Développement de l'étalonnage des détecteurs d'ondes gravitationnelles

P. Russe (M2 PSA), supervisé par B. Mours (OGMA, IPHC)

Sommaire

- Ondes gravitationnelles et Virgo
- Techniques d'étalonnage de Virgo
- Stage et résultats

<u>Ondes gravitationnelles et</u> astronomie multimessager

- Vibration de l'espace-temps causée par l'accélération d'objets (première détection directe en 2015)
- Astronomie multimessager: télescopes photons, détecteurs neutrinos, détecteurs ondes gravitationnelles
- Nouvelles mesures astrophysiques ou cosmologiques

Etalonnage de Virgo

Photon Calibrator (PCal)

- Miroir mis en mouvement par la pression de radiation d'un laser auxiliaire
- Modulation de la puissance du laser -> modulation de la force exercée sur le miroir
- Besoin de mesurer la puissance réfléchie avec précision

Newtonian Calibrator (NCal)

- Rotor de 2 masses en rotation
- Injecte un signal gravitationnel variable
- Génère un mouvement du miroir d'amplitude et de fréquence connues
- Besoin de précision sur la géométrie, la métrologie

 $K=rac{K}{d^4}$ -> dépendance non-linéaire en d de l'amplitude du signal

Newtonian Calibrator (NCal)

7

Problématique

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

- Derniers tests du NCal: incertitude sur le signal de calibration dominée par l'incertitude sur distance NCalmiroir
- Besoin de précision sur la position du miroir et celles des NCals
- Quelle configuration ? Deux options à comparer: SEN ou EEN

Méthode développée

- Simulation de mesures dans chaque configuration
 - Erreurs statistiques
 - Erreurs systématiques, biais
- Résolution du système d'équations non-linéaires
 - Retrouver les coordonnées du miroir
 - Incertitudes

$$a_i' \approx a_i \left(1 + \frac{5x_i^2 + d_i^2}{d_i^2 x_i} \Delta x + \frac{5y_i}{d_i^2} \Delta y \right)$$

• Comparaison des résultats entre les deux configurations

Résolution itérative

- Calcul de l'amplitude prédite et simulation de l'amplitude réelle
- Itérations:
 - Reconstruction de la position du miroir
 - Calcul de l'amplitude prédite pour la position reconstruite
 - Nouvelle simulation de l'amplitude réelle et calcul de l'écart des nouvelles coordonnées reconstruites par rapport aux anciennes
 - Convergence vers la vraie solution au bout de quelques itérations

<u>Erreurs systématique: biais</u> provenant de décalages des NCals

 SEN/EEN = configuration; S/E/N = NCal Sud, Est ou Nord déplacé de 1 mm; R = axe radial / P = axe perpendiculaire à l'axe radial

Configuration and offset	$\delta \Delta x \ (\% \text{ of offset})$	$\delta \Delta y$ (% of offset)
SEN SR	+37	< 0.01
SEN SP	+6	< 0.01
SEN NR	< 0.01	-72
SEN NP	< 0.01	-12
EEN ER	+318	< 0.01
EEN EP	-54	< 0.01
EEN NR	-37	-72
EEN NP	-6	-12

<u>Comparaison en termes de</u> <u>calibration globale</u>

 Ratio amplitude reconstruite/injectée en fonction de la position du miroir avec bruit de mesure

Configuration and position of the mirror	$(h_{rec}/h_{inj})_{S1p7/E2p1}$	$(h_{rec}/h_{inj})_{E1p7}$	$(h_{rec}/h_{inj})_{N1p7}$
SEN mirror at nominal position	$0.0 \pm 0.3\%$	$0.0\pm0.4\%$	$0.0\pm0.3\%$
SEN 5mm along x	$-0.3 \pm 0.3\%$	$+0.3 \pm 0.4\%$	$+0.3 \pm 0.3\%$
SEN 5mm along y	$-1.65 \pm 0.3\%$	$-1.65 \pm 0.4\%$	$+1.65 \pm 0.3\%$
EEN mirror at nominal position	$+0.1 \pm 1.7$	$+0.1 \pm 2.7$	$+0.1 \pm 2.6$
EEN 5mm along x	$+0.25 \pm 1.75\%$	$+0.3 \pm 2.75\%$	$+0.3 \pm 2.6\%$
EEN 5mm along y	$-1.3 \pm 1.75\%$	$-1.65 \pm 2.75\%$	$+1.65 \pm 2.6\%$

<u>Comparaison en termes de</u> <u>calibration globale</u>

• Impact d'un biais sur la position des NCals avec bruit de mesure

Configuration and offset	$(h_{rec}/h_{inj})_{S1p7/E2p1}$	$\left(h_{rec}/h_{inj}\right)_{E1p7}$	$\left(h_{rec}/h_{inj}\right)_{N1p7}$
SEN no offset	$0.0\pm0.3\%$	$0.0\pm0.4\%$	$0.0\pm0.3\%$
SEN SR	$+0.5 \pm 0.3\%$	$+0.7 \pm 0.4\%$	$+0.7 \pm 0.3\%$
SEN SP	$+0.1 \pm 0.3\%$	$+0.1 \pm 0.4\%$	$+0.1 \pm 0.3\%$
SEN NR	$+0.7 \pm 0.3\%$	$+0.7 \pm 0.4\%$	$-0.2 \pm 0.3\%$
SEN NP	$+0.1 \pm 0.3\%$	$+0.1 \pm 0.4\%$	$-0.05 \pm 0.3\%$
EEN no offset	$+0.1 \pm 1.7$	$+0.1 \pm 2.7$	$+0.1 \pm 2.6$
EEN ER	$+0.6 \pm 1.75\%$	$+0.6 \pm 2.75\%$	$+0.6 \pm 2.6\%$
EEN EP	$-0.1 \pm 1.7\%$	$-0.1 \pm 2.7\%$	$-0.1 \pm 2.6\%$
EEN NR	$+0.35 \pm 1.7\%$	$+0.4 \pm 2.7\%$	$-0.5 \pm 2.6\%$
EEN NP	$+0.05 \pm 1.7\%$	$+0.2 \pm 2.7\%$	$-0.2 \pm 2.6\%$

16

Conclusion

- Configuration SEN:
 - Meilleure reconstruction de la position du miroir
 - Reconstruction moins sensible aux biais sur les positions des NCals

• Configuration EEN:

• Distances relatives entre les NCals plus faciles à mesurer

• Calibration globale:

• Résultats très similaires mais barres d'erreurs plus larges en configuration EEN

Perspectives

- Résultats encourageants, pistes pour choisir une configuration
- Résultats inexpliqués: nécessité de les tester
- Etude toujours en cours, choix déterminant pour la stratégie adoptée durant O4
- Stage enrichissant, enjeux intéressants

Merci de votre attention !

<u>Sources</u>

- *Newtonian calibrator tests during the Virgo O3 data taking*, D. Estevez, B. Mours & T. Pradier
- *The Advanced Virgo Photon Calibrator,* D. Estevez, P. Lagabbe, A. Masserot, L. Rolland, M. Seglar-Arroyo, D. Verkindt
- A Gravitational-wave standard siren measurement of the Hubble constant, B. P. Abbott, R. Abbott, T. D. Abbott, et al.

<u>Histoire des ondes</u> gravitationnelles

- 1916: On ne sait pas si ces ondes ont une réalité physique ou si elles sont une curiosité mathématique issue d'un choix spécial de jauge
- 1957: Felix Pirani & Hermann Bondi démontrent qu'elles doivent avoir une réalité physique en calculant leur effet sur des systèmes physiques
- 1993: Prix Nobel à Russel Hulse & Joseph Taylor pour la découverte un pulsar binaire dont la fréquence augmente à cause de l'émission d'ondes gravitationnelles
- 2015: Première détection d'ondes gravitationnelles par les interféromètre de LIGO (prix Nobel en 2017)

<u>Mesure de la constante de Hubble</u> grâce aux ondes gravitationnelles

- Détection de l'onde gravitationnelle
 - possibilité de mesurer la distance (d) de la source
- Contrepartie électromagnétique
 - localisation de la source et de la galaxie hôte
- Redshift (z) de la galaxie hôte connu et distance connue (d) -> mesure de la constante de Hubble (H₀)

Loi de Hubble-Lemaître:

$$cz = H_0 d$$

$$\implies H_0 = \frac{cz}{d}$$

<u>L'interféromètre Virgo</u>

23

Ordres de grandeur:

- 1 NCal lointain à 55 Hz
- 1 NCal proche à 119 Hz
- Prise de donnée de 200 secondes

Résolution numérique

- 3 inconnues: Δx , Δy et K
- 3 NCals -> 3 équations, possibilité de résoudre pour Δx, Δy et K
- Résolution itérative: amplitude mesurée -> amplitude supposée à chaque itération
- Résultats:
 - Histogrammes des amplitudes mesurées pour chaque NCal
 - Histogrammes de Δx, Δy et K, map de Δx et Δy et histogrammes 2D Δx vs K et Δy vs K (corrélations)