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Dark Matter

• At large scale, interactions are dominated by gravitation
(general relativity)

• Observed dynamics of large structures do not fit theoretical
predictions (85% of matter are missing)

• ⇒ hypothesis : there is a non-detected (dark) matter

• assumption : DM is a ideal stochastic gas
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Field description

⇒ DM dynamics can be written in term of 2 scalar fields (Fourier
mods) :

φ(q, η) =

φ1(q, η)

φ2(q, η)

 (1)

• φ1 : density perturbation

• φ2 : velocity divergence

• η = log a (scale factor) : time (today : η = 0)
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Microscopic action

Action of a stochastic fluid

S [φ, χ] =
i

2

∫
q
χAP

0
ABχB +

∫
η
χA(δAB∂η + ΩAB)φB −

∫
pr
γABCχAφBφC (2)

• φ : “observable” field

• χ : response field (conjugate of φ)

• P0 : (initial) power spectrum
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Functional Renormalization group

• RG : studies how varies a theory (i.e. the action) with the
scale of observation

• fRG : introduction of an effective action Γk that describes the
physics between UV-cutoff Λ and IR-cutoff k

• Λ is large such that ΓΛ = S

• Wetterich equation : flow of Γk in function of k.
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Schwinger functional

W ≡ −i logZ (3)

with Z =
∫
φχ e

iS[φ,χ]+Jaφa+Kbχb

By taking the derivatives w.r.t. the sources J and K , we obtain the
expected values of the fields 〈φA〉 and 〈χA〉 and the connected
correlation functions 〈φAφB〉c , etc...
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Effective action

Legendre transform of W in respect to the sources

Γ[φ, χ] = sup
J,K

∫
η,q

(Ja〈φa〉+ Kb〈χb〉)−W [J,K ] (4)

• Γ takes into the account the initial fluctuations with all
wavelengths q

• the dynamic equation is non-linear ⇒ large fluctuations are
hard to compute

• ⇒ we restrict the integration of the fluctuation to |q|< k

P0(q)→ P0
k (q) ≡ P0(q)Θ(|q|−k) (5)
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Flow equation

Scale-depending effective action :

Γk =

∫
η,q

JAφA + KBχB −Wk +
i

2

∫
q
χARk ABχB (6)

Wetterich equation :

∂k Γk =
1

2
Tr

(
∂kP

0
k

Γ
(2)
k − iRk

)
(7)

⇒ flow of Γk in function of the IR-cutoff k
(Regulator Rk = Pk − P)
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Power spectrum and self-energy

• goal : study the correlations between 2 points in the universe

• the power spectrum P is the Fourier transform of the
correlation function (P = W (2,0))

• ⇒ P express the correlation between 2 points separated by q
and η − η′

• the self-energy H is the conjugate of P (H = Γ(0,2))

• we always can split H into tree-level + correction
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1-loop approximation

• at large scale Λ, ΓΛ = S

• we integrate the Wetterich eq. at 1-loop

∂k ΓΛ =
1

2
Tr

(
∂kP

0
k

Γ
(2)
Λ − iRk

)
(8)

• we take the second derivative w.r.t. χ

• we end up with explicit expression of H
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Flow equation of the self-energy

• we take the second derivative w.r.t. χ of the Wetterich eq.

• H ∼ + + + + +

-

• no φχχ term in Γ⇒ Γ(1,2) = 0

• no φφχχ term in Γ⇒ Γ(2,2) = 0

• 1st and 4th terms are equivalent

• ⇒ −i∂kHAB = GA
CDΓ

(2,1)
ADEPEF Γ

(2,1)
BFG GR

GH∂kP
0
HC =

• finally, we use P =
∫
GRGRH and H = P0 + Π
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Ansatz
• The flow eq. is hard to solve ⇒ use an ansatz for Π

• separation of q and time dependency
• weak memory effect ⇒ Π→ 0 when η1 − η2 become large

Πk (q, η1, η2) = Ak (q)exp
(
f +
k (η1 + η2) + f −k (η1 − η2)2

)
(9)

• and for G

Gk ab(q, η1, η2) = gab(η1, η2)exp
(
− q2σ2

k

(eη1 − eη2)2

2

)
(10)

where σ2
k is the velocity dispersion

σ2
k ≡

1

3

∫
|q|<k

P0(q)

q2
(11)
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Ansatz

• We have 1 equation with 3 unknowns : Ak , f +
k and f −k

• ⇒ we need 2 other equations
• ⇒ we take derivative w.r.t. η twice

• Then, we evaluate at η1 = η2 = 0 =today

• ⇒ We obtain a set of 3 self-consistent differential equations

• Next step : numerical method
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Discussion

Finally, we obtain the self-energy H that is :

• related to the correlations between 2 points in the universe

• separated by |q| (in Fourier space) and evaluated both at
present time

• with fluctuations with wavelength between k and Λ

Then, we plot H in function of k
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Perspectives

• solve for other values of η and η′

• compare to other approaches (other ansatz, PT...)

• compare to observations
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Recap

• DM is a ideal stochastic gas

• Power spectrum = Fourier transform of the correlation
function

• H is the conjugate of P

• Γk captures the fluctuations between k and Λ

• Wetterich eq. gives the flow of Γk

• Taking the derivative of the flow, we obtain the flow of H

• We use an ansatz and evaluate the flow for present times
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Dynamics equation

∂ηφa(q) =− Ωab(q, η)φb(q) +

∫
pr
δ(q− p− r)γabc(p, r)φb(p)φc(r)

+ δ(η − η0)φa(q, η0)

(12)
with

Ω(q, η) ≡

 0 2

−3

2
Ωm 1 +

H′

H

 (13)

and the non-zero elements of γabc are

γ121(q,p) = γ112(q,p) =
(p + q) · q

2q2
and γ222(q,p) =

(p + q)2p · q
2p2q2

(14)
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Probability, expected value and correlation

P[φ(ηf )] = N
∫

D ′φDχe iS[φ,χ] (15)

〈φa(q, η)〉 = N
∫
φχ
φa(q, η)e iS

〈φa(q, η)φ′b(q′, η′)〉 = N
∫
φχ
φa(q, η)φ′b(q′, η′)e iS

(16)
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Correlation functions

δW [φ, χ]

δJa(q, η)

∣∣∣∣
J,K=0

=
1

Z [J,K ]

∫
φχ
φa(q, η)e iS = 〈φa〉(q, η) (17)

δ2W

δJa(q, η)δJb(q′, η′)
= 〈φa(q, η)φb(q′, η′)〉c ≡ iδ(q + q′)Pab(q, η, η′)

δ2W

δJa(q, η)δKb(q′, η′)
= 〈φa(q, η)χb(q′, η′)〉c ≡ −δ(q + q′)GR

ab(q, η, η′)

δ2W

δKa(q, η)δJb(q′, η′)
= 〈χa(q, η)φb(q′, η′)〉c ≡ −δ(q + q′)GA

ab(q, η, η′)

δ2W

δKa(q, η)δKb(q′, η′)
= 0

(18)

GA
ab(q, η, η′) = GR

ba(−q, η′, η) (19)
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δ2Γ

δφa(q, η)δφb(q′, η′)
= 0

δ2Γ

δφa(q, η)δχb(q′, η′)
= −δ(q + q′)DA

ab(q, η, η′)

δ2Γ

δχa(q, η)δφb(q′, η′)
= −δ(q + q′)DR

ab(q, η, η′)

δ2Γ

δχa(q, η)δχb(q′, η′)
= −iδ(q + q′)Hab(q, η, η′)

(20)

DA
ab(q, η, η′) = DR

ba(−q, η′, η) (21)
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Power spectrum and self-energy

The power spectrum P (and the self-energy H) express the
correlations of the fluctuations between 2 points in the unvierse,
separeted by a “distance” |q| and time η′ − η. They are related by

Pad (q, η, η′′′) =
∫
η′η′′ G

R
ab(q, η, η′)Hbc(q, η′, η′′)GA

cd (q, η′′, η′′′) (22)

We can split H in tree-level + correction

Hk (q, η, η′) = P0
k (q)δ(η)δ(η′) + Πk (q, η, η′) (23)
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1-loop approximation

Wetterich eq. :

∂k Γk =
i

2
∂̃k Tr

(
log(Γ

(2)
k − iRk )

)
⇒ Γk =ΓΛ +

i

2
Tr
(

log(Γ
(2)
Λ − iRk )− log(Γ

(2)
Λ − iRΛ)

)
⇒ −iHk AB =Γ

(0,2)
Λ AB +

i

2

(
δ2Tr

(
log(Γ

(2)
Λ [φ, χ]− iRk )

)
δχAδχB

−
δ2Tr

(
log(Γ

(2)
Λ [φ, χ]− iRΛ)

)
δχAδχB

)
≡Γ

(0,2)
Λ AB + Πk AB

(24)

with A = (a,q, η) and B = (b,q′, η′)
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At tree-level, the only χχ term in S is the fluctuation term

Γ
(0,2)
Λ AB = − i

2

∫
p

δ2(χCP
0
CDχD)

δχAδχB
= −iP0

AB (25)
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δ2Tr
(

log(Γ
(2)
Λ [φ,χ]−iRk )

)
δχAδχB

= −Tr
(
W

(2)
Λk

δΓ
(2)
Λ

δχA
W

(2)
Λk

δΓ
(2)
Λ

δχB

)
+ Tr

(
W

(2)
Λk

δ2Γ
(2)
Λ

δχAδχB

)
(26)

with

W
(2)
Λk AB =

(
igR

AA′P
0
k A′B′g

A
B′B −gR

AB

−gA
AB 0

)
(27)

with the linear retarded propagator gR defined by

gR
ab(η, η′) = eη−η

′

5

(
3 2
3 2

)
Θ(η − η′)− e−3(η−η′)/2

5

(
−2 2
3 −3

)
Θ(η − η′) (28)
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δ2Tr
(

log(Γ
(2)
Λ [φ, χ]− iRk )

)
δχAδχB

=− i

2

(
W

(2,0)
CD Γ

(2,1)
ADEW

(2,0)
EF Γ

(2,1)
BFC

)
=− 2gR

CC ′P
0
k C ′D′g

A
D′DγADEg

R
EE ′P

0
k E ′F ′g

A
F ′FγBFC

=− 4

∫
p
gR

cc ′(η
′, 0)P0

k c ′d ′(p)gA
d ′d (0, η)γade(q,−p,p− q)

× gR
ee′(η, 0)P0

k e′f ′(p− q)gA
f ′f (0, η′)γbfc (−q,q− p,p)

(29)

Πk ab(q, η, η′) = −4

∫
p

(
1−Θ(|p|−k)Θ(|p− q|−k)

)
× gR

cc ′(η
′, 0)P0

k c ′d ′(p)gA
d ′d (0, η)γade(q,−p,p− q)

× gR
ee′(η, 0)P0

k e′f ′(p− q)gA
f ′f (0, η′)γbfc(−q,q− p,p)

(30)
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flow equation of the self-energy

− i∂kHAB =
δ2∂k Γ

δχAδχB

=− 1

2
Tr
( δ

δχA
(W (2) δΓ

δχB
W (2)∂kP

0)
)

=
1

2
Tr
(
W (2) δΓ

δχA
W (2) δΓ

δχB
W (2)∂kP

0
)

+
1

2
Tr
(
W (2) δΓ

δχB
W (2) δΓ

δχA
W (2)∂kP

0
)

− 1

2
Tr
(
W (2) δ2Γ

δχAδχB
W (2)∂kP

0
)

=− i∂kH
I
AB − i∂kH

II
AB − i∂kH

III
AB

(31)
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−i∂kH
I
AB =

1

2

PCD GR
CD

GA
DC 0

Γ
(2,1)
ADE Γ

(1,2)
ADE

Γ
(1,2)
AED Γ

(0,3)
ADE

PEF GR
EF

GA
FE 0


×

Γ
(2,1)
BFG Γ

(1,2)
BFG

Γ
(1,2)
BGF Γ

(0,3)
BFG

PGH GR
GH

GA
HG 0

0 0

0 ∂kP
0
HC


=

1

2

(
GA

CDΓ
(2,1)
ADEPEF Γ

(2,1)
BFG GR

GH∂kP
0
HC

+ GA
CDΓ

(2,1)
ADEG

R
EF Γ

(1,2)
BGFG

R
GH∂kP

0
HC

+ GA
CDΓ

(1,2)
ADEG

A
EF Γ

(2,1)
BFG GR

GH∂kP
0
HC

)
(32)
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− i∂kHAB =
1

2

(
GA

CDΓ
(2,1)
ADEPEF Γ

(2,1)
BFG GR

GH∂kP
0
HC + GA

CDΓ
(2,1)
ADEG

R
EF Γ

(1,2)
BGFG

R
GH∂kP

0
HC

+ GA
CDΓ

(1,2)
ADEG

A
EF Γ

(2,1)
BFG GR

GH∂kP
0
HC

)
+
(
A↔ B

)
− 1

2

(
DR

CDΓ
(2,2)
ABDEG

R
EF∂kP

0
FC

) (33)

We replace P by
∫
GRGRH and H by P0 + Π

−i∂k Πab(q, η, η′) =4

∫
p
GR

dc (p, 0, η)γade(q,−p,p− q)

×
∫
ξ,ξ′

GR
ee′(p− q, η, ξ)GR

ff ′(q− p, η,′ ξ′)

×
(
P0

e′f ′(p− q)δ(ξ)δ(ξ′) + Πe′f ′(p− q, ξ, ξ′)
)

× γbfg (−q,q− p,p)GR
gh(p, η, 0)∂kP

0
hc (−p)

(34)
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The l.h.s. gives :

∂k Π =∂kAe
f +(η1+η2)+f −(η1−η2)2

+ ∂k f
+(η1 + η2)Π + ∂k f

−(η1 + η2)2Π

∂η∂k Π =∂kA
(
f + + 2f −(η1 − η2)

)
ef +(η1+η2)+f −(η1−η2)2

+ ∂k f
+
(

1 + f +(η1 + η2) + 2f −(η2
1 − η2

2)
)

Π

+ ∂k f
−
(

2(η1 − η2) + f +(η1 − η2)2 + f −(η1 − η2)3
)

Π

∂2
η∂k Π =∂kA

(
f + 2 + 4f +f −(η1 − η2) + 2f −

)
ef +(η1+η2)+f −(η1−η2)2

+ ∂k f
+
(

2f + + f + 2(η1 + η2) + 2f −(η1 − η2) + 4f +f −(η2
1 − η2

2) + 4f −η1

)
Π

+ ∂k f
−
(

2 + 4f +(η1 + η2) + f + 2(η1 − η2)2 + 4f +f −(η1 − η2)3 + 10f −(η1 − η2)2

+ 4f − 2(η1 − η2)4
)

Π

(35)
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Ansatz GR
k

∂ηiG
R
k (q, η1, η2) =

(
∂ηig

R
k (η1, η2)− q2σ2

k (eηi − eη1+η2)gR
k (η1, η2)

)
× exp

(
− q2σ2

k

(eη1 − eη2)2

2

)
∂2
ηi
GR

k (q, η1, η2) =
(
∂2
ηi
gR

k (η1, η2)− q2σ2
k (eηi − eη1+η2)

×
(
∂ηig

R
k (η1, η2)− q2σ2

k (eηi − eη1+η2)

× gR
k (η1, η2) + 1

)
gR

k (η1, η2)
)

exp
(
− q2σ2

k

(eη1 − eη2)2

2

)
(36)

where i ∈ {1, 2}. Then, we put it in the r.h.s.
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Evaluation at η = η′ = 0

To simplify the equations, we solve it for η = η′ = 0 (=present
time). The l.h.s. gives

∂k Π =∂kA

∂η∂k Π =f +∂kA

∂2
η∂k Π =(f + 2 + 2f −)∂kA + 2f +Π∂k f

+ + 2∂k f
−

(37)
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