_ev_ts Shows if the Event Builder verifies or ignores if the
event timestamp matches across all FEs at each
event

be eb check_ev_ts <0
| 1>

Sets whether the Event Builder verifies or ignores
if the event timestamp matches across all FEs at
each event

be eb ts_tolerance Shows what mismatch is allowable between event
timestamps when verification is enabled

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

149

be eb ts_tolerance
<Tol>

Sets the allowable mismatch between event
timestamps when verification is enabled.
Parameter:

0: exact match required
1: match required within -1 to +1 units
2: match required within -2 to +2 units
3: match required within -4 to +4 units

be eb do_eof_on_eoe Show whether the option to force the end of frame
after each end of event is enabled or not

be eb do_eof_on_eoe
<0 | 1>

Set the option to force an end of frame after each
end of event

be serve_target Shows to which target the output of the Packet
Framer is directed

be serve_target <Target> Sets to which target the output of the Packet
Framer is directed. Parameter:

0: null device (drop data)
1: remote DAQ PC (normal operation)
2: locally accumulated pedestal histograms
3: locally accumulated hit count histograms

10.1.11 CO MMAN DS FO R DAT A ACQUI SITION

The commands listed in Table 38 are used by the DAQ PC to request acquired event

data from the TDCM. Event data transfer from the TDCM to the DAQ PC uses a pull

protocol with a credit mechanism that provides flow control. This mechanism is

mandatory to avoid data losses because the TDCM and the DAQ PC communicates over

UDP/IP, which is not a reliable protocol. These commands are not typed by the user

when the “pclient” program is used for data acquisition but they must be used by any

other client program that performs the same function. In fact, the “pclient” program

converts transparently the “DAQ …” commands used at the user level into series of “daq

…” commands at the lower level of communication between the TDCM and the DAQ PC.

In order for the TDCM to send the event data gathered by its event builder and

Ethernet packet framer, it must receive some send credits from the DAQ PC. This is

accomplished by the command “daq <0xCredit F>” where the argument 0xCredit

specifies the number of send credits. This argument is followed by the unit “F” which

means Ethernet frames. Early versions of the TDCM embedded software also supported

the unit “B” meaning bytes, but this is now deprecated and only credits expressed in a

number of Ethernet frames are acceptable. The credit argument must be specified in

hexadecimal with exactly 6 digits. For example, the command “daq 0x000008 F”

instructs the TDCM that it is allowed to send up to 8 Ethernet data frames (of any size

up to the MTU) to the DAQ PC. Every time the TDCM sends one data frame to the DAQ

PC, it decrements its local credit count. When this local credit count reaches zero, the

TDCM is not allowed to send any more data to the DAQ PC until it receives back some

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

150

credits via the appropriate “daq …” command. The DAQ PC should not wait until the

allowable number of frames has been received to send back some credits to the TDCM

because starvation on the TDCM side may occur, and this reduces data acquisition

throughput. On the opposite, the DAQ PC need not return immediately every single

credit to the TDCM because it may be inefficient to send one “daq …” command for

every received data frame. It is recommended that the DAQ PC accumulates a certain of

credits (e.g. 4) before they are returned at once to the TDCM. The initial number of

credits determines the total maximum number of Ethernet data frames that are allowed

to flow at any time in the system. The optimal number depends on the buffering

capability of the DAQ PC (network interface card and device driver) and network latency.

It is assumed that the DAQ PC and the TDCM are connected directly by a point-to-point

Ethernet cable, but in case multiple TDCMs are controlled from the same Ethernet

adapter of the DAQ PC, an Ethernet switch will be needed in between. In this case, the

buffering capacity of the Ethernet switch and its latency also play some role. If the total

frame credit count is too high, some element in the chain may overflow, causing data

losses. If the initial number of credits is too low, data acquisition throughput will be

reduced because the TDCM will have to wait for returned credits before it can transmit

more data. From experience, a total credit count of 8 Ethernet frames is a good tradeoff

that allows to reach the highest transfer efficiency without any data loss in network

elements caused by capacity overflow.

Table 38 . Commands for data acquisition.

Command Argument Action

(be)* daq Shows the current credit count of the
TDCM for sending data to the DAQ PC

(be)* daq <0xCredit> F <Seq_nb> Gives some amount of send credits to
the TDCM. An optional sequence
number may be added

(be)* daq 0xFFFFFF F Clears the send credit count of the
TDCM

*note: the prefix “be” must not be present, but this may be changed in future
software releases

When the “daq” command is supplied without any argument, the TDCM returns a

message that contains a copy of the current value of its credit counter. If data acquisition

is in progress, this number will vary. If data acquisition is currently stopped, the returned

value can be added to the current credit counter of the DAQ PC to verify that the total

number of credits corresponds to the value injected at startup. If it is lower, some losses

have occurred. Note that lost frames are currently not retransmitted, but in stable

system, such losses are extremely rare.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

151

In some cases, it is desired to clear the send credit count of the TDCM. The command

“daq 0xFFFFFF F” is used for this purpose. In fact, it is recommended to clear the frame

send credit count of the TDCM at the beginning of each data taking run and re-initialize

it to the desired value. Care must be taken not to inject new credits in the system

without purging properly all the credits that may remain from the previous run, because

an excessive number of credits will most likely cause some frame losses at a later time.

For increased configurability and easier performance tuning, it is recommended that the

total number of send credits and the threshold for returning freed credits to the TDCM

are made configurable at run-time without the need to recompile any software.

In order to detect the loss of data frames and returned credits, the TDCM and the

DAQ PC may optionally place a sequence number in each data frame and daq command

respectively. If this functionality is used, the first daq command sent by the DAQ PC to

the TDCM should not include any sequence number. This instructs the TDCM to clear

locally the value expected for the sequence number that will be contained in the next

daq request. On the second daq request sent by the DAQ PC to the TDCM, the sequence

number argument shall be present, and it must be 0x00 in this case. Then, the sequence

number must be incremented by one on every sub-sequent daq command. When

reaching 0xFF, the index wraps around and the next daq command will have the

sequence number 0x00. Sending a daq command without adding the sequence number

argument clears to 0x00 the value expected by the TDCM for the sequence number of

the next daq command. When a daq command contains a sequence number, the TDCM

compares the received sequence number to the expected value fetched from its own

local counter. In case of mismatch, the TDCM computes how many daq command

frames were presumably lost. It updates a local error counter but it does not attempt to

recover lost commands.

Each data frame sent the TDCM to the DAQ PC may also carry a sequence number. It

is placed in the first 16-bit payload word of a data frame, just after the UDP/IP header.

This protocol word is set to 0x0000 when the sequence number functionality is not used,

see Fig. 92 (b). The first data frame sent after receiving a daq command that does not

contain the sequence number argument always contains 0x0100 in the first payload

word. When receiving this value, the DAQ PC shall set to 0x01 the value it expects for

the next response frame from the TDCM. Subsequent data frames sent by the TDCM

have in the first 16-bit word a value 0x00 in the 8-MSBs and an incrementing sequence

number in the 8-LSBs. When the sequence number reaches 0xFF, it wraps around and

the next sequence number will be 0x00. By comparing the expected sequence number

to the actual sequence number received, the DAQ PC can determine if some of the data

frames sent by the TDCM were lost. This operation is only for error monitoring. It does

not attempt to recover lost data. Note that the sequence number in the DAQ PC to

TDCM direction is different from that used in the opposite direction. Each end must

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

152

maintain a separate counter for the two types of sequence numbers. The

synchronization procedure is however identical for both counters: it is accomplished by

sending to the TDCM a daq command without the sequence number argument.

10.1.12 CONT RO L O F T HE RIN G B UFFER O F T HE TDCM

The commands that control the operation of the ring buffer of the TDCM are listed in

Table 39.

Table 39 . TDCM ring buffer commands.

Command Argument Action

be rbf reset Resets the ring buffer
be rbf resume Starts or resumes the operation of the ring buffer
be rbf suspend Suspends the operation of the ring buffer
be rbf getpnd Returns any pending buffer immediately, even if it

partially filled with data
be rbf timed Shows if the ring buffer runs in time-out mode or

not
be rbf timed <0 |1> Sets the time-out mode for the ring buffer
be rbf timeval Shows the value of the time-out of the ring buffer
be rbf timeval <val> Sets the value of the time-out for the ring buffer.

Possible settings: 0:1 ms; 1:10 ms; 2:100 ms; 3:1 s.
be rbf config Reads the current configuration parameters of the

ring buffer

10.1.13 CO MMAN DS R ELATED T O C O MMUNI CATION WIT H TH E MAST ER TCM

The commands in Table 40 are used to control the interface of the TDCM to the M-

TCM.

The commands inv_mtcm_mosi and inv_mtcm_miso are used to optionally invert the

serial data sent to / received from the M-TCM. These can correct differential signal pair

inversion.

Table 40 . Commands related to communication with the Master TCM.

Command Argument Action

be mtcm inv_mosi Displays the current state of the inversion for the
serial data received by the TDCM from the M-TCM

be mtcm inv_mosi <0|1> Sets the inversion of the serial data received by the
TDCM from the M-TCM. 0: no data inversion. 1:
invert data.

be mtcm inv_miso Displays the current state of the inversion for the
serial data sent by the TDCM to the M-TCM

be mtcm inv_miso <0|1> Sets the inversion of the serial data sent by the
TDCM to the M-TCM. 0: no data inversion. 1: invert
data.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

153

be mtcm bert_pat Displays the PRBS pattern used in bit error rate
tester mode

be mtcm bert_pat <0|1|2|3> Sets the PRBS pattern used in bit error rate tester
mode. 0: PRBS7; 1: PRBS15; 2: PRBS23; 3: PRBS31.

be mtcm_bert_ena Shows if the bit error rate function is engaged or
not

be mtcm_bert_ena <0|1> Enables or disables the bit error rate tester mode.
0: disabled; 1: enabled.

be mtcm_bert_rxen Shows if the receive side of the bit error rate tester
is running or not

be mtcm_bert_rxen <0|1> Starts or stops the receive side of the bit error rate
tester. 0: stopped; 1: started (does not mean that
synchronization is gained)

be mtcm_bert_txen Shows if the transmit side of the bit error rate
tester is running or not

be mtcm_bert_txen <0|1> Starts or stops the transmit side of the bit error
rate tester. 0: stopped; 1: started

be mtcm bert_doerr Generate a single bit error on the transmitter side
be mtcm mosi_sel Shows which sample is used to deserialize the

signal MTCM_MOSI
be mtcm mosi_sel <0|1|2|3> Sets which sample is used to deserialize the signal

MTCM_MOSI. 0: t+0 ns; 1: t+2.5 ns; 2: t+5 ns; 3:
t+7.5 ns

be mtcm cnt_clr Clear the RX, RX error and TX counters of the
MTCM interface

be mtcm cnt_get Displays the RX, RX error and TX counters of the
MTCM interface

10.1.14 DEVI CES CONT ROLLED BY T HE TDCM OV ER I2C

The commands in Table 41 are used to drive the devices controlled by the TDCM over

I2C. The TDCM uses the two I2C controllers of the ZYNQ. The devices to be controlled

over I2C are: 1) on the FPGA module itself (real-time clock, secure EEPROM), 2) on the

TDCM carrier or the Enclustra PE1 carrier (clock generators, SFP transceivers), 3) on the

SFP extension mezzanine cards (parallel I/O ports for LED control and SFP transceivers).

Table 41 . Commands for peripheral control over I2C.

Command Argument Action

be iic mod info Reads the information available on the FPGA
module. Depends on which FPGA module is used.

be iic mod power Reads the current monitor of the FPGA module (if
available)

be iic mod clock Reads the real time clock of the FPGA module (if
available)

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

154

be iic mod set clock
<day month year
hour min sec>

Sets the real time clock of the FPGA module (if
available)

be iic syscon Reads the information on the system controller of
the FPGA module host platform. Only available on
Enclustra Mercury PE1 platform

be iic msfp <ix> info Retrieves various information from SFP transceiver
plugged in port <ix> of a SFP Mezzanine Card. The
index of the port can be in 0 to 31. The selection of
the appropriate SFP Mezzanine Card and setting of
the I2C multiplexer to address the appropriate
transceiver is handled internally

be iic msfp <ix> moni Same as above, but retrieves various monitoring
information from the selected SFP transceiver
instead of fixed data.

be iic csfp <ix> info Retrieves various information from SFP transceiver
plugged in port <ix> of the TDCM carrier. The index
of the port can be in 0 to 3.

be iic csfp <ix> moni Same as above, but retrieves various monitoring
information from the selected SFP transceiver
instead of fixed data.

be iic si5338 <reg> Reads register <reg> of the on-board Si5338 PLL.
This is only available on Enclustra Mercury PE1
platform

be iic si5338 <reg>
<val>

Writes register <reg> with value <val> in the on-
board Si5338 PLL. This is only available on the
Enclustra Mercury PE1 platform. Usage is reserved
to expert users.

be fmc_iic Shows the state (enabled or disabled) of the I2C
interface of the FMC extension slot on Enclustra
Mercury PE1 carrier card.

be fmc_iic <0 | 1> Enable or disable the I2C port of the FMC slot on the
Enclustra Mercury PE1 carrier card

be sfp_mezz <id> led Shows the pattern of currently active LEDs on the
front panel of the selected SFP Mezzanine Card.
Parameter <id> selects SFP Mezzanine card 0 or 1.

be sfp_mezz <id> led <0xPat> Sets the front panel LEDs of SFP Mezzanine Card
<id> to the value <0xPat>. Parameter <0xPat> is a
32-bit unsigned integer where each bit controls one
LED on the SFP Mezzanine Card. When a bit is set to
1, the associated LED illuminates.

be sfp_mezz <id> fault Shows the state of the TX FAULT and/or RX_LOS
pins of the optical transceivers of the selected SFP
Mezzanine Card.

be sfp_mezz <id> disable Shows the state of the TX DISABLE pins of the
optical transceivers of the selected SFP Mezzanine
Card.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

155

be sfp_mezz <id> disable
<0xDis>

Sets the state of the TX DISABLE pins of the optical
transceivers of the selected SFP Mezzanine Card
according to pattern <0xDis>. Argument <0xDis> is
a 16-bit unsigned integer where setting a bit to 1
disables the TX part of the corresponding optical
transceiver port.

be sfp_mezz <id> enable
<fe_workset |
0xEna>

Sets the state of the TX DISABLE pins of the optical
transceivers of the selected SFP Mezzanine Card to
the inverse of the current FE work set (i.e. do an
enable for the current FE work set), or use the
supply argument for the enable pattern. Argument
<0xEna> is a 16-bit unsigned integer where setting
a bit to 1 enables the TX part of the corresponding
optical transceiver port

be sfp_mezz <id> mux Shows to which port the I2C multiplexer of selected
SFP Mezzanine Card is set.

be sfp_mezz <id> mux <port> Sets the I2C multiplexer of selected SFP Mezzanine
Card to the supplied port index. Argument <port> is
within 0 to 15. This command is normally not used
directly.

10.1.15 CO MMAN DS FO R T HE EMBE DDED EV EN T DAT A GEN E R ATO R

The commands in Table 42 are used control the event data generator embedded in

the TDCM. This data generator is used to exercise the Event Builder and Packet Framer

parts of the TDCM in the absence of a sufficient number of FEs, or without any FE at all.

Table 42 . Commands for the embedded event data generator.

Command Argument Action

be eg samp Shows the number of data samples generated for
each detector channel.

be eg samp <Cnt> Sets the number of data samples generated for
each detector channel. This number corresponds to
the number of SCA cells when using the AFTER,
AGET or ASTRE chips. It can be set from 0 to 512
inclusive.

be eg chan Shows the number of channel per ASIC for the
simulated FECs

be eg chan <Cnt> Sets the number of channel per ASIC for the
simulated FEs. The allowable value is from 0 to 127
inclusive. The value 76 or 79 corresponds to the
AFTER chip, the value 70 or 72 correspond to AGET
or ASTRE in full readout mode, values from 0 to 72
correspond to AGET or ASTRE in partial readout
mode.

be eg chip Shows the number of chips per simulated FE

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

156

be eg chip <Cnt> Sets the number of chips per simulated FE.
Allowable values are 0 to 4, with 4 being the actual
number of ASIC chips per physical FE

be eg ena Shows the state, enabled or disabled, of the event
data generator

be eg ena <0 | 1> Enables or disables the event generator
be eg emit_last Shows whether the optional last cell read value is

emitted or not
be eg emit_last <0 | 1> Sets whether the optional last cell read value

information is emitted or not for each simulated
front-end ASIC.

be eg emit_hit Shows whether the optional channel hit count value
is emitted or not for the simulated front-end ASICs

be eg emit_hit <0 | 1> Sets whether the optional channel hit count value is
emitted or not for the simulated front-end ASICs.

be eg mode Shows the mode of operation of the event data
generator

be eg mode <Val> Sets the mode of operation of the event data
generator. Argument:

0: constant event size
1: random size for the number of samples
per simulated channel, but all channels have
the same size within each event
2: constant event size
3: random size for the number of samples
per simulated channel, the data of each
channel has a different size within the same
event

10.1.16 DEAD-TIME AN D I NT ER-EVENT TI ME HI STO GR AM S

The TDCM measures the dead-time of the system for each event. This measurement

is made from the time a valid trigger is received by the TDCM until all the FEs are ready

to assert their respective SCA write signal, i.e. when they are ready to start the

acquisition of the next event. The TDCM also measures the time interval between every

two consecutive event. This measurement reflect the instantaneous trigger rate.

Dead-time and inter event time measurements are accumulated in two separates

1024-bin x 32-bit amplitude count histograms. Four resolutions settings are available for

the dead-time histogram: 1 µs, 10 µs, 100 µs and 1 ms. These values correspond to

measurement ranges of [0; 1.022 ms], [0; 10.22 ms], [0; 102.2 ms] and [0; 1.022 s]. The

resolution of the inter-event time histogram is fixed to 100 µs leading to measurement

range of [0; 102.2 ms]. When a measurement overflows the limit, the last bin of the

relevant histogram is incremented. Each measurement is rounded to the closest

resolution unit before it is added to its histogram. Saturation occurs when any bin

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

157

reaches the maximum count. Statistics computed from these histograms are only

accurate when the overflow bin is empty and no bin reached saturation. Note that for a

given number of events N, the number of entries in the dead time histogram is N, while

it is N-1 in the inter-event time histogram because the time interval between the first

event and the precedent event is not taken into account. The commands related to

dead-time and inter-even time measurements are listed in Table 43.

Table 43 . Dead time and inter event time measurement related commands.

Command Argument Action

be busy_resol Gets the resolution of the dead-time histogram
be busy_resol <resol> Sets the resolution of the dead-time histogram.

Parameter:
0: 1 µs
1: 10 µs
2: 100 µs
3: 1 ms.

be hbusy clr Clears the histogram of dead time
be hbusy get Reads the histogram of dead time
be hevper clr Clears the histogram of inter event time
be hevper get Reads the histogram of inter event time

10.1.17 BOARD S ERI AL ID AN D MONITORIN G

The TDCM has a Maxim Semiconductor DS2438 silicon ID and monitor chip. This

device provides a unique 48-bit serial identification number, and allows to measure local

temperature, current, and two external voltages. The voltages that can be measured on

the TDCM are the 3.3V and 2.5V power supplies. The command listed in Table 44 are

used to access the DS2438 of the TDCM. The current measured is the total current drawn

from the 12 V power input. It includes the current drawn by the FPGA module, the TDCM

carrier and the mezzanine cards.

Table 44 . Serial ID and monitoring commands.

Command Argument Action

be moni <T|V|A|I|S> Reads from the siicon ID chip of the
TDCM, T: the local temperature, V: the
2.5V power supply, A: the 3.3V power
supply, I: the current drawn by the TDCM,
S: the 48-bit serial number of the TDCM.

10.1.18 CO MMAN DS FO R T HE EMBE DDED FLAS H MEMO RY

The commands in Table 45 are used to read or write to the flash memory embedded

on the FPGA module of the TDCM. Theses commands are not intended to be used

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

158

directly, but they are intended to experts users. The content of the flash memory of the

FPGA module must not be altered under normal circumstances.

Table 45 . Commands for the embedded flash memory.

Command Argument Action

be flash read 0xAdr 0xCount Reads the content of the on-board flash memory
starting at address 0xAdr and read 0xCount bytes.
The maximum number of bytes that can be read
with this command is 32.

be flash <write |
write_verify |
erase_write |
erase_write_verify>
0xAdr 0xCount
data0data1data2…

Writes, writes and verify, erase then write, or erase
write and verify, the supplied data starting at
address 0xAdr. The argument count must not
exceed 32. Each data byte is supplied with two
hexadecimal digits without the usual “0x” prefix
and must not be separated by space characters.

10.1.19 SD MEMOR Y CAR D

The TDCM has a removable SD Memory Card that is essentially used to store the boot

file that contains the FPGA firmware, the first stage boot loader program for the ARM

processor of the ZYNQ, and also the main application software. The SD Card is formatted

in FAT. If the SD Card is removed from the TDCM, files can be read and write using a PC

with the appropriate card reader. When the SD Card is inserted in the TDCM, minimal

functions are provided to read and write files. Table 46 shows the available commands

for file operations on the SD Card of the TDCM.

Table 46 . Commands related to SD Card operations.

Command Argument Action

be sd wena Shows if write protection is enabled or not for the
media.

be sd wena <0 | 1> Enables or disable write operations to the media.
be sd mount Mount the file system of the media
be sd umount Unmount the file system of the media
be sd dir <path> Displays the content of the root directory or the

content of the supplied path (the content displayed
is limited to 256 characters)

be sd mv <src> <dst> Rename file <src> into <dst>
be sd rm <file_name> Delete file named <file_name>
be sd fopen <r | w | c | f>

<file_name>
Open a file for read and/or write. If the flag “c” is
passed, the file is created if it does not exist. But if
it already exists, an error is returned. If the flag “f”
is passed, the file is created if it does not exist, and
overwritten if it already exists.

be sd fclose Close the currently opened file

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

159

be sd fread <byte_count> Reads <byte_count> from a currently opened file
and prints them (in hexadecimal). When the end of
file is reached, an empty string is printed. Argument
<byte_count> is limited to 96.

be sd fwrite <byte list…> Write to the currently opened file. The byte list
contains the data to be written. It must be
composed of an even number of hexadecimal ASCII
characters, where each group of two characters
represents the hexadecimal value of the binary byte
to be written. The byte list may contain up to 1024
characters, which represents 512 bytes of binary
data.

be sd fdate <file_name>
<y/m/d h:m:s>

Sets the date and time of <file_name> to the
supplied arguments. Note that the format must be
respected: year/month/day hour:minutes:seconds.

Note that only short file names up to 8 characters are allowed. Note also that there is no

distinction between upper case and lower case letters in file names. All file and directory

names will be converted to upper case. The user will normally not need to use these functions

directly. These commands are mostly used to upload new versions of the boot file of the TDCM

remotely to the SD Card. See the section on boot file upload (client program command

reference).

10.2 COMMANDS THAT APPLY TO THE FE

This sections contains the commands interpreted by the TDCM that perform some

action on one or several of the FEs. Important note: the commands that are directed by

the TDCM to the FE start with the prefix “fe”. This prefix can optionally be followed by

the placeholder character “.“, surrounded by one space character before and after, or

by the individual index of the FE to which the command applies. This optional argument

after the prefix “fe” is intended to make each command self-contained. This is required

when the TDCM receives commands from multiple clients that communicate with the

same FEs. Although multiple clients are allowed, there must not be interference

between them because the TDCM has no mechanism to provide exclusive access to FE

hardware resources to a particular client. It is recommended that only one client

performs system configuration and DAQ. There may be one or several distinct clients for

slow control monitoring, non-intrusive register read-back and debugging. When no

argument, or the placeholder character “.” is placed after the prefix “fe”, the command

is directed to the FE, or the set of FEs, determined by the last command “be sel_fe …”

or the last command “fe <index> …”. For deployments that may use several clients, it is

mandatory that every client only generates commands that contain the index of the FE

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

160

to which the command applies. In a multi-client environment, a client program must not

assume that the selection of FE(s) that it made with the command “be sel_fe …” at an

earlier time may not be changed at any time by another client.

10.2.1 FE F IR MW AR E VER SIO N , FE I NDEX AND DNA

A project family number (optional), firmware major revision number and minor

revision number are assigned at to the FPGA firmware of the FE at compilation time.

This information can be read using the command “fe fw_version”.

As it was explained earlier, each FEC is assigned a card index in [0;31] by the TDCM

which corresponds to the ID of the physical port where it is connected. The

correspondence between the serial DNA number of a FE and the card index is

determined by the appropriate enumeration procedure at system initialization. The

command “fe dna” given in Table 47 is used to request to a FE its ID and DNA.

Table 47 . Commands for FE firmware version, index and DNA display.

Command Argument Action

fe fw_version Retrieves the project family, and the major and
minor firmware revision numbers

fe dna show Retrieves the DNA number and index of the
currently selected FE

The “fe dna” command is normally called after the TDCM has enumerated all FEs and

assigned an ID to each of them to verify that each FE has correctly received its own ID.

10.2.2 D IR ECT ACCESS TO T HE VIR TUAL MEMO RY SP ACE OF T HE FE

After all FEs have established communication with the TDCM and have been properly

enumerated, configuration and monitoring commands can be executed by series of read

and write operations in the virtual register and memory space of the FEC that is

accessible by the TDCM over Virtual Channel B. The commands listed in Table 48.

Table 48 . Commands for direct access to the virtual Register/Memory space of a FEC.

Command Argument Action

fe bus read <0xAdr>
<0xByteEn>

Read the 32-bit data at address 0xAdr in the
currently active FE. The address must be aligned in
4-byte boundaries. The optional argument
<0xByteEn> is a 4-bit hexadecimal value that gives
which bytes to read among the 4 bytes that are
addressed. If this argument is omitted, the 4 bytes
are read

fe bus write <0xAdr>
<0xByteEn>
<0xData>

Writes the supplied 32-bit word at the specified
address in the currently active FE. The address must
be aligned on 4-byte boundaries. If the argument

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

161

<0xByteEn> is omitted, all 4 bytes are altered.
Otherwise only the bytes corresponding to the bits
set to 1 in this argument are written.

fe reg <Reg_index> Reads the content of the configuration register of
the specified index. This allow reading one the 16
configuration registers listed in Table 23.

fe reg <Reg_Index>
<0xValue>

Writes the specified configuration register with the
supplied data. This allow writing one the 16
configuration registers listed in Table 23.

In principle, all the commands for configuring and monitoring the FE could be

performed only by using the above commands. In practice, it can be simpler to use the

more specific commands that are given in the following sub-sections. Note that the

above commands do not allow to alter groups that are smaller than 8 bits (i.e. one byte).

Hence, to alter a 3-bit field stored within a 32-bit wide register, the appropriate bits

need to be read and preserved while those corresponding to the field to be programmed

have to be set or cleared according to the value to be programmed. All these operations

are done transparently by the commands dedicated to each particular function while

the “fe bus” family of commands is more adequate for programming and reading back

complete registers in each FE. For the emulation of serial protocols, SPI or I2C, the

dedicated commands must be used because it would be far too complex for the user to

provide the series of “fe bus” commands that make the appropriate sequence on the

corresponding serial I/O pins of the FPGA of the FE.

10.2.3 CO MMAN DS R ELATED T O T HE CO MMUNI CATION LI NK WIT H T HE TDCM

The FEC communicates with the TDCM over a custom link. The commands related to

operation of this link are listed in Table 49.

Table 49 . Commands related to the operation of the link to the TDCM.

Command Argument Action

fe crc32_insert_ena Shows if the FE computes and inserts a
CRC32 at the end of data packets sent to
the TDCM over Virtual Channel C

fe crc32_insert_ena <0 | 1> Sets CRC32 computation and insertion
in the data packets sent by the FE to the
TDCM

fe fra_timeout Shows the value of the timeout for
sending empty data packets to the
TDCM in case no data are available

fe fra_timeout <0, 1, 2, 3> Sets the value of the timeout for sending
empty data packets to the TDCM in case
no data are available. 0: 1ms; 1: 10 ms;
2: 100 ms; 3: 1 s.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

162

fe rx_bert_ena Shows whether the bit error rate tester
in the TDCM to FEC direction is enabled
or disabled in the currently active FE

fe rx_bert_ena <0 |1> Enables or disables the bit error rate
tester in the TDCM to FEC direction on
the currently active FE

fe rx_bert_pat Shows the pattern expected by the FE
for the bit error rate tester in the TDCM
to FE direction

fe rx_bert_pat <Pattern> Sets the pattern expected by the FE for
the bit error rate tester in the TDCM to
FEC direction. Argument:

0: PRBS7
1: PRBS15
2: PRBS23
3: PRBS31

fe tx_bert_ena Shows if the bit error rate tester is
enabled in the currently active FE for the
link in the FE to TDCM direction

fe tx_bert_ena <0 | 1> Enables or disables the bit error rate
tester of the currently active FE in the FE
to TDCM direction

fe tx_bert_pat Shows the pattern generated by the
currently active FE for the bit error rate
tester in the FE to TDCM direction

fe tx_bert_pat <Pat> Sets the pattern generated by the
currently active FE for the bit error rate
tester in the FE to TDCM direction.
Argument:

0: PRBS7
1: PRBS15
2: PRBS23
3: PRBS31

fe port <id | * |
p_first:p_last> <a
| b | c | *> clr

Clears the message counters of the
specified FE(s) and Virtual Channel(s)

fe port <id> <a | b | c> Shows the message counters of the
specified FE for the specified Virtual
Channel.

10.2.4 GENER AL FE CONT RO L CO MMANDS

General control commands for the FE are listed in Table 50.

Table 50 . General control commands.

Command Argument Action

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

163

fe mode Prints the mode of operation of the FE currently
selected, AGET or AFTER

fe mode <after |
aget>

Sets the operating mode of the currently active FE
to AGET or AFTER

fe fec_enable Shows the state of FE enable bit
fe fec_enable <0xVal> Enable/disables power on the FEC (if supported).

0: both FECs OFF; 1: FEC #0 ON; 2: FEC #1 ON, 3:
FEC#0 and FEC#1 ON.

fe fec_mask <0xVal> Mask/unmask FECs (available only on T2K FEM).
00: both FECs enabled; 01: only FEC#1 in use; 10:
only FEC#0 in use; 11: no FEC in use

fe fec_mask Shows which FECs are active/masked
fe asic_mask Shows which ASICs are active/masked
fe asic_mask <0xMask> Sets which ASICs are active/masked (16-bit mask)
fe emit_hit_cnt Shows if per ASIC total channel hit count is sent in

the data stream or not
fe emit_hit_cnt <0 | 1> Disable/enable the option to send the per ASIC

total channel hit count
fe rst_len Shows the current setting of AGET reset channel

count (2 or 4)
fe rst_len <0 | 1> Selects the setting for AGET reset channel count (0

leads to 2; 1 leads to 4)
fe forceon_all Shows current setting to skip reading the Channel

Hit Register and force readout of all channels
fe forceon_all <0 | 1> Clear or sets the option to force the readout of all

channels in AGET mode.
fe keep_rst Shows if reset channels are removed or kept in the

data stream sent to the TDCM
fe keep_rst <0 | 1> Disable/enable the option to keep some of the

reset channels in the data stream sent to the TDCM
fe skip_rst Shows the current setting that determines which

reset channels are dropped
fe skip_rst <0,1,2,3> Sets how many reset channels should be dropped
fe emit_lst_cell_rd Shows the setting for the option to send in the data

stream to the TDCM the value of the last cell read
pointer of each ASIC

fe emit_lst_cell_rd <0 | 1> Disable or enable the option to send the last cell
read pointer of each ASIC

fe mmpol Shows the state of the Photomos relays controlling
the polarization circuits of the currently active FE

fe mmpol <Val> Sets the state of the Photomos relays controlling
the polarization circuits of the currently active FE.
Argument values:

0: both Photomos in the open state
1: Photomos #0 closed, #1 opened
2: Photomos #0 open, #1 closed
3: both Photomos closed (normal mode)

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

164

fe state Shows the current internal state of the FE

Depending on front-end implementation, it may be possible to power OFF some parts

of a front-end. If the front-end supports this feature, the user must enable the FEC side

using the command “fe fec_enable 1” before the card can be configured and used. On

the T2K-II FEM, the hardware supports two FECs that can be powered ON or OFF

independently. Other hardware implementations of the front-end do not use these

settings.

By default, all ASICs are active and all the bits of ASIC_MASK are cleared. One or

several ASICs may be disabled by setting the appropriate mask. All values are valid and

ASIC_MASK=0xFFFF disables all ASICs. For hardware implementations where only 4

ASICs are controlled by a front-end node, only the 4 LSB’s of this field are used. When

all ASICs are masked, empty events containing only header and trailer information can

be collected.

10.2.5 H IT CHANN EL REGI ST ER CO MMANDS

In the AGET mode when the forceon_all option is disabled, the FE reads the Hit

Channel Register to determine the set of channels to readout. The content of this

register can optionally be modified before SCA digitization. The commands listed in

Table 51 determine the corresponding alteration rules.

Table 51 . Commands to act on Channel Hit Register.

Command Argument Action

fe modify_hit_reg Shows the current setting for the modify
hit register option

fe modify_hit_reg <0 | 1> Disable/enable Channel Hit Register
alteration before SCA digitization

fe forceon <A> <C> Shows the setting to force the readout
of channel <C> of Asic <A>

fe forceon <A> <C> <0 | 1> Disable/enable a forced readout for
channel <C> of Asic <A>

fe forceoff <A> <C> Shows the setting to force skipping
readout of channel <C> of Asic <A>

fe forceoff <A> <C> <0 | 1> Disable/enable a forced skip of channel
<C> of Asic <A>

fe erase_hit_ena Shows the setting to clear hit channel
registers when the channel hit count is
too high

fe erase_hit_ena <0 | 1> Disable/enable the function to clear hit
channel registers when the channel hit
count is too high

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

165

fe erase_hit_thr <A> Shows the hit count limit threshold of
Asic <A>

fe erase_hit_thr <A> <0xThr> Sets the hit count limit threshold of Asic
<A> to <0xThr>

When both forceon and forceoff options are disabled for a given channel, the value

read from the Channel Hit Register is preserved. Both forceon and forceoff options must

not be set simultaneously. Note that for programming rules, the forceon and forceoff

commands accept scalar arguments, ranges or wildcard characters for arguments <A>

and <C>. For example, the command “forceon * 3:78 1” sets to 1 the forceon flag for

channel 3 to 78 of all ASICs.

The Hit Channel Register of each chip can be cleared automatically before SCA

digitization when the number of hit channels passes a programmable limit. This feature

is intended to minimize the dead-time caused by excessively busy events or noise events

where almost all channels fire. This feature is only active when ERASE_HIT_ENA and

MODIFY_HIT_REG are set. The threshold limit is programmable from 0x0 to 0x7 and

corresponds to a maximum acceptable channel hit count of 4 to 32 channels. For

example, if the threshold of a chip is set to 0, the Channel Hit Register of that chip will

not be altered for events that have from 1 to 4 channels hit, and it will be cleared for

events that have 5 channels hit or more. The number of channels hit in each chip is

computed by the FPGA logic when reading the Hit Channel Register of each chip before

SCA digitization and independently of the ForceOn and Force_Off rules. Note that the

ForceOn and ForceOff rules are still applied to determine the final value of each Channel

Hit Register when ERASE_HIT_ENA is set.

10.2.6 CO MMAN DS FO R P EDES TAL EQ UALIZATIO N AN D ZERO-S UPP R ES SION

The FE can optionally perform pedestal subtraction and apply a threshold to zero-

suppress data. A per channel constant pedestal value and threshold value can be

programmed. The commands to set or read-back pedestal values and threshold values

are listed in Table 52.

Table 52 . Commands for pedestals and thresholds.

Command Argument Action

fe ped <A> <C> Shows the pedestal equalization constant
of channel <C> of Asic <A>

fe ped <A> <C>
<0xped>

Sets the pedestal equalization constant of
channel <C> of Asic <A>

fe subtract_ped Show the current setting for pedestal
subtraction

fe subtract_ped <0 | 1> Disable/Enable pedestal subtraction
fe thr <A> <C> Shows the threshold of channel <C> of Asic

<A>

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

166

fe thr <A> <C> <0xthr> Sets the threshold of channel <C> of Asic
<A>

fe zero_suppress Shows if zero-suppression is enabled or not
fe zero_suppress <0 | 1> Disable/enable data zero-suppression
fe polarity <A> Shows the polarity of the zero-suppressor

of Asic <A>
fe polarity <A> <0 | 1> Sets the polarity of the zero-suppressor for

Asic <A>. 0 to keep data above threshold; 1
to keep data below threshold

fe zs_pre_post Shows the number of samples to keep
before/after threshold is passed in zero-
suppressed readout mode

fe zs_pre_post <pre> <post> Sets the number of samples to keep
before/after threshold is passed in zero-
suppressed readout mode

fe emit_empty_ch Shows the current policy for sending or
skipping empty channels in the data stream
sent to the TDCM

fe emit_empty_ch <0 | 1> Sets the policy for handling empty
channels: drop silently or send channel
index and one null value

Acceptable values for the pedestal are 0xF000 (-4096) to 0x0FFF (+4095). Threshold

values are from 0x0000 (0) to 0x0FFF (4095). When programming pedestal equalization

constants and thresholds, commands arguments <A> and <C> can be scalars, ranges or

“*” wildcard characters. For reading a pedestal or threshold value, the commands

arguments must correspond to a single ASIC and Channel.

The zero-suppressor engine not only keeps data samples that are above the

programmable threshold but it also keeps a programmable number of samples before

the threshold is passed and after the threshold is no longer passed. From 0 to 15

precursor samples and 0 to 16 trailer samples can be kept on zero-suppressed

waveforms. When working with detectors that produce positive signals, the zero-

suppressor must be programmed to keep pulses that are below threshold rather than

above.

When no data remains for a given channel after the zero suppression, either no data

at all is sent for this channel, or the index of that channel followed by a null sample can

be sent. The command “emit_empty_ch“ is used to set the desired option. Suppressing

empty channels leads to more compact events while keeping empty channel can be

useful for debugging.

10.2.7 CO MMAN DS FO R T HE CONF I GUR ATION O F FRO NT-EN D ASIC R EGI ST ERS

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

167

Depending on implementation, the FE may support the AFTER, AGET or the ASTRE

chip. Mixing different types of chips on the same FE is normally not supported. The

AFTER and AGET/ASTRE chips have 3 and 13 programmable configuration registers

respectively. These registers can be programmed and read-back via the commands

listed in Table 53 and Table 54 for the AGET and AFTER/ASTRE chips respectively.

Because registers have a different size (from 16-bit to 128-bit), the correct number of

16-bit arguments has to be supplied. Refer to the documentation of the AFTER and

AGET/ASTRE chips for a detailed description of internal registers.

Table 53 . Commands for operations on AGET/ASTRE internal registers.

Cmd Argument Action

fe aget <A> read <reg> Reads the content of register <reg> of
AGET chip <A>

fe aget <A> write <reg> <0xVal0> … Writes register <reg> of AGET <A> with
the specified value (16-bit per argument,
supply the required number of values to
match the actual size of the register)

fe aget <A> wrchk <reg> <0xVal> … Performs a write to register <reg>
followed by a read and comparison

fe aget <A> icsa Reads the setting for the bias current of
charge sense preamplifiers of AGET <A>

fe aget <A> icsa <0 | 1> Sets the bias current of the charge sense
preamplifiers of AGET <A>: 0 normal bias;
1: normal bias x 2

fe aget <A> time Reads the shaping time of AGET <A>
fe aget <A> time <0xVal> Sets the shaping time of AGET <A> to

<0xVal>
fe aget <A> test Shows Test setting of AGET <A>
fe aget <A> test <0xVal> Sets Test of AGET <A> to <0xVal>
fe aget <A> mode Shows Readout mode setting of AGET

<A>
fe aget <A> mode <0xVal> Sets Readout mode of AGET <A> to

<0xVal>
fe aget <A> polarity Reads the polarity setting of AGET <A>
fe aget <A> polarity <0 | 1> Sets the polarity of AGET <A>: 0 for

detectors with negative signals, 1 for
positive

fe aget <A> fpn Reads the FPN setting for AGET <A>
fe aget <A> fpn <0xVal> Sets the FPN readout of AGET <A>
fe aget <A> vicm Shows Vicm setting of AGET <A>
fe aget <A> vicm <0xVal> Sets Vicm of AGET <A> to <0xVal>
fe aget <A> dac Reads the DAC threshold of AGET <A>
fe aget <A> dac <0xVal> Sets the DAC threshold of AGET <A>
fe aget <A> trigger_veto Reads the trigger veto of AGET <A>
fe aget <A> trigger_veto <0xVal> Sets the trigger veto of AGET <A>

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

168

fe aget <A> synchro_discri Reads the synchronization discriminator
bit of AGET <A>

fe aget <A> synchro_discri <0 |1> Clears or sets the synchronization
discriminator bit of AGET <A>

fe aget <A> tot Reads the time-over-threshold bit of
AGET <A>

fe aget <A> tot <0 | 1> Clears or sets the time-over-threshold bit
of AGET <A>

fe aget <A> range_tw Reads the range bit of trigger width of
AGET <A>

fe aget <A> range_tw <0 | 1> Clears or sets the range bit of trigger
width of AGET <A>

fe aget <A> trig_width Reads the trigger width of AGET <A>
fe aget <A> trig_width <0xVal> Sets the trigger width of AGET <A>
fe aget <A> rd_from_0 Reads the bit read_from_0 of AGET <A>
fe aget <A> rd_from_0 <0 |1> Clears or sets the bit read_from_0 of

AGET <A>
fe aget <A> tst_digout Reads the bit tst_digout of AGET <A>
fe aget <A> tst_digout <0 | 1> Encode the index of the last SCA cell read

or a fixed pattern (0x159) at the end of
the SCA read phase of AGET <A>

fe aget <A> en_mkr_rst Reads en_mkr_rst setting of AGET <A>
fe aget <A> en_mkr_rst <0 | 1> Clears or sets en_mkr_rst of AGET <A>
fe aget <A> rst_level Reads rst_level setting of AGET <A>
fe aget <A> rst_level <0 |1> Clears or sets rst_level of AGET <A>
fe aget <A> cur_ra Reads the SCA line buffer current setting

of AGET <A>
fe aget <A> cur_ra <0xCur> Sets the SCA line buffer current of AGET

<A>
fe aget <A> cur_buf Reads the buffer current setting of AGET

<A>
fe aget <A> cur_buf <0xCur> Sets the buffer current setting of AGET

<A>
fe aget <A> short_read Reads short_read setting of AGET <A>
fe aget <A> short_read <0 | 1> Clears or sets short_read of AGET <A>
fe aget <A> dis_multiplicity_out Reads dis_multiplicity_out setting of

AGET <A>
fe aget <A> dis_multiplicity_out <0 |

1>
Clears or sets dis_multiplicity_out of
AGET <A>

fe aget <A> autoreset_bank Reads autoreset_bank setting of AGET
<A>

fe aget <A> autoreset_bank <0 | 1> Clears or sets autoreset_bank of AGET
<A>

fe aget <A> in_dyn_range Reads in_dyn_range setting of AGET <A>
fe aget <A> in_dyn_range <0 | 1> Clears or sets in_dyn_range of AGET <A>
fe aget <A> gain <c> Reads the gain setting of AGET <A>

Channel <c>

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

169

fe aget <A> gain <C> <0xVal> Sets the gain of channel(s) <C> of AGET
<A> to <0xVal>

fe aget <A> inhibit <c> Reads the inhibit setting of AGET <A>
Channel <c>

fe aget <A> inhibit <C> <0xVal> Sets the inhibit of channel(s) <C> of AGET
<A> to <0xVal>

fe aget <A> threshold <c> Reads the threshold setting of AGET <A>
Channel <c>

fe aget <A> threshold <C> <0xVal> Sets the threshold of channel(s) <C> of
AGET <A> to <0xVal>

fe aget <A> threshold ++ | -- Increments / decrements the threshold
of AGET <A>

fe aget <A> hitprob <C> <Val> Sets the threshold of chanel(s) <C> of
AGET <A> so that the probability that this
channel appears as hit is less than <Val>
(assumes that histograms of hit
probability have been accumulated)

All commands that perform a write operation support argument <A> in the following

format: the “*” wildcard to designate all AGET chips, a range (two integers separated by

the “:” character”) or a single index. Read operations can only apply to a single AGET and

eventually a single channel. The majority of the commands that modify the content of

AGET registers perform internally a write followed by a read and a comparison. If the

command did not return an error, it is reasonably safe to consider that the register was

modified as intended.

Table 54 . Commands for operations on AFTER internal registers.

Cmd Argument Action

fe after <A> read <reg> Reads the content of register <reg> of
AFTER <A>

fe after <A> write <reg> <0xVal0> … Writes register <reg> of AFTER <A> with
the specified value (16-bit per argument,
supply the required number of values to
match the actual size of the register)

fe after <A> wrchk <reg> <0xVal0> … Writes register <reg> of AFTER <A> with
the specified value, performs read-back
and verification

fe after <A> gain Shows the current gain of AFTER <A>
fe after <A> gain <120,240,360,600> Sets the gain of AFTER <A> to a dynamic

range of 120 fC, 240 fC, 360 fC or 600 fC
fe after <A> time Shows the shaping time of AFTER <A>
fe after <A> time <stime_ns> Sets the shaping time of AFTER <A> to

<stime_ns> (16 possible values)
fe after <A> test_mode Shows the test mode of AFTER <A>

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

170

fe after <A> test_mode <0 xMode> Sets test mode of AFTER <A> to
<0xMode> (4 possible values)

fe after <A> en_mkr_rst Reads the value of the enable marker
reset flag of AFTER <A>

fe after <A> en_mkr_rst <0 | 1> Disable/enable the reset marker of
AFTER <A>

fe after <A> rst_level Reads the level of the reset marker of
AFTER <A>

fe after <A> rst_level <0 |1> Sets to low or high the level of the reset
marker of AFTER <A>

fe after <A> rd_from_0 Reads the bit read_from_0 of AFTER <A>
fe after <A> rd_from_0 <0 | 1> Disable/enable the option to force SCA

read from cell 0
fe after <A> test_digout Reads the bit test_digout of AFTER <A>
fe after <A> test_digout <0 | 1> Disable/enable the option to send a fixed

pattern (0x159) instead of the index of
the last cell read at the end of the SCA
read phase

For AFTER register modification commands, argument <A> also accepts wildcards,

ranges and scalar values. For read-back commands, only a scalar value for <A> is

accepted. Contrary to AGET related commands, no verification of register content is

made after a modification command (except for the “wrchk” command). The verification

may be added in future embedded software releases.

10.2.8 CO MMAN DS R ELATED T O T HE CO NFI GUR ATION OF T HE TRI G GER

The FE includes a flexible trigger and a programmable rate on-board event generator.

The corresponding control commands are listed in Table 55.

Table 55 . Trigger and event generator control commands.

Command Argument Action

fe trig_ena Reads the current setting of trigger
mask in the active FE

fe trig_ena <0xVal> Enables the trigger sources specified
by <0xVal>

fe trig_delay Reads the current value of trigger delay
fe trig_delay <0xVal> Sets the trigger delay to <0xVal>

The argument of “fe trig_ena” is a 4-bit hexadecimal value where each bit enables

the following sources of trigger: bit 0 (AUTO_TRIG_ENABLE): on-board generator; bit 1

(EXT_TRIG_ENABLE): external trigger pin EXT_TRIG; bit 2 (PUL_TRIG_ENABLE): local

trigger from pulser; bit 3 (TDCM_TRIG_ENABLE): remote trigger received from the serial

link to the TDCM.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

171

The argument of the “fe trig_delay” command is an unsigned integer for 0 to 131068

that expresses in 10 ns units the delay to apply to all types of triggers. The maximum

delay is 1.31068 ms. However, if the supplied argument is above 32767, the resolution

of the delay is changed from 10 ns to 40 ns.

10.2.9 SCA RELAT ED CO MMANDS

The operation of the internal SCAs of the front-end ASICs is governed by the

commands listed in Table 56.

Table 56 . SCA control commands.

Command Argument Action

fe sca cnt Reads the current setting for the number
of SCA cells to read out

fe sca cnt <0xVal> Sets the number of SCA cells to digitize
(from 8 to 511 or 512)

fe sca wckdiv Reads the current value of SCA Write clock
divisor

fe sca wckdiv <0xDiv> Sets the SCA write clock divisor to <0xDiv>
(from 1 to 255)

fe sca enable Reads the current value of the
SCA_ENABLE bit

fe sca enable <0 | 1> Clears or sets the SCA_ENABLE bit
fe sca autostart Shows the current value of the

SCA_AUTO_START bit
fe sca autostart <0 | 1> Clears or sets the SCA_AUTO_START bit
fe sca start Starts SCA write operation
fe sca stop Generates a software trigger event

After system configuration, the SCA_ENABLE bit must be set to 1 to be ready to take

data. Clearing the SCA_ENABLE bit stops operation as soon as the readout of the current

event is finished. The write operation in front-end SCAs starts immediately if the

SCA_AUTO_START bit was set to 1. If not, writing in the SCAs will only start after the

corresponding order has been received from the TDCM. If the FE is operated in

standalone mode without the TDCM, SCA_AUTO_START is normally set to 1. If the FE is

used as a slave device controlled by the TDCM, SCA_AUTO_START must be 0.

The sca start command is used when SCA_AUTO_START is inactive and the TDCM is

not present or disable. This command is normally only used in standalone mode when

pulse generator of the FE is being used. In this particular mode, the SCA start order is

given in software and the stop order is automatically generated by the pulse generator

control logic.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

172

The sca stop command is used to issue a trigger in software for test purposes in

standalone mode. It should not be used when running with the TDCM.

10.2.10 SYN CHRONI ZATION CO MMANDS

In a system with multiple FEs, synchronization signals are distributed by the TDCM. It

is also possible to perform some of the functions of the TDCM asynchronously for each

FE with the commands listed in Table 57.

Table 57 . Synchronization commands.

Command Argument Action

fe clr tstamp Clears or presets (if an initial value
different from 0 was pre-loaded) the
time stamp counter

fe clr evcnt Clears the event counter
fe tstamp_init 0xVal_msb 0xVal

0xval_lsb
Loads a 48-bit preset value for the
timestamp counter.

fe tstamp_isset Shows if timestamp preset was
received since last clear

fe tstamp_isset clr Clears the timestamp preset received
indicator flag

If trigger generation is disabled during the operation, it is an acceptable method to

clear the event counter sequentially in each FE. Event numbers will match across the

whole system after the trigger is restarted (synchronously on all FEs). On the other hand,

event time stamps will only match after a synchronous clear/preset through the TDCM

has been made prior to data taking.

By default, the timestamp counter will be set to 0 upon clear. But any other initial

value can be defined using the “fe tstamp_init” command. A clear of the timestamp

counter will in fact cause a preset of this counter to the initial value programmed. This

feature can be used to synchronize to the same value the timestamps across multiple

systems. The initial value for the timestamp counter should be set to the value required

to compensate for the propagation delay of the synchronous clear signal through the

TDCM and the FEs.

The command “fe tstamp_isset” is used to check if the FE received a synchronous

message from the TDCM with the bit CLR_TSTAMP set. This flag can be cleared with the

command “fe tstamp_isset clr”.

10.2.11 PULS E GEN ERATOR CO NTRO L CO MMAN DS

The FEC controls an embedded pulse generator that can inject calibrated charges to

the calibration or functional test inputs of the front-end ASICs at a well-defined time.

Depending on the version of the FE, the calibration pulser is realized with different

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

173

circuitry and components. The main component of the pulser is the programmable DAC

that controls the amplitude of the injected pulse. The commands that control the pulse

generator of the FE are listed in Table 58.

Table 58 . Pulse Generator control commands.

Command Argument Action

fe pulser delay Reads the delay of the pulse generator
fe pulser delay <0xVal> Writes pulse generator delay with <0xVal>
fe pulser model Shows the model of DAC used for the pulser of

the currently active FE that is assumed by the
TDCM

fe pulser model <Mod> Sets the model of DAC used by the pulser of the
FE that the TDCM has to take. Argument:

Unknown
AD9744
AD5667
T2K2
other

fe pulser base <0xVal> Presets the baseline of the pulser DAC to
<0xVal>

fe pulser ampl <0xVal> Presets the amplitude of the pulser DAC to
<0xVal>

fe pulser load Loads the DAC with the preset value
(implementation dependent)

fe pulser enable Reads the state of the pulser enable bit
fe pulser enable <0 | 1> Enable / disable pulser injection
fe pulser ft_enable Shows the state of the FT_ENABLE analog switch
fe pulser ft_enable <0 | 1> Sets the state of the FT_ENABLE analog switch

The command “fe pulser delay” sets the delay between the active edge of SCA_WRITE

and the injection of the charge by the pulse generator. The delay is expressed in units of

10 ns and the acceptable range is 0 to 131,072 units. However, the resolution of the

delay of the pulser is 10 ns in the [0; 327.67 µs] range and 40 ns in the [327.68 µs;

1.31068 ms] range.

The command “fe pulser model” is used to instruct the TDCM on which model of

pulser is presumably implemented in the currently active FE. The appropriate value must

be set before the pulser can be used. Currently, the FE does not have some means that

would allow the TDCM determine by itself which type of pulser is implemented on the

FE. So far, this information must be supplied by the user to the TDCM.

The “fe pulser base” and “fe pulser ampl” commands are used to program the DAC

of the pulse generator with the baseline and amplitude levels respectively. When the

model of DAC used is the AD5667, the expected value is a 16-bit unsigned integer. In the

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

174

implementation based on the AD9744 (and for pulser model “T2K2”), arguments are a

14-bit unsigned integer. For both implementations, the programmed values cannot be

read-back.

The “fe pulser load” command is used for pulser models “AD9744” and “T2K” which

both use a single channel DAC. The desired pulse is made by dynamically changing the

output of this DAC from the baseline level to the requested amplitude. The “pulser load”

command performs the actual update of the output of the DAC to the baseline or

amplitude previously programmed. This command must be called to set (or restore from

the previous value) the baseline output level of the DAC for every pulse the user wants

to generate. In the implementation based on the AD5667, two DAC channels are used:

one for the baseline and one for the amplitude. An analog switch is used to switch

between the two analog outputs to perform the actual pulse generation. Hence the

baseline and amplitude can be left unchanged between the generation of several pulses.

The “fe pulser enable” command is used to check, enable or disable the operation of

the pulser. The pulser must be enabled when it is in use. The trigger associated to the

pulser should be enabled for test or calibration with the pulser but should be disabled

when testing triggers based on AGET multiplicity outputs.

The command “fe pulser ft_enable” is only relevant for the pulser based on the

AD5667. This bit controls the state of the external switch that connects the functional

test input pin of the four ASICs of the FEC to the output of the pulser or to ground.

10.2.12 MULTIP LI CITY PRO CES SIN G

The multiplicity output of the AGET chips can be used to elaborate a local self-trigger

(if the FEC supports standalone operation) or the multiplicity information be sent to the

TDCM for global processing. The multiplicity output of each AGET chip is fed to two

comparators with a different 8-bit programmable threshold. The multiplicity signal must

be greater than the first threshold and less than the second threshold to fire the

corresponding logic. The commands related to multiplicity processing are listed in Table

59.

Table 59 . Multiplicity related commands.

Command Argument Action

fe mult_thr <aget> Reads the current multiplicity threshold of
AGET <aget>

fe mult_thr <*|aget> <0xVal> Sets the multiplicity threshold of one or
multiple AGET to the specified value

fe mult_limit <aget> Reads the current multiplicity threshold
limit of AGET <aget>

fe mult_limit <*|aget> <0xVal> Sets the multiplicity threshold limit of one
or multiple AGET to the specified value

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

175

fe mult_trig_ena Shows if self-trigger based on multiplicity
are enabled or not

fe mult_trig_ena <0 | 1> Disables or enables self-triggers based on
multiplicity

fe snd_mult_ena Shows if sending multiplicity-over-
threshold bits to the TDCM is enabled or
disabled

fe snd_mult_ena <0 | 1> Disables or enables sending the
multiplicity-over-threshold bits to the
TDCM

The command “fe mult_trig_ena” is used to check, enable or disable self-triggers

based on AGET multiplicity. When active, a local self-trigger is generated whenever one

or more of the multiplicity output of the AGET is above the programmed threshold and

below the programmed limit. Enabling the local self-trigger is only possible for FEC

models that support standalone operation without the TDCM.

The command “fe snd_mult_ena” is used to control if the multiplicity-over-threshold

bits generated by the FEC are forwarded to the TDCM or not.

10.2.13 TEST DATA PATT ERN GEN ER ATO R

The FE features a test mode and has a fully programmable ADC data pattern memory.

The data pattern memory simulates the data-stream of hit channels. The test memory

contains 4096 12-bit entries. It can store the data of up to 8 channels for a 512-time bin

configuration. The same data pattern is reproduced cyclically when more data are

needed. The commands related to the test mode and patterns are listed in Table 60.

Table 60 . Test mode and pattern related commands.

Command Argument Action

fe test_enable Reads the current setting of the TEST_ENABLE
bit

fe test_enable <0 | 1> Disable/enable TEST_ENABLE
fe test_mode Reads the current value of the TEST_MODE bit
fe test_mode <0 | 1> Clears or sets the TEST_MODE bit
fe test_zbt Reads the current setting of the TEST_ZBT bit
fe test_zbt <0 | 1> Disable/enable TEST_ZBT
fe tdata <0xAdr> Reads test data sample at address <0xAdr>
fe tdata <0xAdr>

<0xData>
Writes <0xData> in pattern memory at
address <0xAdr>

fe tdata <A, B, C> <0xVal> Fill test memory with a pre-defined pattern
fe keep_fco Reads the state of the KEEP_FCO option
fe keep_fco <0 | 1> Clears/Sets the KEEP_FCO option (drops data

of ASIC#3 to keep FCO data when set)

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

176

When test mode is disabled, the data fed at the input of the zero-suppression block

are the data digitized from the SCAs of the front-end chips. When test mode is enabled,

the zero-suppression block is fed with the address counter where SCA data would be

read when TEST_MODE is 0 and test data fetched from the pattern memory when

TEST_MODE is 1. The pattern memory may be filled with an arbitrary pattern loaded

word by word, or can be filled with one of several pre-defined patterns via a single

command. Pattern A is a periodic increasing ramp starting from 0 and incremented by

one unit until the specified value minus one is reached. Pattern B is similar except that

the ramp is decreasing. Pattern C is a single sample wide pulse of fixed amplitude (2048

ADC counts) with a repetition period specified in the supplied argument. Different pre-

defined patterns may be added in the future.

When TEST_ZBT is 0, the source of data for writing to the event buffer memory is the

stream of data received from the external ADC. When TEST_ZBT is 1, the 12-LBS’s of the

write address to the event buffer memory is taken as data. This mode is meant for tests.

The serial outputs of the ADC of the FE produce a constant 12-bit binary pattern used

to delineate channel data samples. For debugging purposes, this framing pattern can be

kept in the stream passed to the DAQ. The data of ASIC #3 (or #7 and #15) are dropped

when this option is enabled. The constant value that replaces ASIC #3 (or ASIC #7 and

#15) data is 0xFCO. Pedestal equalization and zero-suppression (if enabled) are still

applied to this stream of constant data.

10.2.14 FRONT EN D ADC CON FI GUR ATION

Depending on the implementation, the FE may be equipped with different model of

ADCs for the digitization of the front-end ASICs. Some models can be controlled via I2C.

The commands related to configuration of the ADC on-board the FE are listed in Table

61. Note that the actual operation performed depends on the type of ADC that is

declared for each individual FE. At present, the FE does not includes means for the TDCM

to determine which model of ADC is on-board. This information has to be set in the

TDCM by the appropriate user command.

Table 61 . Commands related to the ADC of the FE.

Command Argument Action

fe adc model Shows which model of ADC the TDCM assumes
is present on the currently active FE

fe adc model <Type> Sets the model of ADC that the TDCM have to
consider for the currently active FE. Argument:

0: unknown
1: AD9229
2: AD9228
3: AD9637
4: others

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

177

fe adc read <Reg> Reads register <Reg> from the ADC of the
currently active FE.

fe adc write <Reg> <Val> Writes register <Reg> of the ADC of the currently
active FE with the value <Val>.

10.2.15 ADC DES ERI ALIZATIO N LOGI C SETTIN GS

In the T2K FEM implementation, several adjustments settings are available for tuning

the ADC deserialization logic that is connected to the ADC of the two FECs being

controlled. The corresponding commands are listed in Table 62.

Table 62 . Commands related to the ADC deserialization logic of the FE.

Command Argument Action

fe delay_adc <DCO|FCO|PIPE>
<0|1>

Shows the delay setting for DCO, FCO or PIPE
for the ADC receiver logic of FEC#0 or FEC#1

fe delay_adc <DCO|FCO|PIPE>
<0|1> <delay>

Sets the delay setting for DCO, FCO or PIPE for
the ADC receiver logic of FEC# or FEC#1

The deserialization logic used in the T2K FEM is similar to that used in the ARC except

that it can drive two ADCs instead of one, and each ADC is an 8-channel version instead

of 4-channel. On the other hand, the sampling frequency of the ADC used on the ARC is

25 MHz while it is 12.5 MHz on the FEM. For increased flexibility without the need to

recompile the firmware of the front-end, some of the tuning parameters of the ADC

deserialization logic are programmable on the FEM while these are fixed on the ARC.

The values to apply are determined experimentally. The proper settings must be used

for the correct reception of digitized data from the ADC of the FECs.

10.2.16 PEDEST AL H IS TOGR AMS , EQ UALI ZATION AN D THR ES HO LD SET TIN G

The TDCM can accumulate the pedestal histograms of each channel of every FE

during specific runs. When this mode of operation is selected, the data received from

the hardware is not transferred to the remote DAQ computer, but it is processed locally

by the TDCM instead. After the completion of the pedestal accumulation run, the user

can acquire pedestal histograms in various different formats. The user can also instruct

the TDCM to program in the FE the internal pedestal equalization table to adjust the

mean pedestal to the desired level. The TDCM can also program in each FE the threshold

table used for the real time digital zero-suppression of channel data. The threshold of

each channel can be set to some value above the equalized pedestal plus the desired

number of sigmas above noise. The commands to control pedestal histogram functions

are listed in Table 63.

Table 63 . Pedestal Histogram commands.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

178

Command Argument Action

fe hped <A> <C> clr Clears the pedestal histogram(s) of
specified Asic(s) and Channel(s)

fe hped <A> <C> offset <off> Sets the pedestal histogram offset of
specified Asic(s) and Channel(s) to <off>

fe hped <a> <c> getbins Gets the full list of non-null bins of the
pedestal histogram of channel <c> of Asic
<a>

fe hped <a> <c> getmath Gets detailed statistics of the pedestal
histogram of channel <c> of Asic <a>

fe hped <a> <C> getsummary Gets a summary of the pedestal
histogram(s) statistics for channel(s) of
Asic <a>

fe hped <A> <C> centermean <M> Program equalization constants in the
current FE so that pedestal of specified
Channel(s) of Asic(s) is <M>

fe hped <A> <C> setthr <M> <S> Program thresholds of specified
Channel(s) of Asic(s) in the current FE to
<M> + <S>*_channel_noise

fe list <a> ped Lists the pedestal adjustment constant for
all channels of Asic <a> of the current FEC

fe list <a> thr Lists the programmed threshold for all
channels of Asic <a> of the current FE

Pedestal histograms have 512 bins. When working with detectors producing negative

signals, the baseline is typically ~250 ADC counts and the recommended range for

pedestal histograms is [0; 511]. When detectors producing positive signals are used, the

baseline is ~3840 ADC counts and the range of the pedestal histogram should be set to

[3584; 4095]. The offset of pedestal histograms should be set to 0 or 3584 according to

the polarity of detector signals.

At the end of a pedestal accumulation run, the user must flush any data that may be

left in the ring buffer interface to the hardware and enable normal data taking mode

with the “serve_local 0” command.

The list of pedestal adjustment constants and threshold settings can be retrieved with

the “list” commands. These will be displayed in the client program as a list of

interpretable commands so that they can be saved and re-loaded at a later time in an

easy way.

The arguments <A> and <C> can be scalar, a range of the type <Begin:End>, or the

“*” wildcard character to match all possible values. The arguments <f>, <a> and <c>

specify only one ASIC, or channel at a time.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

179

Note that all histograms are accumulated in the SDRAM of the TDCM while all

pedestal equalization constants and thresholds for zero-suppression are stored on the

front-end side.

10.2.17 CHANN EL H IT COUN T H ISTO GR AMS

The FE computes for each event the count of channels hit in the 4 ASICs it controls

and accumulates this information in histograms. In AFTER mode, the count of channels

hit is constant and equal to 79 for each event (72 physical channels + 4 FPN + 3 reset

channels). In AGET mode, it ranges from 2 to 72 depending on the number of channels

hits obviously, but also on various settings: 2 or 4 reset channels, read all channels or

only hit channels, alterations made at run-time to the content of the hit channel register,

etc. The channel hit count per event are accumulated in four 80-bin x 32-bit amplitude

count histograms. These histograms are useful for on-line monitoring and system

performance evaluation. The commands related to channel hit count histograms are

listed in Table 64.

Table 64 . Commands related to channel hit count histograms.

Command Argument Action

fe hhit <A> clr Clears the channel hit count histogram of the
specified ASIC in the FE currently selected

fe hhit <a> get Reads the channel hit count histogram of the
specified ASIC in the FE currently selected

10.2.18 DEAD-TIME HIS TOGR AMS

The FE also measures the dead-time for the acquisition of each event. This

measurement is made from the time a valid trigger is received by the TDCM until all the

FEC is ready to assert its SCA write signal. This histogram is normally only useful when

the FEC operates in standalone mode without the TDCM. In a system with multiple FEs,

the histogram accumulated by the TDCM should be used because it combines the dead-

time all FEs.

The FE accumulates its own dead-time in a 1024-bin x 32-bit amplitude count

histogram. Four resolutions settings are available: 1 µs, 10 µs, 100 µs and 1 ms. These

values correspond to measurement ranges of [0; 1.022 ms], [0; 10.22 ms], [0; 102.2 ms]

and [0; 1.022 s]. When a measurement overflows the limit, the last bin of the histogram

is incremented. Each measurement is rounded to the closest resolution unit before it is

added to the histogram. Saturation occurs when any bin reaches the maximum count.

Statistics computed from this histogram are only accurate when the overflow bin is

empty and no bin reached saturation. The commands related to dead-time

measurements are listed in Table 65.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

180

Table 65 . Front-end dead time measurement related commands.

Command Argument Action

fe busy_resol Gets the resolution of the dead-time histogram
fe busy_resol <resol> Sets the resolution of the dead-time histogram.

Parameter:
0: 1 µs
1: 10 µs
2: 100 µs
3: 1 ms.

fe hbusy clr Clears the histogram of dead time
fe hbusy get Reads the histogram of dead time

10.2.19 M ISCELLAN EOUS MONI TORIN G CO MMAN DS

The FPGA logic of the FE has controllers for the OneWire bus and the I2C bus. A silicon

identifier chip (Maxim DS2438) is mounted on some models of FEC. For FE models that

use an embedded FPGA module from Enclustra (Mars MX2 and some versions of Mars

AX3), this module has a secure serial EEPROM and a real time clock. The FE normally

contains a SFP optical transceiver. This device has a monitoring interface accessible via

I2C. The T2K FEM has a silicon identifier chip (Maxim DS2438), a magnetic field sensor

(Infineon TLE493D-W2B6) and an SFP optical transceiver. These various devices can be

readout with the commands listed in Table 66. Other implementations of FE may have

some devices for the purpose of slow control / monitoring which are currently not

covered by the embedded software of the TDCM.

Table 66 . Slow control monitoring commands.

Command Argument Action

fe moni <T|V| A|I|S>
<id>

Reads information provided by the DS2438 chip
of the FE. T: measured local temperature; V:
supply voltage; A: supply voltage; I: measured
supply current; S: 48-bit unique serial number.
The <id> parameter is only needed for FE that
contain several DS2438 chips. On T2K-II, three of
these chips are present and are selected by the
following <id>: 0: FEC#0; 1: FEC#1; 2: FEM.

fe sfp <info | moni> Reads the information (manufacturer, device
number) from the SFP transceiver over I2C or
some of the monitored operational parameters
(supply voltage, current, optical power,
temperature)

fe mag_sensor <init | read>

.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

181

10.2.20 CO MMAN DS RELAT ED T O SPI FLASH MEMOR Y OF T HE FRONT-EN D

The TDCM can have read, write and program access to the SPI flash memory of each

FE. This is useful for downloading new revisions of the firmware of the FE without

physically accessing each FE with a JTAG cable. The commands shown in Table 67 are

used to read or write to the SPI flash memory of a target FE. At the present time, only

Spansion S25FL512S SPI flash is supported. Other devices may be supported if needed.

Theses commands are not intended to be used directly by the normal user. The content

of the SPI flash memory of a FE must not be altered under normal circumstances.

Table 67 . Commands to control the SPI flash memory of a FE.

Command Argument Action

fe flash open Get ready to access the SPI flash. This command
must be called before accessing the device. It can
apply to only one FE.

fe flash close This should be called when access to the SPI flash of
the FE is no longer needed

fe flash id Shows the first 8 bytes of the Manufacturer and
Device IP field of the SPI flash memory.

fe flash read 0xAdr 0xCount Reads the content of the SPI flash memory of the
target FE starting at address 0xAdr and read
0xCount bytes. The maximum number of bytes that
can be read with this command is 32.

fe flash <write |
write_verify |
erase_write |
erase_write_verify>
0xAdr 0xCount
data0data1data2…

Writes, writes and verify, erase then write, or erase
write and verify, the supplied data starting at
address 0xAdr. The argument count must not
exceed 512 bytes (i.e. one page). Each data byte is
supplied with two hexadecimal digits without the
usual “0x” prefix and must not be separated by
space characters.

10.2.21 FRONT-END XADC CO NFI GUR ATION AND READ-BACK CO MMANDS

Assuming the FE uses a Xilinx FPGA, the embedded ADC, “XADC”, may be used for

monitoring of internal and external variables (voltage, temperature, etc). The

commands to configure and read-back the XADC in the FE are shown in Table 68.

Table 68 . Commands to control XADC in the FE.

Command Argument Action

fe xadc read 0xAdr Read XADC Register at address 0xAdr.
fe xadc write 0xAdr 0xData Write XADC Register at address 0xAdr with data

0xData.

Refer to [5] for details on how to configure and read-back XADC.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

182

11 CLIENT PROGRAM
Pclient is a minimal, console-based, multi-platform, client program for controlling one

or several TDCMs from a PC in a simple way. This application is mostly intended for the

development and test of the TDCM itself, for new users to become familiar with the

TDCM, and for debugging. Pclient is not intended to be used for real data taking in a

physics experiment and it cannot replace a more elaborated configuration and DAQ

software with some user-friendly graphical interface. Nonetheless, pclient gives access

to the full functionality of the TDCM and the associated front-end. It can configure the

system, perform data acquisition, and save the acquired data to local storage.

11.1 INSTALLATION

The pclient program can be installed on Windows and Linux platforms. Dependencies

on external libraries are minimal and the program should compile on the majority of

platforms. The code is entirely written in C and requires Microsoft Visual Studio Express

for compilation under Windows, and a standard C compiler under Linux. To install a

release of the TDCM client software, the procedure is the following:

 Save the archive file to the local disk and unzip it.

 Under Windows, compile the util library. The project file is located in:

<release_name>/projects/pandax/util/winnt/util.sln

 Compile pclient, preader and fdecoder. For Windows and Linux respectively, the

project file and makefile are located in:

<release_name>/projects/pandax/mclient/winnt/mclient.sln

<release_name>/projects/pandax/mclient/linux/makefile

 For Windows and Linux respectively, the executable files are located in:

<release_name>/projects/bin/pandax/winnt/pclient.exe

<release_name>/projects/bin/pandax/linux/pclient

11.2 USING PCLIENT

Pclient is started from a DOS command window or a Linux terminal. The available

command line options are the following:

pclient <options>

-h : print this message help

-arc : server is an ARC (by default: TDCM)

-s <xx.yy.zz.ww> : base IP address of remote server(s) in dotted decimal

-p <port> : remote UDP target port

-S <0xServer_set>: hexadecimal pattern to tell which server(s) to connect

-c <xx.yy.zz.ww> : IP address of the local interface in dotted decimal

-f <file> : read commands from file specified

-o <file> : save results in file specified

-v <level> : verbose

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

183

By default, pclient expect to interact with one TDCM only, at a default IP address

192.168.10.1. The “-s” option is used to specify a different IP address. The “-arc” option

is used to specify that the controlled hardware is an ARC (standalone version) instead of

a TDCM. The “-p” option can be used to specify the UDP port number. Multiple TDCMs

or ARCs, called “servers” can be specified with an hexadecimal pattern after the option

“-S”. Up to 32 servers can be interrogated from the same instance of pclient. For

example, specifying the option “-S 0xB” means that pclient opens a connection with

servers #0, #1 and #3. The IP address of each server is derived from the base IP address

of the first server, in incremental order. For example: server #0 is at IP address

192.168.10.1, server #1 at 192.168.10.2, etc. The “-c” option is used to select the IP

address of the client interface. The client PC must be on the same subnetwork as the

server(s), i.e. 192.168.10.xx by default. If the control PC has only one network interface

card on the required subnetwork, the “-c” option need not be specified. However, if the

control PC has a NIC with several Ethernet interfaces, the appropriate port must be

selected with the “-c” option.

For robust operation, the TDCM (and ARC) require a private Ethernet sub-network.

No other traffic that that for communication with the TDCM-ARC should be routed to

that private network. It is recommended to use Gigabit Ethernet, although Fast Ethernet

should also work. When using Gigabit Ethernet, Jumbo frames up to 8 kByte should be

enabled (this is even mandatory for systems of a certain size, e.g. more than 4 front-end

cards).

Multiple instances of pclient that control the same TDCM can be started

simultaneously provided that: only one instance does data acquisition and different UDP

port numbers are used for each instance. Note however, that the actions initiated by

each instance of pclient must remain coherent because the TDCM does not prevent

concurrent access by several clients to common hardware resources. For example, one

instance of pclient can be used to perform the periodic slow control monitoring task

only, while a second instance of pclient can be used for run-time system configuration

and data acquisition.

11.3 COMMAND REFERENCE

The majority of commands entered in pclient are forwared to the server without any

modifications. Some commands are interpreted locally, and some are altered by pclient

before they are forwarded to the server.

The general control commands of pclient are listed in Table 69.

Table 69 . pclient general control commands.

Command Argument Action

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

184

version Returns major/minor software version and
compilation date

quit Quits the client program (server still running)
exit Similar to command quit
verbose Shows the level of verboseness
verbose <level> Sets the level of verboseness
vflags <0xFlags> Selects the type of debug information printout.

Each bit of <0xFlags> corresponds to some
particular type of information.

srv Shows to which server commands apply
srv *

<0xSrvBitField>
<srv_id>

Commands will apply to all servers
Commands will apply to subset of servers
Commands will apply to server of ID srv_id

sleep <duration> Sleeps for <duration> seconds
exec <script_name.txt> Execute the command script <script_name.txt>
LOOP <nb_iterations> Repeat the block of commands until NEXT

<nb_iteration times>
LOOP <begin> TO <end> Similar to LOOP except that the boundaries of

the index of the loop are specified
NEXT Sets the end of the block of commands to

repeat
END Recommended at the end of a script file
 $loop When this special string is found in some few

specific commands, it is replaced on the fly by
the current value of the index of the loop.

rcp <source_bin>
<boot.bin>

Copies the firmware file <source.bin> to the
micro-SD memory card of the TDCM. Caution! If
an incorrect file is copied, the TDCM will no
longer boot!

fe program flash Spansion
<fe_firmware.mcs>

Transfers the firmware file <fe_firmware.mcs>
to the SPI flash memory of the selected FE.
Caution! Make sure a valid firmware file is
downloaded! The transfer must not be
interrupted until it is complete! The FPGA of the
FE will no longer be configured successfully in
case of file or transfer corruption!

The command server of the TDCM and the pclient program maintain the count of

commands sent/received; the number of “daq” requests and replies are counted

separately. The command “be cmd clr” should be sent when both the server and client

side programs have been restarted, and when DAQ is inactive, to allow the direct

comparison of counters at each end. The commands to clear and to get the statistics are

also counted. Hence, if the user clears message count and get message statistics, the

number of command message sent/received at each end will be 2.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

185

The pclient program can execute scripts contained in text files. However, scripts

cannot be nested, i.e. the exec command cannot be called within a script. The LOOP and

NEXT commands are only available within a script and multiple loops cannot be nested.

The command “rcp” is used to copy a local file to the micro-SD card of the TDCM. Any

type of file can be copied, but this command is primarily intended to update the

firmware and embedded software of the TDCM with a new release. The supplied file

must be a complete valid bitstream that includes the FPGA configuration, the first stage

bootloader code and the application code for the embedded processor of the on-board

Zynq of the TDCM. The board must be power-cycled or the POR push button must be

pressed to boot the new firmware and software. If the file copy fails, or an inappropriate

file is supplied, the TDCM will no longer boot properly at power-up. The micro-SD

memory card will need to be removed and a valid bitstream file will need to be copied

to restore operation.

The command “fe program flash” is used to download a new revision of the FPGA

firmware of the front-end in its local SPI flash memory. This command only supports

Spansion S25FL512S SPI flash memory. Addressing uses 24-bit, hence only the lower 16

MB are used although the device has a capacity of 64 MB. The supplied file must be in

.mcs format. If the file has been prepared on a Windows machine, it must be converted

to Unix format prior to download with the command “dos2unix”. The user must issue

the command “fe flash open” before the transfer, and should type the command “fe

flash close” after the transfer has been completed. Only one FE can be selected at a time

for the operations that involve the SPI flash of the FE. After a successful download, the

FE must be restarted. If the download fails, incorrect file supplied, wrong format,

transmission error, power cut, or other reasons, the FPGA of the FE will probably no

longer configure at power-up. If this situation occurs, the SPI flash of the FE must be

reprogrammed with a proven firmware file using the appropriate JTAG cable.

11.4 DATA ACQUISITION COMMANDS

The commands that control data acquisition using pclient are listed in Table 70.

Table 70 . pclient data acquisition commands.

Command Argument Action

DAQ Shows how much data still need to be collected
to complete the current DAQ request

DAQ <size> User level command to request a large amount
of data at once (<size> is a 64-bit integer and is
expressed in bytes)

DAQ 0 Stop the current data acquisition
credits show Shows how many data bytes (or frames) pclient

can request to each TDCM

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

186

credits restore Restore the initial credit count in pclient with
default values

credits restore <cnt> <thr>
<unit>

Sets the credit count of pclient to <cnt>. Credits
are posted to the TDCM when <thr> is reached.
The unit for credits may be bytes (B) of frames
(F).

The “DAQ” family of commands is used at the level of the human user of the system

or within a script. The size argument specifies the total amount of data (in bytes) to

collect from all active TDCMs. This amount of data requested can be up to a several tens

of TBytes. The pclient command interpreter automatically post series of “daq”

commands to the different TDCMs until the size specified by the “DAQ” command is

globally reached (and is slightly exceeded).

The “credits” commands are used to diagnose and restore operation after some error

communications between the TDCM and pclient. If pclient has posted to a TDCM all its

credits and these have been lost for any reason, a potential dead-lock can occur: the

pclient program cannot request data from the TDCM because it does not have any

credits but the TDCM cannot send data for the same reason. Restoring credits at one

end can solve this problem. Credits can also be adjusted to optimize transfers depending

in different setups. System throughput can be increased up to some saturation level

when more credits circulate in the system. But buffer overflow and communication

errors will occur if some element in the chain cannot absorb the traffic that results.

11.5 FILE I/O COMMANDS

Pclient offers to the end-user a minimal set of commands to save the data received

from the TDCMs to files. These commands are listed in Table 71.

Table 71 . File I/O commands.

Command Argument Action

path Shows the path for saving result files
path <path_str> Sets the path for saving result files to <path_str>
file_chunk Shows the current maximum file size (1 GByte

by default)
file_chunk <size> Sets the maximum file size to <size> (in Mbytes)
fopen Create a file to store event data frames in binary
fopen asc Create a file to store event data frames in ASCII
fclose Close the currently opened data file
LIST ped <A> Lists the pedestal equalization constants of all

the channels of Asic <A> and save them in an
interpretable script file

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

187

LIST thr <A> Lists the programmed threshold of all the
channels of Asic <A> and save them in an
interpretable script file

event_builder Shows the mode of operation of the event
builder

event_builder <0xMode> Sets the mode of operation of the event builder

The path command is used to define the root directory where data are saved.

When the user enters the “fopen” command, the system automatically creates a file

named as follows:

<path_str>/Ryyyy_mm_dd-hh-mm-ss_bbb.xxx

where <path_str> is the relative or absolute path set by the “path” command, yyyy is

the current year, mm is the month, dd is the day, hh-mm-ss is the current time, bbb is

the file number within this run and xxx is “aqs” if the selected format is binary and “txt”

if it is ASCII.

For basic manual data acquisition (after system configuration), the user should first

do “fopen”, then type “DAQ <size>” with the amount of data he would like to collect for

this run. The user should then manually issue “DAQ” commands until the system

indicates that there are no more data to collect (this step will be automated). If the

amount of data requested exceeds the maximum file size (defined by the “file_chunk”

command), pclient will automatically close the current file and create sub-sequent files

as needed. The last file is closed by the user with the “fclose” command.

The format of the data files that are recorded by pclient on the DAQ PC uses the same

encoding rules that are used for the communication between the TDCM and the DAQ

PC. The data that is found in the file is however not the exact copy of the messages

exchanged between the TDCMs and the DAQ PC. Notably, responses to configuration

commands are skipped. Event data frames are recorded, and starting from pclient

version 2.3, monitoring frames are also recorded. Note that what is meant here by

“monitoring frame” are the frames that start with the prefix PFX_START_OF_MFRAME.

This must not be confused with the response to some configuration commands that

perform a slow control action for monitoring. For example, the command “fe moni T”

reads the temperature of the selected FE, but the response if formatted in a frame

prefixed with PFX_START_OF_CFRAME, i.e. it is classified as a “configuration” frame. For

the data and monitoring frames that are recorded, some unnecessary words (e.g. the

empty word at the beginning of each UDP/IP payload) are also skipped. At the beginning

of a file, the run date and time is encoded in ASCII format using the required prefix. The

content of that string is the following:

Ryyyy_mm_dd-hh_mm_ss-rrr

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

188

Where yyyy is the year, mm is the month, dd is the day, hh-mm-ss is the time when

the file was created, and rrr is a sub-run number starting from 000 and is incremented

by one for each file produced.

The “LIST” commands are used typically used after a pedestal run when the pedestal

equalization constants and thresholds for zero-suppressed readout have been set and

the user want to save them to be able to re-load the same values at a later time. Pedestal

and threshold settings are saved in text file which are called respectively:

ped_yyyy_mm_dd-hh-mm-ss.txt

thr_yyyy_mm_dd-hh-mm-ss.txt

Where yyyy is the year, mm is the month, dd is the day, hh-mm-ss is the current time.

The “exec” command following by the pedestal or threshold file name can be used to

re-load the corresponding values. Starting from pclient version 2.3, the “LIST” and “list”

commands save the desired pedestal equalization / zero suppression thresholds in the

file that can also contain event data.

Pclient contains an experimental event builder intended for operation with multiple

TDCMs. The event builder can be transparent (bit 0 of Mode = 0) or active (Bit 0 of Mode

= 1). In transparent mode, the data received from several TDCMs are stored in a

common file in arrival order. In the active mode, the event builder searches for event

boundaries in the data received from each TDCM and groups the data of each event

before they are stored to disk. At present, the event builder is very simplistic and is

mostly intended for demonstration. For proper operation, it requires that the TDCM

makes the end of event always appear at an end of frame. When the event builder is

active, the prefix “PFX_START_OF_BUILT_EVENT” and “PFX_END_OF_BUILT_EVENT”

are added to wrap the data gathered from all TDCMs for each event. The event builder

can optionally check that event numbers and timestamps are identical across all TDCMs.

Checking event numbers and timestamps are enabled independently by setting bit 1 and

bit 2 of the event builder mode to 1 respectively. If timestamp checking is enabled, the

event builder checks that all timestamps match exactly. In order to tolerate slight

synchronization errors, the event builder can be set to accept events with timestamps

that differ from +1 or -1 unit. This policy is enabled by setting bit 3 of event builder Mode

to 1.

11.6 DECODING THE BINARY FILES RECORDED BY PCLIENT

The appropriate method for decoding a binary file acquired with pclient is to read this

file in elementary datum of 16-bits (i.e. one unsigned short integer), and interpret each

datum successively according to the format rules detailed in section 9 until the end of

file is reached. Little-endian byte ordering is assumed. The interpretation of each datum

may be obtained from the matching prefix header of this datum, or it may be

determined by one or several of the previous data. For example, when the datum

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

189

PFX_START_OF_EVENT is first encountered, the next datum is implicitly the 16-LSBs of

the event time stamp, the next one is implicitly the 16 middle bits of the event time

stamp, the ones that follow are the 16-MSBs of the event time stamp, the 16-LSBs of the

event counter, and finally the 16-MSBs of the event counter. The type of the datum that

follows the 16-MSBs of the event counter is not implicitly known. It must be determined

from the datum itself by identifying a unique matching prefix. If the datum does not

match any of the existing prefixes, subsequent data cannot be decoded. Ignoring this

error and attempting to interpret the next datum will most likely fail or lead to incorrect

data because the non-interpreted datum may be followed by one or several data that

have an implicit signification which is different from that of a possibly matching prefix.

Only a subset of all the possible different types of messages defined in section 9 are

stored in data files by pclient. Obviously, the event header, trailer, and ADC samples are

recorded. On the other hand, configuration frames are not recorded in event data files

by pclient. Starting from pclient version 2.3, monitoring frames (e.g. pedestal

histograms, zero-suppression thresholds) are recorded in event data files by pclient. An

exception is pedestal mean / rms values which can be stored during pedestal runs. Some

datum have self-contained information, e.g. PFX_ADC_SAMPLE contains a complete 12-

bit ADC sample, while some others provide only a piece of information that becomes

complete when several data are grouped together. For example, the datum

PFX_LONG_ASCII_MSG only forms an actual complete string after the following datum

that contains the size of the string has been read and after the number of ASCII

characters indicated by this size field have been read. Each piece of complete

information is called an item. An item is built from the content of one or several

elementary 16-bit datum. After interpreting a datum, it may be possible to retrieve a

complete item. In other cases, one or several more data have to be processed before a

new item is complete. Events are composed of a collection of items stored sequentially

in the data files recorded by pclient.

Two example programs are provided to demonstrate the concepts of decoding these

files: preader and fdecoder. It is recommended to use fdecoder which is more recent and

clearer than preader. The central part of the decoder relies on the DatumContext

structure and the associated functions DatumContext_Init(), Datum_Decode() and

Item_Print(). The complete source code is provided and it is strongly recommended

that these functions are re-used without modification in the development of tools for

file format conversion (e.g. from the TDCM format to some ROOT format) or in the

development of software for on-line monitoring. Several header files have to be

included and only one source code file, datum_decoder.c, is needed. Refer to the

source code for details. Dependencies are minimal and this code should be exploitable

in C or C++ in any Windows or Linux environment.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

190

To initialize the datum decoder, the function DatumContext_Init() is called with

the required appropriate parameters. The parameter sample_index_offset_zs

indicates how many pre-samples are recorded in zero-suppressed mode. The DAQ

setting that was used when recording the file is needed to determine the appropriate

offset to properly index the time buckets read from the SCA of the front-end chips. After

context initialization, the function Datum_Decode() is called sequentially for every

datum. After this function returns, the user must query the member isItemComplete

of the structure DatumContext to determine if an item is available. If an error occurs, a

negative value is returned and structure member ErrorString indicates the cause of

the error. The function Item_Print() may optionally be called to output a string

representation of any complete item for debugging. If an item is complete, it must be

copied elsewhere if it is desired to keep it because subsequent calls Datum_Decode() to

will erase the current item to construct the following one. The above procedure is

repeated for every datum found in the file to interpret until the end of file is reached.

An event stored by pclient never spans across two files. Processing multiple files without

calling DatumContext_Init() between them is allowed. Note that internal counters

are currently limited to 32 bits unsigned integers. Although the data interpreted shall

remain correct in all cases, some counters will roll over if the total amount of data read

at once exceeds 4 Gbytes.

The current list of all the possible items that may appear in binary files produced by

pclient is given in Table 72. Note that all types of items may not necessarily appear in

every file. Other types of items may be added in the future. The hexadecimal value

assigned for each item may be changed in future releases of this software. Hence, the

user must not modify the corresponding header files to maintain compatibility and ease

the integration of future extensions and improvements.

Table 72 . List of Items that can be found in binary files produced by pclient.

Item DatumContext fields Signification

IT_UNKNOWN none Unknown type of item.
Indicates a caveat in the code

IT_SHORT_MESSAGE MessageString[] Short ASCII string
IT_LONG_MESSAGE MessageString[] Long ASCII string
IT_DATA_FRAME FramingVersion

FrameSourceType
FrameSourceId

Indicates the beginning of an
Ethernet data frame that
contains event data. This
item is for DAQ diagnosis and
can be ignored for physics
data analysis.

IT_MONITORING_FRAME FramingVersion
FrameSourceType
FrameSourceId

Would normally not appear in
a binary data file. The code to
interpreted subsequent
content is currently not
implemented.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

191

IT_CONFIGURATION_FRAME FramingVersion
FrameSourceType
FrameSourceId

Would normally not appear in
a binary data file. The code to
interpreted subsequent
content is currently not
implemented.

IT_END_OF_FRAME none Currently not used
IT_START_OF_EVENT FramingVersion

FrameSourceType
FrameSourceId
EventType
SourceType
SourceId
EventNumber
EventTimeStampLsb
EventTimeStampMid
EventTimeStampMsb

Event header information.
Only the header information
from the BE should be kept.
The event header from each
FE may be present for
verification debugging.
Subsequent items belong to
this event until the next
IT_START_OF_EVENT is
found.

IT_CHANNEL_HIT_COUNT CardIndex
ChipIndex
ChannelHitCount

Indicates the number of
channels hit in the
corresponding chip. Only
relevant using the AGET.

IT_LAST_CELL_READ CardIndex
ChipIndex
LastCellRead

For advanced debugging. Can
be safely ignored.

IT_END_OF_EVENT SourceType
SourceId
EventSize

Indicates the end of the
current event and its size.
This must correspond to the
amount of data found from
the start of the event until its
end.

IT_CHANNEL_HIT_HEADER CardIndex
ChipIndex
ChannelIndex

Indicates to which card, chip
and channel the data that
follows pertains. This triplet
shall be translated to the
actual X and Y coordinates of
the physical pad connected to
that channel.

IT_TIME_BIN_INDEX CardIndex
ChipIndex
ChannelIndex
TimeBinIndex

In zero suppressed mode,
indicates the index of the first
ADC sample above threshold

IT_ADC_SAMPLE CardIndex
ChipIndex
ChannelIndex
RelativeSampleIndex
AbsoluteSampleIndex
AdcSample

Indicates the amplitude of
one ADC sample. The
absolute sample index
indicates the actual time
bucket in the SCA of the
front-end ASIC. Beware that
the absolute index may be
negative and the relative
sample index may exceed 511
depending on how many pre-
samples and post-samples
are recorded. Samples with a
negative index are always null
and should be dropped. The
relative sample index is
always restarted from 0 after
IT_TIME_BIN_INDEX.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

192

IT_NULL_DATUM none Empty datum used for
padding some items to an
integral number of 32-bit
words.

IT_START_OF_BUILT_EVENT none Reserved for future use
(event builder mode with
multiple TDCMs)

IT_END_OF_BUILT_EVENT none Reserved for future use
(event builder mode with
multiple TDCMs)

IT_PED_HISTO_MD CardIndex
ChipIndex
ChannelIndex
PedestalMean
PedestalDev

Mean and rms of the pedestal
of the corresponding channel
as computed during the latest
pedestal run

IT_CHAN_PED_CORRECTION CardIndex
ChipIndex
ChannelIndex
PedestalCorrection
ChipType

Pedestal equalization
constant (signed) for the
specified channel

IT_CHAN_ZERO_SUPPRESS_THRESHOLD CardIndex
ChipIndex
ChannelIndex
ZeroSuppressThreshold
ChipType

Zero suppression threshold
(unsigned) for the
corresponding channel

IT_FRAME_SEQUENCE_NUMBER FrameSequenceNumber Frame sequence number

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

193

12 REFERENCE DOCUMENTS
[1] P. Baron et al. “AFTER, an ASIC for the Readout of the Large T2K Time Projection

Chambers”, IEEE Transactions on Nuclear Science, volume N°55, issue 3, part 3, pp.

1744 – 1752, June 2008.

[2] S. Anvar et al., “AGET, the GET front-end ASIC, for the readout of the Time Projection

Chambers used in nuclear physic experiments”, in proc. IEEE Nucl. Sci. Symposium

2011, pp. 745-749.

[3] D. Baudin et al., “ASTRE: ASIC with switched capacitor array (SCA) and trigger for

detector readout electronics hardened against Single Event Latchup (SEL)”, in NIMA,

November 2017. [Online]. Available: https://doi.org/10.1016/j.nima.2017.10.043

[4] C. Glattfelder, “Mercury ZX1 User Manual”, Enclustra Gmbh, 2015. [Online]. Available:

http://www.enclustra.com

[5] “7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital

Converter”, Xilinx User Guide UG480, July 23, 2018.

https://doi.org/10.1016/j.nima.2017.10.043
http://www.enclustra.com/

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

194

13 DOCUMENT HISTORY
June 2016: (Version 0.0) initial release.

September 2016: (Version 0.1) documented message and data format.

October 2016: (Version 0.2) added section on FEC identification procedure.

November 2016: (Version 0.3) added section on clocking, line encoding/decoding and

procedure to establish communication between the TDCM and FECs.

January 2017: (version 0.4) added TDCM register map and description of bit error rate

tester.

April 2017: (version 0.5) revised FEC register map; added the list of command

interpreter commands and their description.

August 2017: (version 0.6) added pictures of TDCM and detailed boot procedure.

Changed TDCM Register #10 from FEM_MASKED to FE_ACTIVE (same function but all

bits inverted).

September 2017: (version 0.7) changed the specification of the bit error rate tester

of the S-TDCM to M-TCM link. Defined content of TDCM Register #13.

February 2018: (version 0.8) changed syntax of commands with prefix “be” and “fe”

for those that apply to the back-end and front-end side respectively. Added “Single Shot

Trigger” mode. Defined content of TDCM Register #14. Defined PFX_LONG_ASCII_MSG,

updated Fig. 91 and described newly defined long ASCII messages.

March 2018: (version 0.9) corrected syntax of command “be rx_bert_stat”. Added

extended format for packet of channel data and pedestal histogram in order to support

front-end cards that have up to 16 ASICs instead of 4. Added new format for FEC

Register#1 to support read/write to the registers of up to 16 ASICs.

April 2018: (version 1.0) added description of the Ring Buffer Interface and dual

ported memory blocks.

September 2018: (version 1.1) updated the definition of the content of TDCM

Register#7. Added figure showing pedestal histogram detailed statistics frame in

extended format. Defined prefix PFX_EXTD_CARD_CHIP_LAST_CELL_READ and added

Fig. 94. Removed FEC_POW_INV control bit in FEC Register #1 and extended the field

FEC_ENABLE to two bits. Moved field ASIC_MASK from FEC Register #1 to FEC Register

#9; extended it to 16 bits instead of 4 bits.

October 2018: (version 1.1) defined prefix PFX_EXTD_PEDTHR_LIST and modified

format of pedestal or threshold list accordingly to support up to 16 ASICs per front-end.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

195

Wrote section 11. Revised document to replace “FEC” by “FE” where appropriate.

Defined the command “be fe_workset” and introduced the use of the keyword

“fe_workset” in several previously existing commands.

November 2018: (version 1.2) expanded section on TDC mock-up using Enclustra PE1

evaluation kit. Revised FE DPRAM map (Table 26) to include SPI Flash Controller I/O data

buffers. Defined content of FE Register #12.

January 2019: (version 1.3) changed signification of TDCM to “Trigger & Data

Concentrator Module” instead of “Trigger & Data Collection Module”. Added Table 67

and the corresponding section. Added command “fe program flash” and the related

description. Corrected the text that explains how the parity bit is computed for various

messages (M-TCM to/from S-TDCM and FE to/from BE over Virtual Channel A). Added

field FRA_TIMEOUT in FE Register #6 and the associated commands. Corrected Fig. 97.

Added section 10.1.11 “Commands for Data Acquisition”. Changed the syntax of

commands to support an optional placeholder character or optional board index after

the prefix “be” and “fe” and before the main body of the command.

January 2019: (version 1.4) added command “fe sfp”. Updated definition of TDCM

Register #14 and added command “be extra_dead_time”. Defined field I2C_TARGET in

FE Register #6.

April 2019: (version 1.5) added definition of FE Register #13 and #15; added definition

of prefix PFX_EXTD_CARD_CHIP_CHAN_H_MD; added commands “fe fw_version” and

“fe xadc”.

April 2019: (version 1.6) corrected the file name of the firmware and embedded

software placed on the SD memory card of the TDCM which must be called “BOOT.BIN”.

Revised section on pclient. Added section 11.6 on the decoding of binary data files

acquired with pclient.

May 2019: (version 1.7) added the capability for pclient to store in data files the

pedestal mean and rms information obtained during pedestal runs. Consequently, data

files can now contain one type of monitoring frames.

May 2019: (version 1.8) added the capability for pclient to store in data files the

pedestal equalization constants and thresholds for zero suppression that are read-back

from the FE electronics. Starting from pclient version 2.3, data files may contain

monitoring frames. Updated the list of items produced by pclient in Table 72.

June 2019: (version 1.9) changed Fig. 41 and Table 37 to add “EB_DO-EOF_ON_EOE”

and command “eb be do_eof_on_eoe”.

August 2019: (version 1.10) added the sections describing NIM I/O’s and TTL I/O’s.

TDCM Reference Manual – Version 1.16 Last revised: April 19, 2021

196

September 2019: (version 1.11) added command “fe fra_timeout” in Table 49.

October 2019: (version 1.12) added PFX_FRAME_SEQ_NB in Table 27. Changed Fig.

92.(b) where the null word after the UDP header is replaced by the frame sequence

number. Added IT_FRAME_SEQUENCE_NUMBER in Table 72.

February 2020: (version 1.13) added section on code migration to different versions

of Vivado. Added section related to the dual CPU core model of embedded software.

Added section on the prospects of running embedded Linux on the TDCM. Defined

content of FE Register #14. Added FE pulser model “T2K2” and ADC model “AD9637”.

Added section 10.2.15 and group of commands “fe delay_adc”. Updated section 7.2 to

change value of HW_OFFSET. Updated Table 66.

May 2020: (version 1.14) corrected list of valid arguments for command “pulser

model” in Table 58.

September 2020: (version 1.15) added commands for magnetic field sensor control

in Table 66.

April 2021: (version 1.16) corrected explanations related to the usage of bit

I2C_SDO/T. Defined field FEC_MASK in FE Register #1. Added command “fe fec_mask”.

Added definition of TDCM Register #31 and command “be fw_version”. Defined bit

SDCARD_WP in TDCM Register #6. Added the options “pa”, “sc” and “dt” to the

command “be state” and the description of the associated variables.

