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How it all started (again)…

This is NOT an UFO !!! ;-)

BNL → 1 month long trip for the g-2 storage ring

→ Fermilab
July 26, 2013
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Content of the talk

■ Introduction: the (g-2)μ experiment & theoretical prediction
■ Data on e+e− → hadrons
■ Combination of all e+e− data:
     focus on the combination procedure 
     (HVPTools and fit based on analyticity & unitarity)
■ Indications of uncertainties on uncertainties and on correlations & their 

implications for combinations
■ Results on aμ
■ Impact of correlations between aμ and αQED on the EW fit
■ Conclusions
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The (g-2)μ : definition & experimental measurement

● Magnetic dipole moment of a charged lepton:

● “anomaly” = deviation w.r.t. Dirac’s prediction:  

● Experimental “ingredients” to measure aμ:
→ Polarised muons from pion decays (parity violation)

→ “Anomalous frequency” 
(difference between spin precession and cyclotron frequency)
proportional to aμ for the “magic γ”

→ Parity violation in muon decays 
(electron emitted in the direction opposite to the muon spin)
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The (g-2)μ experiment

aμ
Exp(BNL): (11 659 208.9 ±6.3) 10−10 

→ Expected uncertainty reduction by a factor 4 with the experiment at Fermilab
- improved apparatus and enhanced statistics: more intense (x20) and pure muon beam; B-field mapped every 3 days
   with special trolley with probes pulled through beampipe (homogeneity ~ ppm); tracking system for electron detectors etc.
- first publication: similar precision & good agreement with BNL (7th of April 2021) PRL 126, 141801 (2021)

aμ
Exp(Fermilab): (11 659 204.0 ±5.1 ±1.8) 10−10 → so far only 6% of the total data

aμ
Exp(Fermilab + BNL): (11 659 206.1 ± 4.1) 10−10 (0.35 ppm) → One of the most precise quantities ever measured

→ Initiative for a measurement using slow muons (KEK, Japan)

PRD 103, 072002 (2021)
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Theoretical prediction
Why is it (so) complicated to compute one number ? (very precisely)

+ Many other diagrams at higher orders...

Dominant uncertainties: non-perturbative... ? ? ?
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Dispersion relation

had
 Im[                    ]  ∝  |                   hadrons  |2

Dominant uncertainty for the theoretical prediction: from lowest-order HVP piece
Cannot be calculated from QCD (low mass scale), but one can use experimental data on e+e−→hadrons 
cross section

Bouchiat and Michel, 1961

→ Precise σ(e+e−→hadrons) measurements at low energy are very important
→ Do not use hadronic τ decays data anymore (less precise + theory uncertainties)

γ

γ γ

μ

Hadronic Vacuum Polarization and Muon (g-2)μ
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CMD-2 (2006) SND (2006)

KLOE (08&10) + μμ (12) (ISR)
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 HVP: Data on e+e− → hadrons



BaBar results (arXiv:0908.3589, PRL 103, 231801  (2009); arXiv:1205.2228(PRD)

e+ e− → π+ π− (γFSR)  bare (no VP) cross section

diagonal errors (stat+syst)

Absolute μ+μ- cross section agrees with NLO QED within 1.1%
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Combine cross section data: goal and requirements
→ Goal: combine experimental spectra with arbitrary point spacing / binning 

→ Requirements:
•  Properly propagate uncertainties and correlations
  ( 1st motivation for using DHMZ result as “baseline” in the TI White Paper)
- Between measurements (data points/bins) of a given experiment
  (covariance matrices and/or detailed split of uncertainties in sub-components)
- Between experiments (common systematic uncertainties, e.g. VP)
  based on detailed information provided in publications
- Between different channels – motivated by understanding of the meaning of systematic uncertainties   
  and identifying the common ones
  BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling);
  BABAR radiative corrections; 4π2π0−ηω
  CMD2 ηγ – π0γ; CMD2/3 luminosity; SND luminosity;
  FSR; hadronic VP (old experiments)

•  Minimize biases

•  Optimize g-2 integral uncertainty 
  (without overestimating the precision with which the uncertainties of the measurements are known)
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Exp. 1
Exp. 2

Combination procedure implemented in HVPTools software
σ

→ Define a (fine) final binning (to be filled and used for integrals etc.)
→ Linear/quadratic splines to interpolate between the points/bins of each experiment
     - for binned measurements: preserve integral inside each bin
     - closure test: replace nominal values of data points by Gounaris-Sakurai model and re-do the combination 
       → (non-)negligible bias for (linear)quadratic interpolation
→ Fluctuate data points taking into account correlations & re-do the splines for each  
     (pseudo-)experiment
     - each uncertainty fluctuated coherently for all the points/bins that it impacts
     - eigenvector decomposition for (statistical) covariance matrices
→ In each fine bin: minimize χ2 and get average coefficients
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For each final bin:
→ Compute an average value for each measurement and its uncertainty
→ Compute correlation matrix between experiments
→ Minimize χ2 and get average coefficients (weights)
→ Compute average between experiments and its uncertainty

Evaluation of integrals and propagation of uncertainties:
→ Integral(s) evaluated for nominal result and for each set of toy pseudo-experiments;
     uncertainty of integrals from RMS of results for all toys
→ The pseudo-experiments also used to derive (statistical & systematic) covariance matrices of 
     combined cross sections → Integral evaluation
→ Uncertainties also propagated through ±1σ shifts of each uncertainty:
     - allows to account for correlations between different channels (for integrals and spectra)
→ Checked consistency between the different approaches

Combination procedure implemented in HVPTools software
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For each final bin:
→ Minimize χ2 and get average coefficients

Note: average weights must account for bin sizes / point spacing of measurements 
          (do not over-estimate the weight of experiments with large bins)
→ weights in fine bins evaluated using a common (large) binning for measurements + interpolation 
→ compare the precisions on the same footing

Combination procedure: weights of various measurements

→ Bins used by KLOE larger than the ones 
by BABAR in ρ-ω interference region 
(factor ~3)

→ Average dominated by BaBar and KLOE,
BaBar covering full range
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Combination for the e+e− → π+π− channel

Procedure and software (HVPTools) for combining cross section data with arbitrary point spacing/binning

𝜌(770)
𝜌–𝜔 mixing

Data combination
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Combination for the e+e− → π+π− channel
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Combination for the e+e− → π+π− channel
Slope between various results
Further quantified through fits (backup)

Local tension & systematic trends
Indication of “uncertainties on uncertainties” 
(i.e. unaccounted biases)

Other experiments not yet precise enough 
to discriminate
(see however recent update from SND)
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For each final bin:
→ χ2 /ndof: test locally the level of agreement between input measurements, taking into account the 
correlations
→ Scale uncertainties in bins where χ2 /ndof > 1 (PDG): locally conservative
→ Observed tension between BABAR and KLOE measurements

→ Included extra (dominant) uncertainty: difference between integrals without either BABAR or  
     KLOE measurement to account for systematic deviations
     ( 2nd motivation for using DHMZ result as “baseline” in White Paper)

Combination procedure: compatibility between measurements

→ Tension between measurements: 
     indication of underestimated uncertainties
     Motivates conservative uncertainty treatment 
     in combination fit (evaluation of weights)
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→ Fit bare form-factor using 6 param. model based on analyticity and unitarity

→ Conservative χ2 (diagonal matrix) & local rescaling of input uncertainties 
→ Full propagation of uncertainties & correlations using pseudo-experiments

(1611.09359, C. Hanhart et al.)

(hep-ph/0402285, F.J. Yndurain et al.)
Omnès integral

(1102.2183, F.J. Yndurain et al.)

DHMZ - 1908.00921

Improving aμ through fits for the e+e− → π+π− channel
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Fit performed up to 1 GeV: comparison with data
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Fit performed up to 1 GeV, Result used up to 0.6 GeV

→ Use fit only below 0.6 GeV for aμ integral:

     - where data is less precise and scarce

     - less impacted by potential uncertainties 
       of inelastic effects

→ The difference 0.2 ± 0.9
     (72% correlation accounted for)

→ The fit improves the precision by a factor ~2

(*) Parameter uncertainty corresponds to variations with/without the B1 term in the phase shift formula and 
   √s0 varied from 1.05 GeV to 1.3 GeV (absolute values summed linearly), checked to be statistically significant
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Combined results: Fit [<0.6GeV] + Data[0.6-1.8GeV] 
→ Full uncertainty propagation using the same pseudo-experiments as for the spline-based 
combination: 62% correlation among the two contributions

→ The difference “All but BABAR” and “All but KLOE” = 5.6
     to be compared with 1.9 uncertainty with “All data”
     - The local error inflation is not sufficient to amplify the uncertainty
     - Global tension (normalisation/shape) not previously accounted for
     - Potential underestimated uncertainty in at least one of the measurements?
     - Other measurements not precise enough to discriminate BABAR / KLOE
→ Given the fact we do not know which dataset is problematic, we decide to:
     - Add half of the discrepancy (2.8) as an additional uncertainty 
       (correcting the local PDG inflation to avoid double counting)
     - Take (“All but BABAR” + “All but KLOE”) / 2 as central value
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Uncertainties on uncertainties and on correlations
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1908.00921(DHMZ), 2006.04822(WP Theory Initiative)
Topic of general interest, in other fields too (see backup)

https://inspirehep.net/literature/1747772
https://inspirehep.net/literature/1800513


Two different approaches for combining (e+e-) data
DHMZ:
→ χ2 computed locally (in each fine bin), taking into account correlations between measurements 

(see previous slides)
→ used to determine the weights on the measurements in the combination and their level of 

agreement
→ uncertainties and correlations propagated using pseudo-experiments or ±1σ shifts of each 

uncertainty component

KNT:
→ χ2 computed globally (for full mass range)

→ relies on description of correlations on long ranges

→ One of the main sources of differences for the uncertainty on aμ 

KNT (1802.02995)

KLOE-KMT (1711.03085)
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Evaluation of uncertainties and correlations (e+e-)

KLOE 08 (0809.3950)

KLOE 10 (1006.5313)

→ Systematics evaluated in ~wide mass ranges 
     with sharp transitions
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Evaluation of uncertainties and correlations (e+e-)

BABAR (1205.2228)

→ Systematics evaluated in ~wide mass ranges with sharp transitions
     (statistics limitations when going to narrow ranges)
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Combining the 3 KLOE measurements

KLOE-08-10-12(KLOE - KT)
KLOE-08-10-12(DHMZ)

KLOE-08-10-12(DHMZ)

Local combination (DHMZ) Information propagated between mass regions, 
through shifts of systematics - relying on correlations, 
amplitudes and shapes of systematics (KLOE-KT)
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KLOE08 aμ[ 0.6 ; 0.9 ] : 368.3 ± 3.2 [10−10]
KLOE10 aμ[ 0.6 ; 0.9 ] : 365.6 ± 3.3
KLOE12 aμ[ 0.6 ; 0.9 ] : 366.8 ± 2.5
→ Correlation matrix:
        |      08   |      10   |     12    |
-----------------------------------
   08 |          1      0.70      0.35 
   10 |     0.70           1      0.19 
   12 |     0.35      0.19           1 
→ Amount of independent information provided by each measurement

→ KLOE-08-10-12(DHMZ) - aμ[0.6 ; 0.9] : 366.5 ± 2.8 (Without χ2 rescaling: ± 2.2)
→ Conservative treatment of uncertainties and correlations (not perfectly known) in weight 
determination

→ KLOE-08-10-12(KLOE-KT) - aμ[0.6 ; 0.9]GeV : 366.9 ± 2.2 (Includes χ2 rescaling)

→ Assuming perfect knowledge of the correlations to minimize average uncertainty

Combining the 3 KLOE measurements - aμ
ππ contribution
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Uncertainties on uncertainties and correlations
Numerous indications of uncertainties on uncertainties and on correlations, with a direct impact on 
combination fits
→ Shapes of systematic uncertainties evaluated in ~wide mass ranges with sharp transitions

→ One standard deviation is statistically not well defined for systematic uncertainties

→ Systematic uncertainties like acceptance, tracking efficiency, background etc. not necessarily fully 
     correlated between low and high mass

→ Are all systematic uncertainty components fully independent between each-other? (e.g. tracking 
     and trigger)

→ Yield uncertainties on uncertainties and on correlations

→ Tensions between measurements (BABAR/KLOE; 3 KLOE results etc.):
     experimental indications of underestimated uncertainties

→ Statistical methods (χ2 with correlations, likelihood fits, ratios of measured quantities etc.) should 
     not over-exploit the information on the amplitude and correlations of uncertainties
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Combination of measurements for various channels 
and total HVP contribution
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Combination for the e+e− → π+π−π0 channel
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e+e− → π+π−π+π−, e+e− → π+π−π0π0 

→ Essentially normalization differences w.r.t. τ data: cross-checks very desirable
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Combination for the e+e− →K+K− channel

→ Tension between measurements
→ aμ[→1.8GeV]: 23.08 ± 0.20 (stat.) ± 0.40 (syst.) [10−10] (enhancement x 2.2)
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Combination for the e+e− →KKπ and KK2π channels
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Contributions from the 1.8 – 3.7 GeV region

→ Contribution evaluated from pQCD (4 loops) + O(αs
2) quark mass corrections

→ Uncertainties: αs, truncation of perturbative series, CIPT/FOPT, mq 
→ 1.8-2.0 GeV: 7.65±0.31(data excl.); 8.30±0.09(QCD); added syst. 0.65 [10−10]
→ 2.0-3.7 GeV: 25.82±0.61(data); 25.15 ± 0.19(QCD); agreement within 1σ 
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Contributions from the charm resonance region
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Situation in arXiv:1908.00921 (EPJC)

→ 32 exclusive channels are 
integrated up to 1.8 GeV

→ Only 0.016 ± 0.016% 
in missing (estimated) 
channels for aμ 
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Re+e− → Hadrons

Sum of 32 exclusive channels with 
full propagation of correlations

→ Performed non-trivial check:
aμ from sum of individual channels and from Ree integral < 1.8 GeV
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https://muon-gm2-theory.illinois.edu

White Paper: arXiv:2006.04822 (Phys. Rept.)

Theory initiative: prepare the Standard Model prediction for (g-2)μ

Put together in a coherent & conservative way the 
results of various groups, before the Fermilab result  
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Theory initiative white paper: executive summary

→ Dominant uncertainty: HVP LO → Based on merging of model-independent methods
→ HLbL also has an important uncertainty
→ Lattice results become more and more interesting (see next talk)

→ A tension between the BNL measurement and SM prediction: ~ 3.7 σ
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Status of aμ

1908.00921, updated with 
WP 2020 LBL value

1911.00367, updated with 
WP 2020 LBL value

Muon g–2 Theory White Paper, 
2006.04822
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Important to account for BABAR-KLOE diff. & 
inter-channel correlations

→ Caution about significance:
      - statistics-dominated measurement
      - prediction uncertainty limited by non-Gaussian systematic effects

→ Nevertheless, large discrepancy between measurement and SM
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Impact of correlations between aμ and αQED on the EW fit 

2008.08107(BM, Matthias Schott)
( See next talk )
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Keshavarzi et al., 2006.12666 ;de Rafael, 
2006.13880; Colangelo et al, 2010.07943
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Approaches considered for treating the aμ - αQED correlations
Studied approaches probing different hypotheses concerning the possible source(s) of the aμ tension(s) :

(0) Scaling factor applied to the HVP contribution from some energy range of the hadronic spectrum

→ Approaches taking into account (for the first time) the full correlations between the uncertainties of the HVP 
contributions to aμ and αQED , based on input from DHMZ 19 (arXiv:1908.00921): 
correlations between points/bins of a measurement in a given channel, between different measurements in the same channel, 
between different channels; full treatment of the BABAR-KLOE tension in the π+π- channel

(1) Cov. matrix of aμ and αQED (Pheno) described by a nuisance parameter (NP1) impacting both quantities (used to shift aμ 
to some “target” value - coherent shift applied to αQED) and another one (NP2) impacting only αQED (used in the EW fit)
Note: “target” values chosen in order to reach agreement with the BMW 20 prediction / Experimental aμ (±1σ)

(2) Include the HVP contribution to aμ as extra parameter in the EW fit, constrained by the Pheno & BMW 20 values
Note: Also accounted for the coherent impact of αS on the HVP contribution and on the EW fit

BMW 20 (v1)
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Results: comparing the Phenomenology & BMW 20 values

→ Large scaling factors (w.r.t. exp. uncertainties) & significant shifts of NP1 

→ Addressing the BMW 20 - Pheno difference for aμ has little impact on the EW fit, 
except for the unrealistic scenario rescaling the full HVP contribution
Note: Similar conclusions for the comparison with the Experimental aμ value (see backup)

(Full HVP)

 χ2(BMW20-Pheno): 9.3
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Conclusion

We have an interesting, long standing, multifaceted problem to solve...

???
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Backup
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 Lepton Magnetic Anomaly: from Dirac to QED

Dirac  (1928)      ge=2   ae=0

anomaly discovered:    
        Kusch-Foley  (1948)         ae= (1.19 ± 0.05) 10−3

and explained by O(α) QED contribution:
        Schwinger  (1948)             ae = α/2π = 1.16 10−3

 
        first triumph of QED

⇒ ae sensitive to quantum fluctuations of fields 
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 More Quantum Fluctuations

typical contributions:

QED up to O(α5) (Kinoshita et al.)

Hadrons           vacuum polarization                           light-by-light (dispersive & lattice QCD)

+ ? a new physics ?

Electroweak                                                                         new physics at high mass scale

⇒  aμ much more sensitive to high scales
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Treatment of the KLOE correlation matrices

→ Statistical and systematic correlation matrices among the 3 measurements

KLOE:          08                 10              12 KLOE:          08                 10              12
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→ “counting” the number of independent components 
(50) used to build the covariance matrix

Statistical cov. mat.
KLOE 08-10-12

Systematic cov. mat.
KLOE 08-10-12

→ Problem of negative eigenvalues for previous systematic covariance matrix solved 
     (informed KLOE collaboration about the problem in summer 2016)

(i)
Treatment of the KLOE data – eigenvector decomposition

(i)
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Statistical cov. mat. 
eigenvectors

Systematic cov. mat. 
eigenvectors

→ Each normalized eigenvector (σi*Vi) treated as an uncertainty fully correlated between the bins
→ All these uncertainties are independent between each-other

→ Checked exact matching with the original matrices + with all aμ integrals and uncertainties 
published by KLOE

Treatment of the KLOE data – eigenvector decomposition

KLOE:           08                10              12 KLOE:           08                10              12
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Systematic cov. mat.: e.v. 1

Systematic cov. mat.: e.v. 2

Statistical cov. mat.: e.v. 1

→ Eigenvectors carry the general features of 
     the correlations:
    - long-range for systematics 
    - ~short-range for statistical uncertainties + 

correlations between KLOE 08 & 12

Treatment of the KLOE data – eigenvector decomposition

KLOE:           08                10              12

KLOE:           08                10              12
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→ Local χ2 /ndof test of the local compatibility between KLOE 08 & 10 & 12, taking into account 
     the correlations: some tensions observed
→ Does not probe general trends of the difference between the measurements 
     (e.g. slopes in the ratio)

Local comparison of the 3 KLOE measurements
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Ratios between measurements

→ Good agreement between KLOE 10 and KLOE 12

→ Compute ratio between pairs of KLOE measurements
→ Full propagation of uncertainties and correlations using pseudo-experiments
    (agreement with analytical linear uncertainty propagation)
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Ratios between measurements
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Direct comparison of the 3 KLOE measurements

χ2 [0.35;0.85] GeV2 : 79.0 / 50(DOF)
p-value= 0.0056

χ2 [0.35;0.58] GeV2 : 46.2 / 23(DOF)
p-value= 0.0028

χ2 [0.58;0.85] GeV2 : 29.7 / 27(DOF)
p-value= 0.33

χ2 [0.64;0.85] GeV2 : 20.7 / 21(DOF)
p-value= 0.47

χ2 [0.35;0.95] GeV2 : 73.7 / 60(DOF)
p-value= 0.11

χ2 [0.35;0.58] GeV2 : 21.8 / 23(DOF)
p-value= 0.53

χ2 [0.35;0.64] GeV2 : 27.5 / 29(DOF)
p-value= 0.55

χ2 [0.64;0.95] GeV2 : 39.4 / 31(DOF)
p-value= 0.14

KLOE 10 / KLOE 08 KLOE 12 / KLOE 08

→ Quantitative comparison between the ratios and unity, taking into account correlations
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Quantitative comparisons of the KLOE measurements

→ Fitting the ratio taking into account correlations
→ Full propagation of uncertainties and correlations – 3 methods yielding consistent results: 
     ±1σ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

→ Significant shift & slope (~2.5-3σ) at low √s, no significant shift at high √s
     Similar shift & slope for KLOE 12 / KLOE 08 (see below)
→ Should motivate conservative treatment of uncertainties and correlations in combination

χ2 [p0 + p1√s]: 36.1 / 21(DOF)
p-value= 0.02
p0 :  0.745 ± 0.085 
p1 :  0.341 ± 0.117

→ Quantitative comparison between the ratios and unity, taking into account correlations

Comparison with Unity:
χ2 [0.35;0.85] GeV2 : 79.0 / 50(DOF)
p-value= 0.0056
χ2 [0.35;0.58] GeV2 : 46.2 / 23(DOF)
p-value= 0.0028
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Direct comparison of the 3 KLOE measurements
→ Fitting the ratio taking into account correlations
→ Full propagation of uncertainties and correlations – 3 methods yielding consistent results: 
     ±1σ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

χ2 [p0 + p1√s]: 20.7 / 27(DOF)
p-value= 0.80
p0 :  0.876 ± 0.056 
p1 :  0.159 ± 0.081 

χ2 [p0]: 38.4 / 30(DOF)
p-value= 0.14
p0 :  1.009 ± 0.009 

→ Significant shift and slope (~2σ) at low √s, no significant shift at high √s
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Direct comparison of the 3 KLOE measurements

χ2 [p0]: 25.4 / 16(DOF)
p-value= 0.06
p0 :  0.979 ± 0.008 

χ2 [p0]: 29.5 / 26(DOF)
p-value= 0.29
p0 :  1.002 ± 0.006

χ2 [p0 + p1√s]: 36.1 / 21(DOF)
p-value= 0.02
p0 :  0.745 ± 0.085 
p1 :  0.341 ± 0.117

→ Significant shift and slope (~2.5-3σ) at low √s, 
     no significant shift at high √s
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Correlation matrix

Eigenvalues of the 
covariance matrix

Treatment of the combined KLOE data

(i)
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Combining the 3 KLOE measurements

KLOE-08-10-12(KLOE - KT)

KLOE-08-10-12(KLOE - KT)
KLOE-08-10-12(DHMZ)

KLOE-08-10-12(DHMZ)

KLOE-08-10-12(DHMZ)

KLOE-08-10-12(DHMZ)
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→ Updated result:
 506.70 ± 2.32 ( ± 1.01 (stat.) ± 2.08 (syst.) ) [10−10]
 (after uncertainty enhancement by ~14% caused by the tension between inputs, taken into account 
through a local rescaling)

Total uncertainty: 5.9 (2003) → 2.8 (2011) → 2.6 (2017) → 2.3 (2018)

aμ
ππ contribution [0.28; 1.8] GeV – spline-based (2018)
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→ with KLOE-08-10-12 (KLOE-KT) used as input: 506.55 ± 2.38 [10−10] 
(after uncertainty enhancement by 18% caused by the tension between inputs, taken into account 
through a local rescaling)
→ Compensation between uncertainty reduction for KLOE-08-10-12 (KLOE-KT), inducing a change 
of weights in DHMZ combination, and tension enhancement

KLOE-08-10-12(KLOE - KT)

aμ
ππ contribution [0.28; 1.8] GeV – spline-based (2018)
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Fit parameters, uncertainties and correlations e+e− → π+π−

→ κ corresponds to a Br (ω → π+π−) of (2.09 ± 0.09) · 10−2, in agreement with the result 
extracted from the fit of arXiv:1810.00007, (1.95 ± 0.08) · 10−2. Both values disagree with the 
PDG average (1.51 ± 0.12) · 10−2, dominated by the result of arXiv:1611.09359 which uses fits to 
essentially the same data.

→ The fitted ω mass is found to be lower than the PDG average obtained from 3π decays by 
(0.65 ± 0.12 ± 0.12PDG) MeV, in agreement with previous fits of the ρ − ω interference in the 2π 
spectrum (see e.g. arXiv:1205.2228 and arXiv:1810.00007).
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Comparison with IB-corrected τ data

→ Comparing corrections used by Davier et al. with the ones by F. Jegerlehner

Plots by Z. Zhang, based on
private communication with 
F. Jegerlehner
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Comparison with IB-corrected τ data
→ for aμ, e+e− − τ difference of 2.2 σ 
     (Davier et al.)

→ the ρ−γ mixing correction proposed in
     arXiv:1101.2872 (FJ) seems to over-estimate 
     the e+e− − τ difference
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χ2 definitions and properties

→ Two χ2 definitions, with systematic uncertainties included in covariance matrix or treated as fitted 
“nuisance parameters”

→ Equivalent for symmetric Gaussian uncertainties
     (1312.3524 - ATLAS)

→ Both approaches assume the knowledge of the amplitude, shape (phase-space dependence) and 
     correlations of systematic uncertainties
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Example: published uncertainties on correlations

Nominal correlation scenario Weaker - stronger correlation scenarios

1406.0076 – ATLAS jet energy scale uncertainties
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Scaling factors and NP shifts

→ Large scaling factors (w.r.t. uncertainties) & significant shifts of NP1  
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EW fit inputs and χ2 results

χ2(BMW20-Pheno): 9.3
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EW fit results: χ2 scans

(Full HVP)

(Full HVP) (Full HVP)
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EW fit results: parameter scans for varying Δαhad(MZ
2)
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EW fit results: indirect determination of Δαhad(MZ
2)
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