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Introduction
°

Dark Matter

At large scale, interactions are dominated by gravitation
(general relativity)

Observed dynamics of large structures do not fit theoretical
predictions (85% of matter are missing)

= hypothesis : there is a non-detected (dark) matter

® assumption : DM is a ideal stochastic gas
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Field description

= DM dynamics can be written in term of 2 scalar fields (Fourier
mods) :

sam — | 147 (1)

¢2(q777)

® @1 : density perturbation
® ¢, : velocity divergence
® 1) = log a (scale factor) : time (today : n =0)
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Microscopic action

Action of a stochastic fluid

S[o.x] :é/XAPgBXB+/XA(6ABan+QAB)¢B */ vagcxadsdc | (2)
q

n pr

® ¢ : “observable” field
® X : response field (conjugate of ¢)
e PO (initial) power spectrum
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Functional Renormalization group

RG : studies how varies a theory (i.e. the action) with the
scale of observation

fRG : introduction of an effective action ', that describes the
physics between UV-cutoff A and IR-cutoff k

A is large such that Tp = S
® Wetterich equation : flow of ', in function of k.
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Schwinger functional

= —ilogZ (3)
with Z = fd> eiSléX]+JadatKuxs
X

By taking the derivatives w.r.t. the sources J and K, we obtain the
expected values of the fields (¢4) and (xa) and the connected
correlation functions (padp)c, etc...
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Effective action

Legendre transform of W in respect to the sources

(6.0 = sup / Chloa) Kol ~WILKI| (9
5 n,

® [ takes into the account the initial fluctuations with all
wavelengths q

® the dynamic equation is non-linear = large fluctuations are
hard to compute

® = we restrict the integration of the fluctuation to |q|< k

P%(a) — PY(a) = P°(q)O(la|—k) (5)
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Flow equation

Scale-depending effective action :

i
[k :/ Jada + Kexs — Wi + 5 /XARk ABXB
d q

Wetterich equation :

0
Ol = 1Tr L
2 \r® _ir,

= flow of 'y in function of the IR-cutoff k
(Regulator Ry = Px — P)
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Power spectrum and self-energy

goal : study the correlations between 2 points in the universe

the power spectrum P is the Fourier transform of the
correlation function (P = W(20))

= P express the correlation between 2 points separated by q
andn—1n'
the self-energy H is the conjugate of P (H = 0:2)

we always can split H into tree-level + correction
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1-loop approximation

at largescale A\, Tp = S
we integrate the Wetterich eq. at 1-loop

0
OklTp = 1Tr <(28)kpk_ )
2 \ry) —ir

we take the second derivative w.r.t. x

we end up with explicit expression of H

anne
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Flow equation of the self-energy

® we take the second derivative w.r.t. x of the Wetterich eq.

e A A O A O
[aNe!

® no ¢y term in I = (12 =
® no ¢oyx termin [ = 122 =0

e 15 and 4" terms are equivalent

= —i0xHag = Gé‘DnggPEFFg;IG) GEHOKPR e = ‘C}’

finally, we use P = [ GRGRH and H=P° + 1
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Ansatz

® The flow eq. is hard to solve = use an ansatz for Il
® separation of g and time dependency
® weak memory effect = 1 — 0 when 1; — 1, become large

Mi(@, m1,m2) = Ax(@exp (£ (s + 1) + - (m = m2)?) | (9)

® and for G

e771 _ e772 2
Gk ab(a, 71, m2) = a1, 772)eXP( - q20£(2)) (10)

where O'i is the velocity dispersion

1 PO
o2 = / (2q) (11)
3 Jial<k @
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Ansatz

We have 1 equation with 3 unknowns : Ay, fk+ and f,~

® = we need 2 other equations
® — we take derivative w.r.t. 7 twice

Then, we evaluate at 71 = n» = 0 =today
= We obtain a set of 3 self-consistent differential equations

Next step : numerical method

14/33



Flow equation of the self-energy

[e]e]e] lo}

Discussion

Finally, we obtain the self-energy H that is :
® related to the correlations between 2 points in the universe

® separated by |q| (in Fourier space) and evaluated both at
present time

e with fluctuations with wavelength between k and A

Then, we plot H in function of k

15/33



Introduction Theoretical elements Flow equation of the self-energy Conclusion annex

[e] [e] o (o]e] 000000000000 000
[e] [e]e]e]e] }
00000

Perspectives

e solve for other values of 1 and 7/
® compare to other approaches (other ansatz, PT...)

® compare to observations
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Conclusion
0

Recap

DM is a ideal stochastic gas

Power spectrum = Fourier transform of the correlation
function

H is the conjugate of P

Ik captures the fluctuations between k and A

Wetterich eq. gives the flow of [,

Taking the derivative of the flow, we obtain the flow of H

We use an ansatz and evaluate the flow for present times
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Dynamics equation

@@my:fmummmmy+/5m—p—nwmmwwamwu)

pr
+(n — n0)ba(a, m0)

(12)

with

( 0 2 ) (13
Qan=| 3 H
Tt 1o

and the non-zero elements of v, are

(pP+a)-q

2, .
= (p+a)p-q (14)

and  7222(q,p) =
( ) 2p2q2

7121((17 P) = 7112((1, P) =
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Probability, expected value and correlation

Plo(ne)] = N / D' DyelSIoN (15)

(Ga(a,m)) = N / b4(a,n)e’
(6a(Q, M)Oh(@s 7)) = N / ba(a,M)0h(d 7)€’
Px
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Correlation functions

SWI[é. x] _ 1 s
6Ja(q:n) |y ko Z[J, K] ¢X¢>a(q,n) (¢a)(a,m)  (17)

2
5Ja(a, rf)&(q@ ) (da(@, M) n(a’s 7)) e = i8(a + q')Pas(@, 7, 7)
% Do e /
5J2(a,7)5Ko(a', 1) (@a(a; m)xe(d's7))e = —d(a +d')Gap(a, n,7) (18)
2
5Ka(q7z)<5VJVb(q/ﬂ7/) = (Xa(a,1)6(d',1))e = —0(a + ') Gz (a,1.7)
%
6Ks(a,n)K(a’, ')

Go(a,n,n') = G (—a,n',n) (19)
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6T B
5pa(a,n)dpu(a’, ')

5°r
— 5(q+q)DA 0
dpa(a,m)dxs(a’, 1) (a+4d)Dz(a,7,m) o0
5°r
=—6(q+q)DE (q.n.1
s non(a. ) ~ o+ a)Dab(a,m.n)
5°r

5)<a(q7 n)éxb(q/7 7]/) = _,(5((] + q/)Hab(q7 n, 77/)

DaAb(q’nvn/) = Dtli—;(_qvnlvn) (21)
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Power spectrum and self-energy

The power spectrum P (and the self-energy H) express the
correlations of the fluctuations between 2 points in the unvierse,
separeted by a “distance” |q| and time i’ — 1. They are related by

Pad(Q,1,0") = [ Got(d:m, 7 Y Hoc(a, 7', 0") Goy(a, 0", n™) (22)

We can split H in tree-level 4+ correction

Hi(a,n.7') = PY(@)6(n)5(n') + Ni(a,n, ') (23)
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1-loop approximation

Wetterich eq. :

ix 2) .
Olw :EakTr(mg(r‘k ) /Rk))

ST =M+ éTr(Iog(FE\Z) — iRe) — log(r® — iR/\)>
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(24)

= —iHy ag =T L
Mhas =Inas * 3 TXa0x5 TXa0x5

0 L (52Tr(|og(r<:>[¢, A= iR)) 82T (log(rP 1o -

Erg\o’i}g + Mg a8

with A= (a,q,n) and B = (b,q’,n’)

iR,\))>
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At tree-level, the only xx term in S is the fluctuation term

: 2 0
(02) i [0*(xcPepxp) _ .50
AN AB 2/p 6XA6XB IFAB ( 5)
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2)8rQ) 1 (2) 6T (2) o°ry)
WA WA ) + Tr(WR s ) (26)

&Tr (Iog(rﬁ\2>[¢,x]—ka))
Sxaxs :*ﬁ(

with

R pO A R
2 18 Py 18R —8
Wlsk)AB _ < AA _k AB'8B'B 0AB> (27)
8AB
with the linear retarded propagator gF defined by

en— ' (3 2 e~ n—n’ -2 2
g (n.n) = 5" (3 2) Olu—w) =5 ( 3 73) o =1 (28)
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2 (2) . .
1) Tr(log(r/\ [#,x] IRk)) _ L(W(zvo)r(zﬂl) W(z’o)r(2’1)>
SxA0XE =7 5\Wep " apE"VEF "l BFC
== 2g§C’PI(<) C’D'gS/DW’ADEgEE/PE E’F’gé’F'YBFC (29)

- / &R (1, 0)PL o1 (P)elb (0, 1) ace(, —p, — )
p

x gs(n,0)PY (P — @)gh (0,1 )bre(—a, 9 — P, P)

e as(a 1) = ~4 [ (1= ©(1pl-0(Ip oK)
Jp

% g (1, 0)PL g/ (P)E4 4(0. 1) Vade(Q, —p. P — Q)
% gL (n,0)PL wp(p — @)gF¢ (0,7 )ybre(—a,q — p, p)

(30)
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flow equation of the self-energy

1,6 oT
_ ! @ 9" @a, po
T(5XA(W 5o 8P)>

dxa Sxe

1 or or
“Tr(w® 2w @y, po
+ 2 r( (5}(5 5XA ak )

1 62
T Ww® w®@g, po
2 r( oxA0XB K >
— iOkHhg — iOkHY g — i0HAIL

:%T <W(2 W )8kP°)

(31)
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1{Pco G& r@) ri2) Per GE-

—iOkHyg == ADE ' ADE
2 1,2 03
Ghe 0 r/(L\EEg r/(ADE) GFe 0
2,1 12
y (FSSFG) rgch?) (PGH GgH) (0 0)
12) (03
b T \Ghe 0/ \0 aPYc

1 2,1 2,1
2 (Gé‘D r(ADlzz PEFrEch,? GEHOKPEIC

2.1 1,2

+ GoT Gl GRS GE Pl
1,2 2,1

+ GéDr,(L\DE) GéFrSSFG) GOk 'DIQIC)

(32)
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. 1 2,1 2,1 2,1 12
— i0kHas =5 (GéDr(ADE)PEFr(B#g GBLOKPYe + GaT G GETUD GE 0, PYc
1,2 2,1
+ GloT G GATEr GEIOkPR ) + (A ¢ B) (33)
1 2,2
"E(ngrngEcé%akpgc)

We replace P by [ GRGRH and H by PO +1

—iOkMap(a,n,7") :4/ G (P,0,1)Yade(q, —P. P — Q)
P
R R Y
X /gg/ Gee’(p7q7na§)fo’(q7p>77a f) (34)

x (P2 (p = )3()3() + Mere(p — 0,6,€)))
X Yoig(—a, 4 — P, p) Gy (P, 1, 0)0k Ph(—P)
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The L.h.s. gives :

0N =0, Al (mAm)+f~(m=—mz)? | Nf (1 +m)N + O f~ (1 + m2)?N
0y0iM :c')kA(Fr 2~ (m — m))e"*(nﬁuz)ﬂ”(7117712)2

+ Okt (1 + FH(m 4 m) +2F (0} — n%)) n
+ 0F (2m =) + £ m = m2)? + £~ (m —m)*)1
220, :8kA(f+ ZHAfTE (- ) + 2f7)e”(’ﬂ*"?)*f’(’ﬂ*"?)2 (35)
+ Okf T (27(+ + £ 2 1) + 26 (i — ) + AFHF () —3) + 4f’7]1)rl
+ Okf™ (2 +AF (1 +m2) + £ 2 — m2)? + AFFF (i — 12)® + 10F (1 — 12)?

+4F 2 (g — 772)4) n
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Ansatz GF?

O GF(a, m1,772) :<8mgf(7717 ) — a’op(e” — e’““'z)gf(mﬂ?z))

e — gm)2
con )

(9%’, Ge(a.m.m) :<8$fg15(7717 M) — Q2o (e — eMmTm) (36)
X <3n,-g;5(7717 m2) — q2ai(en/‘ — emim)

e _ gM2)2
X gR(m,m) + l)gf(m, m))exp( - q2oi%>

where i € {1,2}. Then, we put it in the r.h.s.
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Evaluation at n=17"=0

To simplify the equations, we solve it for n = ' = 0 (=present
time). The l.h.s. gives

N =0, A

0,0k =F O A (37)
RN =(F7 2+ 2F ) A + 2f TNOF T + 20~
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