Tuning the JUNO Top Tracker Simulation using the Top Tracker Prototype

Deshan Sandanayake (M2-PSA)

Internship supervisor: J. P. A. M. de André

Université de Strasbourg, IPHC (Neutrino Group) 23 rue du Loess 67037 Strasbourg, France.

June 23, 2021

A brief introduction to Neutrino Physics Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary matrix:

$$\begin{pmatrix} \nu_{\theta} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} }_{U} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

 $\mathsf{P}_{\nu_{\alpha} \to \nu_{\beta}} \left(\theta_{jk}, \Delta m_{jk}^{2} \right) = \sum_{j,k} U_{\beta j} U_{\alpha j}^{*} U_{\beta k}^{*} U_{\alpha k} e^{-i\Delta m_{jk}^{2} \frac{L}{2p}}, \quad \Delta m_{jk}^{2} = m_{j}^{2} - m_{k}^{2}$

Neutrino oscillation probability (3 flavor case):

 $\theta_{12}, \theta_{23}, \theta_{13}$: neutrino mixing angles δ : leptonic CP-violating phase m_1, m_2, m_3 : mass eigenvalues Δm_{jk}^2 : neutrino mass splitting Unknowns:

• Which neutrino is the lightest?

Expected measurements at JUNO

• Neutrino Mass Ordering:

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]

JUNO goals:

- Determine the neutrino mass ordering
- Precision oscillation measurements

	Current precision	JUNO precision
$\sin^2 \theta_{12}$	4.1%	0.67%
Δm_{21}^2	2.6%	0.59%
$ \Delta m_{31}^2 $	2.7%	0.44%

• ... and other topics in Particle Physics/Astrophysics...

The Jiangmen Underground Neutrino Observatory (JUNO)

- Reactor electron anti-neutrino ($\bar{\nu}_e$) detector under construction in Jiangmen, China
- Design energy resolution (*E_{res}*)= 3% (at 1MeV)
- Planned to begin data acquisition in 2023

Detecting anti-neutrinos: Inverse beta-decay (IBD)

- IBD: $\bar{\nu}_e$ + p \rightarrow n + e⁺
- Prompt-delayed signal coincidence \longrightarrow significant background suppression

Backgrounds

- Accidental Backgrounds
 - Accidental coincidences between unrelated background events
- Cosmogenic ⁹Li/⁸He isotopes
 - βn decays mimicking the IBD signature
- ¹³C(α, n)¹⁶O
 - α particles from natural isotopes react with the ¹³C in the Liquid scintillator
- Geo-neutrinos
 - $\bar{\nu}_e$ from radioactive decay of natural isotopes of U/Th

Selection	IBD efficiency	IBD	Geo- <i>v</i> s	Accidental	⁸ He/ ⁹ Li	fast n	(α, n)
-	-	83	1.5	$\sim 5.7 imes 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4	410	77		
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71	0.1	0.05
Vertex cut	98.7%			1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60	3.8				

Table 1: The efficiencies of antineutrino selection cuts, signal and backgrounds rates (per day).

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]

The Top Tracker

- Array of plastic scintillator strips
- 2.6×2.6cm² granularity
- coverage: $20 \times 47 \text{m}^2$, 3 layers
- 64-channel MA-PMTs, 992 MA-PMTs
- 64k channels

Resources: F. An et al., [arxiv: 1507.05613v2], T. Adam et al. [OPERA], Nucl.Instrum.Meth.A577:523-539 (2007), JUNO Collab., [arxiv: 2104.02565]

The Muon Telescope and the Top Tracker Electronics

The Muon telescope: The Top Tracker prototype

- Built with same materials as Top Tracker
- 64 strips along x and y-directions per sub-layer
- 8 end-caps (512 channels)

- Front-End Board (FEB): PMT digitization and gain correction, noise level control
- Read-Out Board (ROB): High voltage supply to MA-PMTs, control of the calibration LEDs

Characterization of PMT channels: Bellamy's function

$$S_{\text{real}}(x) = \left[\underbrace{\frac{(1-w)}{\sigma_0\sqrt{2\pi}}\exp\left(-\frac{(x-Q_0)^2}{2\sigma_0^2}\right)}_{\text{Type 1 background (Pedestal)}} + \underbrace{\frac{w\theta(x-Q_0)\alpha\exp(-\alpha(x-Q_0))}{\text{Type 2 background (events missing the photo-cathode)}}_{\text{Type 2 background (events missing the photo-cathode)}}\right]e^{-\mu} + \underbrace{\sum_{n=1}^{\infty} \left[\frac{\mu^n e^{-\mu}}{n!}\frac{1}{\sigma_1\sqrt{2\pi n}}\exp\left(-\frac{(x-Q_0-Q_{\text{sh}}-nQ_1)^2}{2n\sigma_1^2}\right)\right]}_{\text{Type 2 background (events missing the photo-cathode)}}\right]$$

Convolution of Gaussians of different number of PEs

- Q_0 = mean of the pedestal
- σ_0 = standard deviation of the pedestal
- Q₁ = PMT channel gain
- σ_1 = Standard deviation of the gain
- μ = mean no. of PEs collected
- w = Probability that a given background event is of type 2 background
- α = coefficient of decrease of the type 2 background
- $\theta(x) =$ Heaviside function

$$\mathsf{Q}_{\mathrm{sh}} = \frac{\mathrm{w}}{\alpha}$$

Characteristic analysis of PMT channels

- Non-uniform gain on MA-PMTs
- Expected gain by JUNO: 10⁶ (10.5 ADC units)

MA-PMT Gain Distribution

Complementary Analyses (1)

1. Analysis of relative accuracy of light collection

• < 1% relative accuracy on μ at $\mu \in$ (1,1.6)

Resources: N. Anfimov et al., Nucl. Instrum.Meth.A 939 61-65 (2019)

 Tested a new PE number evaluation method

> based on the no. of events in the pedestal

$$\frac{\sigma\mu_0}{\mu} = \frac{1}{\sqrt{N}}\sqrt{\frac{e^{\mu}-1}{\mu^2}}$$

 μ_0 = No. of events in the pedestal N = Total no. of events $\sigma\mu_0$ = error of the no. of events in the pedestal

• LED data obtained at different LED biases

Gain Calibration

- Find the high voltage corresponding to a gain of 10.5 ADC on the highest-gain channel
- Take LED data at the calculated high voltage
- Calculate correction factors:

$$K_i = \frac{Q_{1(max)}}{Q_{1(i)}}, i \in \{1, 2, ..., 64\}$$

 $Q_{1(i)}$ = gain of the channel *i* $Q_{1(max)}$ = gain of the highest-gain channel.

Internship defence - M2 (PSA)

Electronics Calibration

Determination of Digital-to-Analog Converter (DAC) threshold:

Card 3L, channel 14, DAC threshold determination for 1/3PE

- Common detection threshold set to all channels
- Measure very small charges as low as 1/3PE (0.056pC) while keeping noise levels as low as possible
- Expected charge deposition for a muon: 3-6 PE

Deshan Sandanayake (QMat–UNISTRA)

Internship defence - M2 (PSA)

Charge Calibration

Graph of Charge collected vs. Charge injected for FEB no. 4003, channel 14 Charge collected (ADC) Manual charge injection 400 Automatic charge injection 350 Electronic saturation 300 regime γ^2 / ndf 5.025e+05/2 a 250 a -2.593 ± 0.1205 a, 69.03 ± 0.002409 200 a, 0.5395 ± 0.0003209 0 150 χ^2 / ndf 6.509e+06 / 21 a, and 100 1 488 + 0 02941 Linear regime a, 69.94 ± 0.001014 a, 0.5384 ± 7.663e-05 50 2+ 0 0 2 10 Charge Injected (pC) 1 PE 10 PE (1 PE ~ 0.16pC)

Only 5 data points taken per FEB during mass testing of 1200 FEBs

• The fit function:

$$f(x) = \begin{cases} a_0 + a_1 x & , x \le b \\ a_{00} + a_2 \left(1 - e^{-a_3 x^{a_4}} \right) & , x > b \end{cases}$$

 $a_5 = a_3 b^{a_4}$

- Continuity and differentiability of f(x) imposed
- no. of free parameters reduced
- a_0 fixed to 0 and b fixed to 2
- This result has been already presented to the JUNO Europe-2021 meeting.

Cosmic Muon detection

- Once calibrated, the Muon Telescope can be used to:
 - Test TT electronics in a realistic environment
 - Tune JUNO simulation
- Muon Telescope has 4 layers (instead of 3 in JUNO TT)
 - facilitates layer-wise efficiency calculation
- Majority of strips have ${\sim}90\%$ efficiency

Complementary Analyses (2)

2. Slow shaper & hold delay analysis

- Charges are measured by measuring the peak of the temporal response curve
 - Peak amplitude \propto total charge
- Hold delay = time difference between trigger and measurement
- Slow shaper curve is reconstructed by varying the delay between trigger and signal

Conclusion

Tasks	March	April	May	June	July
Tusks					
Characteristics analysis of PMT charge distributions					
Analysis of relative accuracy of no. of PEs collected by the PMT					
DAC threshold determination					
Charge calibration					
Slow shaper & hold delay analysis					
PMT replaced due to bad performance					
Determination of PMT High Voltage					
Determination of Preamplifier gains					
Inserting gain calibration to the Reconstruction algorithm					
Calculation of detection efficiency of the Muon Telescope					
Measurement of muon deposited energy in the Muon Telescope					
Determination of muon angular spectra at Strasbourg					
Tune TT simulation					

• The tasks fulfilled during this internship were instrumental in developing a thorough understanding of the JUNO Top Tracker, which will be crucial for the succession of the relevant Ph.D. activities.

Backup

Multi-Anode Readout Chip v.3 (MAROC3)

JUNO Experiment

- First experiment to see both oscillations (solar and atmospheric) at the same time
- JUNO is a disappearance experiment
- JUNO baseline (53km) is chosen in order to place it at $\bar{\nu}_e$ oscillation minimum
- With the expected good energy resolution, it can discriminate between the 2 mass orderings (hierarchies).

Deshan Sandanayake (QMat–UNISTRA)

Detection Channels

• IBD:
$$ar{
u}_{e} \ + \ p \ o \ n \ + \ e^{+}$$
 (Dominant Channel)

•
$$\nu_e + {}^{12}C \rightarrow e^- + {}^{12}N \quad (E_{th,\nu} = 17.34 \text{ MeV})$$

•
$$\bar{\nu}_e + {}^{12}C \rightarrow e^+ + {}^{12}B \ (E_{th,\bar{\nu}} = 14.39 \ MeV)$$

• $\nu_{\alpha} + {}^{12}C \rightarrow \nu_{\alpha} + {}^{12}C^*$ (Clear signal of SN ν 's, sensitive to μ and τ flavors due to their high energy)

• $\nu_{\alpha} + e^- \rightarrow \nu_{\alpha} + e^-$ (most sensitive to ν_e 's, used to detect prompt SN ν_e bursts)

• ν_{α} + p \rightarrow ν_{α} + p

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]