On the dispersive evaluation of the HVP contribution to a_{μ} and α_{QED} , and implications for the EW fit

Bogdan MALAESCU

LPNHE, CNRS

Based on: 1908.00921(DHMZ), 2006.04822(WP Theory Initiative), 2008.08107(BM,MS)

In collaboration & useful discussions with: Michel DAVIER, Andreas HOECKER, Zhiqing ZHANG (DHMZ) Laurent LELLOUCH, Matthias SCHOTT; the Gfitter group

LIO international conference on Future colliders and the origin of mass 25/06/2021

How it all started (again)...

BNL \rightarrow 1 month long trip for the g-2 storage ring

 \rightarrow Fermilab July 26, 2013

This is NOT an UFO !!! ;-)

B. Malaescu (CNRS)

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

Content of the talk

- Introduction: the $(g-2)_{\mu}$ experiment & theoretical prediction
- Data on $e^+e^- \rightarrow$ hadrons
- Combination of all e⁺e⁻ data:

focus on the combination procedure

(HVPTools and fit based on analyticity & unitarity)

- Indications of uncertainties on uncertainties and on correlations & their implications for combinations
- Results on a_{μ}
- Impact of correlations between a_{μ} and α_{OED} on the EW fit
- Conclusions

The $(g-2)_{\mu}$: definition & experimental measurement

• Magnetic dipole moment of a charged lepton:

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

• "anomaly" = deviation w.r.t. Dirac's prediction: $a = \frac{g-2}{2}$

- Experimental "ingredients" to measure a_{ii} :
- \rightarrow Polarised muons from pion decays (parity violation)

\rightarrow "Anomalous frequency"

(difference between spin precession and cyclotron frequency) proportional to a_{μ} for the "magic γ "

$$\vec{\omega}_a = \frac{e}{m_\mu c} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] \approx \frac{e}{m_\mu c} a_\mu \vec{B}$$

 \rightarrow Parity violation in muon decays

(electron emitted in the direction opposite to the muon spin)

 $\mu_{\text{polarised}}^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

The $(g-2)_{\mu}$ experiment

 $a_{\mu}^{Exp}(BNL)$: (11 659 208.9 ±6.3) 10⁻¹⁰

- \rightarrow Expected uncertainty reduction by a factor 4 with the experiment at Fermilab
- improved apparatus and enhanced statistics: more intense (x20) and pure muon beam; B-field mapped every 3 days with special trolley with probes pulled through beampipe (homogeneity ~ ppm); tracking system for electron detectors etc.
- first publication: similar precision & good agreement with BNL (7th of April 2021) PRL 126, 141801 (2021) $a_{\mu}^{Exp}(Fermilab)$: (11 659 204.0 ±5.1 ±1.8) $10^{-10} \rightarrow$ so far only 6% of the total data
- $a_{\mu}^{Exp}(Fermilab + BNL)$: (11 659 206.1 ± 4.1) 10⁻¹⁰ (0.35 ppm) \rightarrow One of the most precise quantities ever measured
- \rightarrow Initiative for a measurement using slow muons (KEK, Japan)

B. Malaescu (CNRS)

Theoretical prediction

Why is it (so) complicated to compute one number ? (very precisely)

Hadronic Vacuum Polarization and Muon (g-2)

Dominant uncertainty for the theoretical prediction: from lowest-order HVP piece Cannot be calculated from QCD (low mass scale), but one can use experimental data on $e^+e^- \rightarrow$ hadrons cross section

→ Precise $\sigma(e^+e^- \rightarrow hadrons)$ measurements at low energy are very important → Do not use hadronic τ decays data anymore (less precise + theory uncertainties) B. Malaescu (CNRS) Dispersive HVP for $a_\mu \& \alpha_{OED}$, implications for the EW fit

HVP: Data on $e^+e^- \rightarrow$ hadrons

BaBar results (arXiv:0908.3589, PRL 103, 231801 (2009); arXiv:1205.2228(PRD)

Combine cross section data: goal and requirements

- \rightarrow Goal: combine experimental spectra with arbitrary point spacing / binning
- \rightarrow Requirements:
- Properly propagate uncertainties and correlations
 (1st motivation for using DHMZ result as "baseline" in the TI White Paper)
- *Between measurements (data points/bins) of a given experiment* (covariance matrices and/or detailed split of uncertainties in sub-components)
- *Between experiments* (common systematic uncertainties, e.g. VP) based on detailed information provided in publications

Between different channels – motivated by understanding of the meaning of systematic uncertainties and identifying the common ones BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling); BABAR radiative corrections; 4π2π⁰-ηω CMD2 ηγ – π⁰γ; CMD2/3 luminosity; SND luminosity; FSR; hadronic VP (old experiments)

- Minimize biases
- Optimize g-2 integral uncertainty

(without overestimating the precision with which the uncertainties of the measurements are known)

Combination procedure implemented in HVPTools software

 \rightarrow Define a (fine) final binning (to be filled and used for integrals etc.)

- \rightarrow Linear/quadratic splines to interpolate between the points/bins of each experiment
 - for binned measurements: preserve integral inside each bin
 - closure test: replace nominal values of data points by Gounaris-Sakurai model and re-do the combination
 - \rightarrow (non-)negligible bias for (linear)quadratic interpolation
- → Fluctuate data points taking into account correlations & re-do the splines for each (pseudo-)experiment
 - each uncertainty fluctuated coherently for all the points/bins that it impacts
 - eigenvector decomposition for (statistical) covariance matrices
- \rightarrow In each fine bin: minimize χ^2 and get average coefficients

Combination procedure implemented in HVPTools software

For each final bin:

- \rightarrow Compute an average value for each measurement and its uncertainty
- \rightarrow Compute correlation matrix between experiments
- \rightarrow Minimize χ^2 and get average coefficients (weights)
- \rightarrow Compute average between experiments and its uncertainty

Evaluation of integrals and propagation of uncertainties:

- → Integral(s) evaluated for nominal result and for each set of toy pseudo-experiments; uncertainty of integrals from RMS of results for all toys
- → The pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections → Integral evaluation
- \rightarrow Uncertainties also propagated through $\pm 1\sigma$ shifts of each uncertainty:
 - allows to account for correlations between different channels (for integrals and spectra)
- \rightarrow Checked consistency between the different approaches

Combination procedure: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

Note: average weights must account for bin sizes / point spacing of measurements

(do not over-estimate the weight of experiments with large bins)

 \rightarrow weights in fine bins evaluated using a common (large) binning for measurements + interpolation \rightarrow compare the precisions on the same footing

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

Procedure and software (HVPTools) for combining cross section data with arbitrary point spacing/binning

B. Malaescu (CNRS)

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

-Other experiments not yet precise enough to discriminate (see however recent update from SND)

Combination procedure: compatibility between measurements

For each final bin:

 $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, *taking into account the correlations*

 \rightarrow Scale uncertainties in bins where χ^2 /ndof > 1 (PDG): *locally* conservative

 \rightarrow Observed tension between BABAR and KLOE measurements

 → Tension between measurements: indication of underestimated uncertainties Motivates conservative uncertainty treatment in combination fit (evaluation of weights)

→ Included extra (dominant) uncertainty: difference between integrals without either BABAR or KLOE measurement to account for systematic deviations (2nd motivation for using DHMZ result as "baseline" in White Paper)

Improving a₁₁ through fits for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

 \rightarrow Fit bare form-factor using 6 param. model based on *analyticity* and *unitarity*

$$\begin{split} |F_{\pi}^{0}|^{2} &= |R(s) \times J(s)|^{2} \\ R(s) &= 1 + \alpha_{V}s + \frac{\kappa s}{m_{\omega}^{2} - s - im_{\omega}\Gamma_{\omega}} \quad (1611.09359, \text{C. Hanhart et al.}) \\ J(s) &= e^{1 - \frac{\delta_{1}(s_{0})}{\pi}} \left(1 - \frac{s}{s_{0}}\right)^{\left[1 - \frac{\delta_{1}(s_{0})}{\pi}\right]\frac{s_{0}}{s}} \left(1 - \frac{s}{s_{0}}\right)^{-1} e^{\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{s_{0}} dt \frac{\delta_{1}(t)}{t(t-s)}} \\ \text{Omnès integral} \end{split}$$

(hep-ph/0402285, F.J. Yndurain et al.)

$$\cot \delta_1(s) = \frac{\sqrt{s}}{2k^3} (m_\rho^2 - s) \left[\frac{2m_\pi^3}{m_\rho^2 \sqrt{s}} + B_0 + B_1 \omega(s) \right]$$

$$k = \frac{\sqrt{s - 4m_\pi^2}}{2}$$

$$\omega(s) = \frac{\sqrt{s} - \sqrt{s_0 - s}}{\sqrt{s} + \sqrt{s_0 - s}} \qquad \sqrt{s_0} = 1.05 \text{ GeV}$$
(1102.2183, F.J. Yndurain et al.)

→ Conservative χ^2 (diagonal matrix) & local rescaling of input uncertainties → Full propagation of uncertainties & correlations using pseudo-experiments DHMZ - 1908.00921

Fit performed up to 1 GeV: comparison with data

Fit performed up to 1 GeV, Result used up to 0.6 GeV

√s range	a _µ ^{had} [10 ⁻¹⁰]	a _µ had [10 ⁻¹⁰]
[GeV]	Fit	Data Integration
0.3 - 0.6	$109.80 \pm 0.37_{exp} \pm 0.36_{para^*}$	$109.6 \pm 1.0_{exp}$

- \rightarrow Use fit only below 0.6 GeV for a_u integral:
 - where data is less precise and scarce
 - less impacted by potential uncertainties of inelastic effects

 $\rightarrow \text{The difference } 0.2 \pm 0.9$ (72% correlation accounted for)

 \rightarrow The fit improves the precision by a factor ${\sim}2$

^(*) Parameter uncertainty corresponds to variations with/without the B_1 term in the phase shift formula and $\sqrt{s_0}$ varied from 1.05 GeV to 1.3 GeV (absolute values summed linearly), *checked to be statistically significant*

Combined results: Fit [<0.6GeV] + Data[0.6-1.8GeV]

 \rightarrow Full uncertainty propagation using the same pseudo-experiments as for the spline-based combination: 62% correlation among the two contributions

- → The difference "All but BABAR" and "All but KLOE" = 5.6 to be compared with 1.9 uncertainty with "All data"
 - The local error inflation is not sufficient to amplify the uncertainty
 - Global tension (normalisation/shape) not previously accounted for
 - Potential underestimated uncertainty in at least one of the measurements?
 - Other measurements not precise enough to discriminate BABAR / KLOE
- \rightarrow Given the fact we do not know which dataset is problematic, we decide to:
 - Add half of the discrepancy (2.8) as an additional uncertainty
 - (correcting the local PDG inflation to avoid double counting)
 - Take ("All but BABAR" + "All but KLOE") / 2 as central value

Uncertainties on uncertainties and on correlations

Topic of general interest, in other fields too (see backup) <u>1908.00921(DHMZ), 2006.04822(WP Theory Initiative)</u>

Two different approaches for combining (e⁺e⁻) data

DHMZ:

- $\rightarrow \chi^2$ computed locally (in each fine bin), taking into account correlations between measurements (see previous slides)
- \rightarrow used to determine the weights on the measurements in the combination and their level of agreement
- \rightarrow uncertainties and correlations propagated using pseudo-experiments or $\pm 1\sigma$ shifts of each uncertainty component

KNT:

 $\rightarrow \chi^2$ computed globally (for full mass range)

$$\chi_I^2 = \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{N_{\text{tot}}} \left(R_i^{(m)} - \mathcal{R}_m^{i,I} \right) \mathbf{C}_I^{-1} \left(i^{(m)}, j^{(n)} \right) \left(R_j^{(n)} - \mathcal{R}_n^{j,I} \right)$$
KNT (1802.02995)

$$\chi^{2} = \sum_{i=1}^{195} \sum_{j=1}^{195} \left(\sigma^{0}_{\pi\pi(\gamma)}(i) - \bar{\sigma}^{0}_{\pi\pi(\gamma)}(m) \right) \mathbf{C}^{-1}(i^{(m)}, j^{(n)}) \left(\sigma^{0}_{\pi\pi(\gamma)}(j) - \bar{\sigma}^{0}_{\pi\pi(\gamma)}(n) \right)$$
 KLOE-KMT (1711.03085)

 \rightarrow relies on description of correlations on long ranges

 \rightarrow One of the main sources of differences for the uncertainty on a_{μ}

Evaluation of uncertainties and correlations (e⁺e⁻)

	$\sigma_{\pi\pi\gamma}$	$\sigma^0_{\pi\pi}$	F_{π}	$\Delta^{\pi\pi}a_{\mu}$	
Reconstruction Filter	negligible		e	Π	
Background subtraction		Tab. 1		0.3%	Ĩ
Trackmass		(0.2%		Ĩ
Pion cluster ID		neg	gligibl	e	Ĩ.
Tracking efficiency		(0.3%		
Trigger efficiency		(0.1%		Ĩ
Acceptance		Tab. 2	-	0.2%	Ĩ
Unfolding		Tab. 3		negligible	Ĩ
L3 filter		(0.1%		Ĩ
\sqrt{s} dependence of H		Tab	. 4	0.2%	Ĩ
Luminosity		. (0.3%		Ĩ
Experimental systematics				0.6%	Ī
FSR resummation	-	[0.3	3%	Π
Radiator function H	-		0.5	5%	Ĩ
Vacuum Polarization	-	0.1%	-	0.1%	1
Theory systematics				0.6%	Ī

→ Systematics *evaluated* in ~wide mass ranges with sharp transitions

	$M_{\pi\pi}^2$ range (GeV ²)	Systematic error (%)
	$0.35 \le M_{\pi\pi}^2 < 0.39$	0.6
	$0.39 \le M_{\pi\pi}^2 < 0.43$	0.5
-	$0.43 \le M_{\pi\pi}^2 < 0.45$	0.4
	$0.45 \le M_{\pi\pi}^2 < 0.49$	0.3
	$0.49 \le M_{\pi\pi}^2 < 0.51$	0.2
	$0.51 \le M_{\pi\pi}^2 < 0.64$	0.1
	$0.64 \le M_{\pi\pi}^2 < 0.95$	2

KLOE 08 (0809.3950)

KLOE 10 (1006.5313)

	$\sigma_{\pi\pi\gamma}$	$\sigma_{\pi\pi}^{\mathrm{bare}}$	$ F_{\pi} ^2$	$\Delta a_{\mu}^{\pi\pi}$
	th	reshold ; ρ -pe	ak	$(0.1 - 0.85 \text{ GeV}^2)$
Background Filter		0.5%; 0.1%	5	negligible
Background subtraction		3.4%; $0.1%$,	0.5%
$f_0 + \rho \pi$ bkg.		6.5% ; negl		0.4%
$\Omega { m cut}$		1.4%; negl		0.2%
Trackmass cut		3.0%; $0.2%$, >	0.5%
π -e PID	1	0.3% ; negl		negligible
Trigger		0.3%; 0.2%	,	0.2%
Acceptance	8	1.9%; $0.3%$, >	0.5%
Unfolding	negl. ; 2.0%		negligible	
Tracking	0.3%			
Software Trigger (L3)			0.1%	
Luminosity			0.3%	
Experimental syst.				1.0%
FSR treatment	-	7% ; n	egl.	0.8%
Radiator function H	-		0.	5%
Vacuum Polarization	-	Ref. 34	-	0.1%
Theory syst.				0.9%

Sources	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2	1.2-1.4	1.4-2.0	2.0-3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.7	0.6	0.4	0.4
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
π -ID	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi \pi / \mu \mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4

BABAR (1205.2228)

→ Systematics *evaluated* in ~wide mass ranges with sharp transitions (statistics limitations when going to narrow ranges)

Combining the 3 KLOE measurements

Local combination (DHMZ)

Information propagated between mass regions, through shifts of systematics - relying on correlations, amplitudes and shapes of systematics (KLOE-KT)

Combining the 3 KLOE measurements - $a_{\mu}^{\pi\pi}$ contribution

KLOE08 a_{μ} [0.6 ; 0.9] : 368.3 ± 3.2 [10⁻¹⁰] KLOE10 a_{μ} [0.6 ; 0.9] : 365.6 ± 3.3 KLOE12 a_{μ} [0.6 ; 0.9] : 366.8 ± 2.5 → Correlation matrix:

08	10	12

08	1	0.70	0.35
10	0.70	1	0.19
12	0.35	0.19	1

 \rightarrow Amount of independent information provided by each measurement

→ KLOE-08-10-12(DHMZ) - $a_{\mu}[0.6; 0.9]$: 366.5 ± 2.8 (Without χ^2 rescaling: ± 2.2) → Conservative treatment of uncertainties and correlations (*not perfectly known*) in weight determination

 \rightarrow KLOE-08-10-12(KLOE-KT) - $a_{\mu}[0.6; 0.9]$ GeV : 366.9 ± 2.2 (Includes χ^2 rescaling)

 \rightarrow Assuming perfect knowledge of the correlations to minimize average uncertainty

Uncertainties on uncertainties and correlations

- Numerous indications of uncertainties on uncertainties and on correlations, with a direct impact on combination fits
- \rightarrow Shapes of systematic uncertainties *evaluated* in ~wide mass ranges with sharp transitions
- \rightarrow One standard deviation is statistically not well defined for systematic uncertainties
- → Systematic uncertainties like acceptance, tracking efficiency, background etc. not necessarily fully correlated between low and high mass
- → Are all systematic uncertainty components fully independent between each-other? (e.g. tracking and trigger)
- \rightarrow Yield uncertainties on uncertainties and on correlations
- → Tensions between measurements (BABAR/KLOE; 3 KLOE results etc.): experimental indications of underestimated uncertainties

 \rightarrow Statistical methods (χ^2 with correlations, likelihood fits, ratios of measured quantities etc.) should not over-exploit the information on the amplitude and correlations of uncertainties

Combination of measurements for various channels and total HVP contribution

Combination for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ channel

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-, e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

 \rightarrow Essentially normalization differences w.r.t. τ data: *cross-checks very desirable*

Combination for the $e^+e^- \rightarrow K^+K^-$ channel

B. Malaescu (CNRS)

Dispersive HVP for a & α_{OED} , implications for the EW fit

Combination for the $e^+e^- \rightarrow KK\pi$ and $KK2\pi$ channels

DM2

• BABAR

Combined

e⁺e⁻→K⁰_SK⁺⁻π⁻⁻

• DM1

2.2

2.2

BABAR

Combined

2.4

√s [GeV]

2.4

√s [GeV]

BABAR

Combined

2.3

2.4 2.5

√s [GeV]

2

B. Malaescu (CNRS)

Contributions from the 1.8 - 3.7 GeV region

→ Contribution evaluated from pQCD (4 loops) + $O(\alpha_s^2)$ quark mass corrections → Uncertainties: α_s , truncation of perturbative series, CIPT/FOPT, m_a

- \rightarrow 1.8-2.0 GeV: 7.65±0.31(data excl.); 8.30±0.09(QCD); added syst. $0.65 [10^{-10}]$
- \rightarrow 2.0-3.7 GeV: 25.82±0.61(data); 25.15 ± 0.19(QCD); agreement within 1 σ

Contributions from the charm resonance region

Situation in arXiv:1908.00921 (EPJC)

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$	$\Delta lpha_{ m had}(m_Z^2) \ [10^{-4}]$	
$\pi^0\gamma$	$4.41 \pm 0.06 \pm 0.04 \pm 0.07$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$	
$\eta\gamma$	$0.65 \pm 0.02 \pm 0.01 \pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$	\rightarrow 32 exclusive channels are
$\pi^+\pi^-$	$507.85 \pm 0.83 \pm 3.23 \pm 0.55$	$34.50 \pm 0.06 \pm 0.20 \pm 0.04$	· 52 exerusive enamers are
$\pi^+\pi^-\pi^0$	$46.21 \pm 0.40 \pm 1.10 \pm 0.86$	$4.60\pm 0.04\pm 0.11\pm 0.08$	integrated up to 1.8 CoV
$2\pi^{+}2\pi^{-}$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$	integrated up to 1.6 Gev
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$4.45\pm0.02\pm0.12\pm0.07$	
$2\pi^+2\pi^-\pi^0 \ (\eta \text{ excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$0.21\pm 0.01\pm 0.02\pm 0.01$	
$\pi^+\pi^-3\pi^0$ (η excl.)	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$0.15\pm 0.01\pm 0.03\pm 0.00$	
$3\pi^+3\pi^-$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	$0.04\pm 0.00\pm 0.00\pm 0.00$	
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \text{ excl.})$	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$0.25 \pm 0.02 \pm 0.02 \pm 0.05$	
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.08\pm 0.01\pm 0.08\pm 0.00$	$0.03\pm 0.00\pm 0.03\pm 0.00$	-0.01 - 0.01(+ 0.01(0))
$\eta \pi^+ \pi^-$	$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	$0.35\pm 0.01\pm 0.01\pm 0.01$	\rightarrow Only 0.010 ± 0.010%
$\eta\omega$	$0.35 \pm 0.01 \pm 0.02 \pm 0.01$	$0.11\pm 0.00\pm 0.01\pm 0.00$	
$\eta \pi^+ \pi^- \pi^0 (\text{non-}\omega, \phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	$0.12\pm 0.01\pm 0.01\pm 0.01$	in missing (estimated)
$\eta 2\pi^+ 2\pi^-$	$0.02\pm 0.01\pm 0.00\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	
$\omega\eta\pi^0$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$	$0.02\pm 0.00\pm 0.00\pm 0.00$	channels for a
$\omega\pi^0~(\omega ightarrow\pi^0\gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	$0.20\pm 0.00\pm 0.01\pm 0.00$	
$\omega 2\pi ~(\omega ightarrow \pi^0 \gamma)$	$0.07 \pm 0.00 \pm 0.00 \pm 0.00$	$0.02\pm 0.00\pm 0.00\pm 0.00$	F
$\omega \ ({\rm non-}3\pi,\pi\gamma,\eta\gamma)$	$0.04\pm 0.00\pm 0.00\pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$	
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$	
$K_S K_L$	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$	$1.74 \pm 0.01 \pm 0.03 \pm 0.02$	
$\phi \;(\mathrm{non}\text{-}K\overline{K},3\pi,\pi\gamma,\eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	
$K\overline{K}\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$	
$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$	$0.30\pm 0.01\pm 0.02\pm 0.00$	
$K\overline{K}\omega$	$0.00\pm 0.00\pm 0.00\pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$	
$\eta\phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$	$0.11\pm 0.00\pm 0.00\pm 0.00$	
$\eta K \overline{K} \pmod{\phi}$	$0.01\pm 0.01\pm 0.01\pm 0.00$	$0.00\pm 0.00\pm 0.01\pm 0.00$	
$\omega 3\pi ~(\omega ightarrow \pi^0 \gamma)$	$0.06\pm 0.01\pm 0.01\pm 0.01$	$0.02\pm 0.00\pm 0.00\pm 0.00$	
$7\pi (3\pi^+ 3\pi^- \pi^0 + \text{estimate})$	$0.02\pm 0.00\pm 0.01\pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	
J/ψ (BW integral)	6.20 ± 0.11	7.00 ± 0.13	
$\psi(2S)$ (BW integral)	1.56 ± 0.05	2.48 ± 0.08	
$\overline{R \text{ data}[3.7-5.0] \text{ GeV}}$	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$	
$R_{\rm QCD} [1.8 - 3.7 {\rm GeV}]_{uds}$	$33.45 \pm 0.28 \pm 0.65_{\rm dual}$	$24.27 \pm 0.18 \pm 0.28_{\rm dual}$	
$R_{\rm QCD} \ [5.0 - 9.3 \ {\rm GeV}]_{udsc}$	6.86 ± 0.04	34.89 ± 0.18	
$R_{\rm QCD} [9.3 - 12.0 \text{ GeV}]_{udscb}$	1.20 ± 0.01	15.53 ± 0.04	
$R_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udscb}$	1.64 ± 0.00	77.94 ± 0.13	
$R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.05	
$R_{\rm QCD} [> 40.0 \text{ GeV}]_t$	0.00 ± 0.00	-0.72 ± 0.01	
Sum	$694.0 \pm 1.0 \pm 3.5 \pm 1.6 \pm 0.1_{1/2} \pm 0.7_{\rm OCD}$	$275.29 \pm 0.15 \pm 0.72 \pm 0.23 \pm 0.15_{10} \pm 0.55_{OCD}$	

B. Malaescu (CNRS)
$R_{e^+e^-} \rightarrow Hadrons$

 \rightarrow Performed non-trivial check:

 a_{μ} from sum of individual channels and from Ree integral < 1.8 GeV

Theory initiative: prepare the Standard Model prediction for (g-2)

UPCOMING WORKSHOPS

Fourth Plenary Workshop of the Muon g-2 Theory Initiative https://www-conf.kek.jp/muong-2theory/ A virtual workshop hosted by KEK (Tsukuba, Japan), to be held from 28 June - 02 July 2021.

PAST WORKSHOPS

The hadronic vacuum polarization from lattice QCD at high precision https://indico.cern.ch/event/956699/ A virtual topical workshop of the Muon g-2 Theory Initiative, 16-20 Nov 2020.

Hadronic contributions to (g-2) μ https://indico.fnal.gov/event/21626/ held at the Institute for Nuclear Theory, University of Washington, Seattle, WA, 9-13 September 2019

Second workshop of the Muon g-2 Theory Initiative https://wwwth.kph.uni-mainz.de/g-2/ held at the Helmholtz Institute Mainz, University of Mainz, Mainz, Germany, 18-22 June 2018

Muon g-2 Theory Initiative Hadronic Light-by-Light working group workshop https://indico.phys.uconn.edu/event/1/ held at the University of Connecticut, Storrs, CT, 12-14 March 2018

Workshop on Hadronic Vacuum Polarization Contributions to Muon g-2 https://www-conf.kek.jp/muonHVPws/ held at KEK, Tsukuba, Japan, 12-14 Feb 2018

First workshop of the Muon g-2 Theory Initiative https://indico.fnal.gov/event/13795/ held in St. Charles, IL, USA, 3-6 June 2017 Put together in a *coherent & conservative* way the results of various groups, *before the Fermilab result*

https://muon-gm2-theory.illinois.edu

White Paper: arXiv:2006.04822 (Phys. Rept.)

B. Malaescu (CNRS)

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

Theory initiative white paper: executive summary

Contribution	Section	Equation	Value $\times 10^{11}$	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2–7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, <i>udsc</i>)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18–30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, <i>uds</i>)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18–30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
HVP $(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18–32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

 \rightarrow Dominant uncertainty: HVP LO \rightarrow Based on merging of model-independent methods

- \rightarrow HLbL also has an important uncertainty
- → Lattice results become more and more interesting (*see next talk*)
- \rightarrow A tension between the BNL measurement and SM prediction: $\sim 3.7~\sigma$

Status of a_µ

Important to account for BABAR-KLOE diff. & inter-channel correlations

 \rightarrow Caution about significance:

- statistics-dominated measurement
- prediction uncertainty limited by non-Gaussian systematic effects

 \rightarrow Nevertheless, large discrepancy between measurement and SM

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

Impact of correlations between a_{μ} and α_{OED} on the EW fit

2008.08107(BM, Matthias Schott)

See also: Crivellin et al, 2003.04886; Keshavarzi et al., 2006.12666 ;de Rafael, 2006.13880; Colangelo et al, 2010.07943

Approaches considered for treating the a_{μ} - α_{OED} correlations

Studied approaches probing different hypotheses concerning the possible source(s) of the a_{μ} tension(s) :

(0) Scaling factor applied to the HVP contribution from some energy range of the hadronic spectrum

 \rightarrow Approaches taking into account (*for the first time*) the full correlations between the uncertainties of the HVP contributions to a_{μ} and α_{QED} , based on input from DHMZ 19 (arXiv:1908.00921): correlations between points/bins of a measurement in a given channel, between different measurements in the same channel, between different channels; full treatment of the BABAR-KLOE tension in the $\pi^+\pi^-$ channel

Computation (Energy range)	$a_{\mu}^{\text{HVP, LO}} [10^{-10}]$	$\Delta \alpha_{\rm had} (M_Z^2) \ [10^{-4}]$	ρ
Phenomenology (Full HVP)	694.0 ± 4.0	275.3 ± 1.0	44%
Phenomenology $([Th.; 1.8 GeV])$	635.5 ± 3.9	55.4 ± 0.4	86%
Phenomenology $([Th.; 1 \text{ GeV}])$	539.8 ± 3.8	36.3 ± 0.3	99.5%
Lattice (Full HVP) $BMW 20 (v1)$	712.4 ± 4.5	_	_

(1) Cov. matrix of a_{μ} and α_{QED} (Pheno) described by a nuisance parameter (NP₁) impacting both quantities (used to shift a_{μ} to some "target" value - coherent shift applied to α_{QED}) and another one (NP₂) impacting only α_{QED} (used in the EW fit) Note: "target" values chosen in order to reach agreement with the BMW 20 prediction / Experimental a_{μ} (±1 σ)

Uncertainty components	$a_{\mu}^{ m HVP,\ LO}$	$\Delta lpha_{ m had}(M_Z^2)$
NP_1	$\sigma(a_{\mu}^{ m HVP, \ LO})$	$\sigma(\varDelta lpha_{ m had}(M_Z^2)) \cdot ho$
NP_2	0	$\sigma(\Delta \alpha_{\rm had}(M_Z^2)) \cdot \sqrt{1-\rho^2}$

(2) Include the HVP contribution to a_{μ} as extra parameter in the EW fit, constrained by the Pheno & BMW 20 values Note: Also accounted for the coherent impact of α_{s} on the HVP contribution and on the EW fit

B. Malaescu (CNRS)

Results: comparing the Phenomenology & BMW 20 values

$a_{\mu}^{\text{HVP, LO}}$ shift	Appro	pach 0	0 Approach 1		
(Energy range)	Scaling factor	$\Delta' \alpha_{\rm had}(M_Z^2)$	Shift NP_1	$\sigma'\left(\Delta\alpha_{\rm had}(M_Z^2)\right)$	$\Delta' \alpha_{\rm had}(M_Z^2)$
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.027	0.02826	4.6	$9.0 \cdot 10^{-5}$	0.02774
(Full HVP)					
$(a_{\mu({ m Lattice})}^{ m HVP, \ LO} - 1\sigma) - a_{\mu({ m Pheno})}^{ m HVP, \ LO}$	1.020	0.02808	3.5	$9.0 \cdot 10^{-5}$	0.02769
(Full HVP)					
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.029	0.02769	4.7	$9.5 \cdot 10^{-5}$	0.02768
([Th.; 1.8 GeV])					
$(a_{\mu(\text{Lattice})}^{\text{HVP, LO}} - 1\sigma) - a_{\mu(\text{Pheno})}^{\text{HVP, LO}}$	1.022	0.02765	3.5	$9.5 \cdot 10^{-5}$	0.02764
([Th.; 1.8 GeV])					
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.034	0.02765	-	-	-
([Th.; 1GeV])					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.026	0.02762	-	-	-
([Th.; 1 GeV])					

\rightarrow Large scaling factors (w.r.t. exp. uncertainties) & significant shifts of NP₁

$a_{\mu}^{\mathrm{HVP, \ LO}}$ shift	Nominal		Approach 0		Approach 1		Approach 2	
(Energy range)	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf	$\Delta' \alpha_{\rm had}(M)$	χ^2 χ^2/ndf
	0.02753	18.6/16	-	-	-	-	0.02753	28.1/17
		(p=0.29)						(p=0.04)
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	1-1	0.02826	27.6/16	0.02774	20.3/16	-	χ ² (BMW20-Pheno)
(Full HVP)				(p=0.04)		(p=0.21)		
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02769	19.9/16	0.02768	19.8/16	-	-
([Th.; 1.8 GeV])				(p=0.22)		(p=0.23)		
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02765	19.6/16	-	-	-	-
([Th.; 1.0 GeV])				(p=0.24)				

\rightarrow Addressing the BMW 20 - Pheno difference for a_{μ} has little impact on the EW fit, except for the unrealistic scenario rescaling the full HVP contribution

Note: Similar conclusions for the comparison with the Experimental a₁₁ value (see backup)

B. Malaescu (CNRS)

Dispersive HVP for $a_{\mu} & \alpha_{OED}$, implications for the EW fit

Conclusion

We have an interesting, long standing, multifaceted problem to solve...

Backup

Lepton Magnetic Anomaly: from Dirac to QED

$$\vec{\mu} = g \frac{e}{2m} \vec{s} \qquad a = \frac{g-2}{2}$$

Dirac (1928) $g_e=2 a_e=0$

anomaly discovered: Kusch-Foley (1948) $a_e^{=} (1.19 \pm 0.05) 10^{-3}$

and explained by O(α) QED contribution: Schwinger (1948) $a_e = \alpha/2\pi = 1.16 \ 10^{-3}$

```
first triumph of QED
```


More Quantum Fluctuations

$$a = a^{\text{QED}} + a^{\text{had}} + a^{\text{weak}} + ? a^{\text{new physics}} ?$$
typical contributions:
QED up to O(α^5) (Kinoshita et al.)
Hadrons vacuum polarization
Iight-by-light (dispersive & lattice QCD)
 π^0, η, η'
 q_1
 q_2
new physics at high mass scale
 π^0, η, η'
 q_1
 q_2
 q_2
 q_2
 q_2
 q_2
 q_2
 q_3
 q_2
 q_4
 q_5
 q_4
 q_5
 q_4
 q_5
 q_4
 q_5
 q_5
 q_4
 q_5
 $q_$

B. Malaescu (CNRS)

Treatment of the KLOE correlation matrices

 \rightarrow Statistical and systematic correlation matrices among the 3 measurements

Treatment of the KLOE data – eigenvector decomposition

→ Problem of negative eigenvalues for previous systematic covariance matrix solved (informed KLOE collaboration about the problem in summer 2016)

Treatment of the KLOE data – eigenvector decomposition

 \rightarrow Each normalized eigenvector ($\sigma_i^* V_i$) treated as an uncertainty fully correlated between the bins \rightarrow All these uncertainties are independent between each-other

$$C = \sum_{i=1}^{N_{bins}} \sigma_i^2 \cdot C\left(\boldsymbol{V}_i\right)$$

 \rightarrow Checked exact matching with the original matrices + with all a_{μ} integrals and uncertainties published by KLOE

Treatment of the KLOE data – eigenvector decomposition

- → Eigenvectors carry the general features of the correlations:
 - long-range for systematics
 - ~short-range for statistical uncertainties + correlations between KLOE 08 & 12

Local comparison of the 3 KLOE measurements

→ Local χ^2 /ndof test of the local compatibility between KLOE 08 & 10 & 12, taking into account the correlations: some tensions observed

→ Does not probe general trends of the difference between the measurements (e.g. slopes in the ratio)

Ratios between measurements

- \rightarrow Compute ratio between pairs of KLOE measurements
- → Full propagation of uncertainties and correlations using pseudo-experiments (agreement with analytical linear uncertainty propagation)

 \rightarrow Good agreement between KLOE 10 and KLOE 12

Ratios between measurements

Direct comparison of the 3 KLOE measurements

 \rightarrow Quantitative comparison between the ratios and unity, taking into account correlations

KLOE 10 / KLOE 08

 χ^2 [0.35;0.85] GeV² : 79.0 / 50(DOF) p-value= 0.0056

 χ^2 [0.35;0.58] GeV² : 46.2 / 23(DOF) p-value= 0.0028

 χ^2 [0.58;0.85] GeV² : 29.7 / 27(DOF) p-value= 0.33

 χ^2 [0.64;0.85] GeV² : 20.7 / 21(DOF) p-value= 0.47

KLOE 12 / KLOE 08

 χ^2 [0.35;0.95] GeV² : 73.7 / 60(DOF) p-value= 0.11

 χ^2 [0.35;0.58] GeV² : 21.8 / 23(DOF) p-value= 0.53

 χ^2 [0.35;0.64] GeV² : 27.5 / 29(DOF) p-value= 0.55

 χ^2 [0.64;0.95] GeV² : 39.4 / 31(DOF) p-value= 0.14

Quantitative comparisons of the KLOE measurements

- \rightarrow Quantitative comparison between the ratios and unity, taking into account correlations
- \rightarrow Fitting the ratio taking into account correlations
- \rightarrow Full propagation of uncertainties and correlations 3 methods yielding consistent results: ±1 σ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

Comparison with Unity: χ^2 [0.35;0.85] GeV² : 79.0 / 50(DOF) p-value= 0.0056 χ^2 [0.35;0.58] GeV² : 46.2 / 23(DOF) p-value= 0.0028 χ^2 [p0 + p1 \sqrt{s}]: 36.1 / 21(DOF) p-value= 0.02

p0 : 0.745 ± 0.085 p1 : 0.341 ± 0.117

- → Significant shift & slope (~2.5-3σ) at low √s, no significant shift at high √s Similar shift & slope for KLOE 12 / KLOE 08 (see below)
- \rightarrow Should motivate conservative treatment of uncertainties and correlations in combination

B. Malaescu (CNRS)

Direct comparison of the 3 KLOE measurements

KLOE12 / KLOE08

1.08

1.06

1.04

1.02

0.98

0.96

0.94

0.92

- \rightarrow Fitting the ratio taking into account correlations
- \rightarrow Full propagation of uncertainties and correlations 3 methods yielding consistent results: ±1 σ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

 $p1:\ 0.159\pm 0.081$

p-value= 0.14 p0 : 1.009 ± 0.009

χ² [p0]: 38.4 / 30(DOF)

 \rightarrow Significant shift and slope (~2 σ) at low \sqrt{s} , no significant shift at high \sqrt{s}

Total uncertainty

Statistical component

0.95 1 √s [GeV]

Direct comparison of the 3 KLOE measurements

→ Significant shift and slope (~2.5-3 σ) at low \sqrt{s} , no significant shift at high \sqrt{s}

Treatment of the combined KLOE data

B. Malaescu (CNRS)

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

Combining the 3 KLOE measurements

$a_{\mu}^{\pi\pi}$ contribution [0.28; 1.8] GeV – spline-based (2018)

 \rightarrow Updated result:

 $506.70 \pm 2.32 (\pm 1.01 \text{ (stat.)} \pm 2.08 \text{ (syst.)}) [10^{-10}]$

(after uncertainty enhancement by $\sim 14\%$ caused by the tension between inputs, taken into account through a local rescaling)

Total uncertainty: $5.9 (2003) \rightarrow 2.8 (2011) \rightarrow 2.6 (2017) \rightarrow 2.3 (2018)$

$a_{\mu}^{\pi\pi}$ contribution [0.28; 1.8] GeV – spline-based (2018)

 \rightarrow with KLOE-08-10-12 (KLOE-KT) used as input: 506.55 ± 2.38 [10⁻¹⁰]

(after uncertainty enhancement by 18% caused by the tension between inputs, taken into account through a local rescaling)

 \rightarrow Compensation between uncertainty reduction for KLOE-08-10-12 (KLOE-KT), inducing a change of weights in DHMZ combination, and tension enhancement

Fit parameters, uncertainties and correlations $e^+e^- \rightarrow \pi^+\pi^-$

	$lpha_V$	$\kappa[10^{-4}]$	B_0	B_1	$m_{\rho} \; [\text{MeV}]$	$m_{\omega} [{ m MeV}]$
$\overline{lpha_V}$	0.133 ± 0.020	0.52	-0.45	-0.97	0.90	-0.25
$\kappa[10^{-4}]$		21.6 ± 0.5	-0.33	-0.57	0.64	-0.08
B_0			1.040 ± 0.003	0.40	-0.40	0.29
B_1				-0.13 ± 0.11	-0.96	0.20
$m_{\rho} [\text{MeV}]$					774.5 ± 0.8	-0.17
$m_{\omega} [{ m MeV}]$						782.0 ± 0.1

 $\rightarrow \kappa$ corresponds to a Br ($\omega \rightarrow \pi^+\pi^-$) of (2.09 ± 0.09) $\cdot 10^{-2}$, in agreement with the result extracted from the fit of arXiv:1810.00007, (1.95 ± 0.08) $\cdot 10^{-2}$. Both values disagree with the PDG average (1.51 ± 0.12) $\cdot 10^{-2}$, dominated by the result of arXiv:1611.09359 which uses fits to essentially the same data.

→ The fitted ω mass is found to be lower than the PDG average obtained from 3π decays by $(0.65 \pm 0.12 \pm 0.12_{\text{PDG}})$ MeV, in agreement with previous fits of the $\rho - \omega$ interference in the 2π spectrum (see e.g. arXiv:1205.2228 and arXiv:1810.00007).

Comparison with IB-corrected τ data

$$v_{1,X^{-}}(s) = \frac{m_{\tau}^2}{6|V_{ud}|^2} \frac{\mathcal{B}_{X^{-}}}{\mathcal{B}_e} \frac{1}{N_X} \frac{dN_X}{ds} \times \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left(1 + \frac{2s}{m_{\tau}^2}\right)^{-1} \frac{R_{\rm IB}(s)}{S_{\rm EW}}$$

 \rightarrow Comparing corrections used by Davier et al. with the ones by F. Jegerlehner

B. Malaescu (CNRS)

 $R_{\rm IB}(s) = \frac{\mathrm{FSR}(s)}{G_{\rm EM}(s)} \frac{\beta_0^3(s)}{\beta_-^3(s)} \left| \frac{F_0(s)}{F_-(s)} \right|$

Comparison with IB-corrected τ data

- \rightarrow for a_{μ} , $e^+e^- \tau$ difference of 2.2 σ (Davier et al.)
- → the ρ - γ mixing correction proposed in arXiv:1101.2872 (FJ) seems to over-estimate the e⁺e⁻ - τ difference

χ^2 definitions and properties

$$\chi^{2}(\mathbf{d};\mathbf{t}) = \sum_{i,j} \left(d_{i} - t_{i} \right) \cdot \left[C^{-1}(\mathbf{t}) \right]_{ij} \cdot \left(d_{j} - t_{j} \right) \qquad C_{ij} = C_{ij}^{\text{stat}} + \sum_{k} s_{i}^{k} \cdot s_{j}^{k}$$

$$\chi^{2}(\mathbf{d};\mathbf{t}) = \min_{\beta_{a}} \left\{ \sum_{i,j} \left[d_{i} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{i} \right) t_{i} \right] \cdot \left[C_{\mathrm{su}}^{-1}(\mathbf{t}) \right]_{ij} \right. \\ \left. \cdot \left[d_{j} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{j} \right) t_{j} \right] + \sum_{a} \beta_{a}^{2} \right\},$$

- \rightarrow Two χ^2 definitions, with systematic uncertainties included in covariance matrix or treated as fitted "nuisance parameters"
- → Equivalent for symmetric Gaussian uncertainties (1312.3524 ATLAS)
- → Both approaches assume the knowledge of the amplitude, shape (phase-space dependence) and correlations of systematic uncertainties

Example: published uncertainties on correlations

1406.0076 – ATLAS jet energy scale uncertainties

Nominal correlation scenario

Weaker - stronger correlation scenarios

correlation

0.3

0.2

-0.1

0

-0.1

-0.2

-0.3

-0.4

10³ 2×10³

 p_{τ}^{jet} [GeV]

Scaling factors and NP shifts

$a_{\mu}^{\text{HVP, LO}}$ shift	Appro	pach 0		Approach 1	
(Energy range)	Scaling factor	$\Delta' \alpha_{\rm had}(M_Z^2)$	Shift NP_1	$\sigma'\left(\Delta\alpha_{\rm had}(M_Z^2)\right)$	$\Delta' \alpha_{\rm had}(M_Z^2)$
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.027	0.02826	4.6	$9.0 \cdot 10^{-5}$	0.02774
(Full HVP)					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.020	0.02808	3.5	$9.0\cdot10^{-5}$	0.02769
(Full HVP)					
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.029	0.02769	4.7	$9.5 \cdot 10^{-5}$	0.02768
([Th.; 1.8 GeV])					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.022	0.02765	3.5	$9.5 \cdot 10^{-5}$	0.02764
([Th.; 1.8 GeV])					
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.034	0.02765	-	-	-
([Th.; 1 GeV])					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.026	0.02762	-	-	-
([Th.; 1 GeV])					
$a_{\mu}^{ m Exp} - a_{\mu}^{ m SM~(Pheno)}$	1.037	0.02856	6.6	$9.0 \cdot 10^{-5}$	0.02782
(Full HVP)					
$(a_{\mu}^{ m Exp}-1\sigma)-a_{\mu}^{ m SM~(Pheno)}$	1.028	0.02831	5.0	$9.0 \cdot 10^{-5}$	0.02775
(Full HVP)					
$a_{\mu}^{ m Exp}-a_{\mu}^{ m SM~(Pheno)}$	1.041	0.02776	6.6	$9.5 \cdot 10^{-5}$	0.02774
([Th.; 1.8 GeV])					
$(a_{\mu}^{ m Exp}-1\sigma)-a_{\mu}^{ m SM~(Pheno)}$	1.031	0.02770	5.0	$9.5 \cdot 10^{-5}$	0.02769
([Th.; 1.8 GeV])					
$a_{\mu}^{ m Exp}-a_{\mu}^{ m SM~(Pheno)}$	1.048	0.02771	-	-	-
([Th.; 1 GeV])					
$(a_{\mu}^{ m Exp}-1\sigma)-a_{\mu}^{ m SM~(Pheno)}$	1.036	0.02766	-	-	-
([Th.; 1 GeV])					

 \rightarrow Large scaling factors (w.r.t. uncertainties) & significant shifts of NP₁

B. Malaescu (CNRS)

EW fit inputs and χ^2 results

LEP/LHC/Teva	atron				
M_Z [GeV]	91.188 ± 0.002	R_c^0	0.1721 ± 0.003	M_H [GeV]	125.09 ± 0.15
$\sigma_{ m had}^0 [{ m nb}]$	41.54 ± 0.037	R_b^0	0.21629 ± 0.00066	M_W [GeV]	80.380 ± 0.013
$\Gamma_Z [{\rm GeV}]$	2.495 ± 0.002	A_c	0.67 ± 0.027	$m_t \; [\text{GeV}]$	172.9 ± 0.5
A_l (SLD)	0.1513 ± 0.00207	A_l (LEP)	0.1465 ± 0.0033	$\sin^2 heta_{ ext{eff}}^l$	0.2314 ± 0.00023
$A^l_{ m FB}$	0.0171 ± 0.001	$m_c [{ m GeV}]$	$1.27^{+0.07}_{-0.11} \text{ GeV}$	After HL-	LHC
$A^c_{ m FB}$	0.0707 ± 0.0035	$m_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07} \text{ GeV}$	M_W [GeV]	80.380 ± 0.008
$A^b_{ m FB}$	0.0992 ± 0.0016	$\alpha_s(M_Z)$	0.1198 ± 0.003	$\sin^2 heta_{ ext{eff}}^l$	0.2314 ± 0.00012
R_l^0	20.767 ± 0.025	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [10^{-5}]$	2760 ± 9	$m_t \; [\text{GeV}]$	172.9 ± 0.3

$a_{\mu}^{\mathrm{HVP, \ LO}}$ shift	Nomina	al	Approach	ı 0	Approach	1	Appro	ach 2
(Energy range)	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf						
	0.02753	18.6/16	-	-	-	-	0.02753	28.1/17
		(p=0.29)						(p=0.04)
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02826	27.6/16	0.02774	20.3/16	-	χ^2 (BMW20-Pheno): 9
(Full HVP)				(p=0.04)		(p=0.21)		
$a_{\mu \; ({ m Lattice})}^{ m HVP, \; { m LO}} - a_{\mu \; ({ m Pheno})}^{ m HVP, \; { m LO}}$	-	-	0.02769	19.9/16	0.02768	19.8/16	-	-
([Th.; 1.8 GeV])				(p=0.22)		(p=0.23)		
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02765	19.6/16	-	-	-	-
([Th.; 1.0 GeV])				(p=0.24)				
$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM} (\mathrm{Pheno})}$	-	-	0.02856	33.6/16	0.02782	21.2/16	-	-
(Full HVP)				(p=0.01)		(p=0.17)		
$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM} (\mathrm{Pheno})}$	-	-	0.02776	20.6/16	0.02774	20.4/16	-	-
([Th.; 1.8 GeV])				(p=0.19)		(p=0.20)		
$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM} (\mathrm{Pheno})}$	-	-	0.02771	20.1/16	-	-	-	-
([Th.; 1.0 GeV])				(p=0.22)				

B. Malaescu (CNRS)

EW fit results: χ^2 scans

B. Malaescu (CNRS)

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

EW fit results: parameter scans for varying $\Delta \alpha_{had} (M_Z^2)$

Dispersive HVP for $a_{\mu} \& \alpha_{OED}$, implications for the EW fit

EW fit results: indirect determination of $\Delta \alpha_{had} (M_Z^2)$

B. Malaescu (CNRS)