

de **physique** et **ingénierie**

Université de Strasbourg

PRECy;

Mesure de l'énergie du faisceau de la plateforme Étude des effets du serum d'ours hibernant sur la radiosensibilité des cellules humaines.

Adèle Pérus

Stage de master 2, sous la supervision de Marc Rousseau

Université de Strasbourg 24/06/2021

Overview

I - Context: ionizing radiations and protontherapy

II - Measure of the proton-beam energy at PRECy

III - Investigation of the radioprotective effects of bear serum

I - Context: Ionizing Radiations

(1): Physique nucléaire appliquée à la biologie ou radiobiologie, http://mon.ftp.a.moi.chez-alice.fr/Ecole/DEUG_SV2/Radiobio/Radio1.pdf

I - Context: Physical Quantities

(2) : Y. Karakaya, Étude des performances d'un système d'imageur proton dans le cadre de l'approche faisceau à faisceau, PhD Thesis, Université de Strasbourg (2018)

Adèle Pérus

I - Context: cancer, ionizing radiations and protontherapy

II - Measure of the proton-beam energy at PRECy

III - Investigation of the radioprotective effects of bear serum

II - PRECy Irradiation Line

Adèle Pérus

(3) : P. J. Jupille, Validation dosimétriques des lignes d'irradiation de la plateforme PRECy, Université de Strasbourg (2020)

II - Experimental Setup

II - How to measure the energy ?

Calibration with tri-alpha source \rightarrow not sufficient !

(4): Fast Acquisition System for nuclEar Research, LPC (Caen), website : http://faster.in2p3.fr

II - Measurements

Ncounts 140 120 *E*-points (always in **Si4**) 100 *dE*-points (always in **Si1**) 80

Adèle Pérus

II - Simulation

• Python programme

 \rightarrow Input: E_0 ('sortie air')

→ *For loop:* aluminum thicknesses

Energy loss in structure $dE_1 dE_2 dE_3 E_4$ Computed with stopping power⁵ $\Delta E = \int_{0}^{x_{Si}} \frac{dE}{dx} dx = \int_{0}^{x_{Si}} f(E) dx = \int_{0}^{x_{Si}} aE^{-b} dx$

→ *End condition:* residual energy = 0

(5): Pstar, Stopping Power and range tables for protons (2021) https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

II - Silicon Detectors Structures

- Tri-alpha source: ²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm

$$E_{\alpha_{Pu}} = 5156.59 \pm 0.14 \text{ keV}$$

 $E_{\alpha_{Am}} = 5485.56 \pm 0.12 \text{ keV}$
 $E_{\alpha_{Cm}} = 5804.77 \pm 0.5 \text{ keV}$

(6) : bnl.gov data base, NuDat 2.8, access https://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=78&n=104

Adèle Pérus

RHI

II - Silicon Detectors Structures

II - Calibration Results

- **First:** align *E*-points and α -points in Si4. Check in other detectors. 500 keV steps on E_0
- Second: align E-points and dE -points in Si2 and Si3. 50 keV steps on E_0
- **<u>Third</u>**: optimize alignment in the four detectors.

10 keV steps on E_0

Adèle Pérus

II - Calibration Results

(RHI)

Adèle Pérus

II - Proton Beam Energy

• Consistent with previous measurements: $24.85 \pm 0.14 \text{ MeV}^7$

research, Medical Physics, 46, 2356 (2019)

Adèle Pérus

(7): J. Constanzo, M. Vanstalle, C. Finck, D. Brasse, M. Rousseau, Dosimetry and characterization of a 25-MeV proton beam line for preclinical radiobiology

Overview

I - Context: cancer, ionizing radiations and protontherapy

II - Measure of the proton-beam energy at PRECy

III - Investigation of the radioprotective effects of bear serum

III - Bear Serum: What for ?

- Hibernation \rightarrow muscular mass conservation⁸ → Astronauts, sick people, *etc*.
- Hibernating bear serum \rightarrow radioprotection properties \rightarrow hypometabolism⁹?
- Human cells cultures with bear serum treatments

Collaboration:

IPHC (Institut Pluridisciplinaire Hubert-Curien, DRHIM and DSA departments) laboratory in Strasbourg (IN2P3) CarMeN (Cardiologie, Métabolisme, Diabétologie et Nutrition) laboratory in Clermont Ferrand (INRA) LPC (Laboratoire de Physique Corpusculaire) laboratory in Clermont Ferrand (IN2P3)

X.J. Musacchia, R.E. Barr, Survival of whole-body-irradiated hibernating and active ground squirrels; Citellus tridecemlineatus, Radiat Res., 33(2):348-56 (1968) Université de Strasbourg - M2 defense - 24/06/2021 Adèle Pérus 17

(10) : © Getty Images/iStockphoto

(8) : S. Chanon, B. Chazarin, B. Toubhans et. al., Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells, Nature

III - Bear Serum: Experiments at PRECy

Immunofluorescence:

Cells irradiation \rightarrow DNA damages

Which processes/molecule involved in DNA repair ?

on the dose

Comparison

Three sera tested \rightarrow FBS, WBS, SBS Cancerous tissues and healthy tissues irradiated

- <u>Clonogenicity:</u>
- Survival rate depending

Conclusion

Bear-serum investigation:

- Two experiments performed
 - \rightarrow immunofluorescence
 - \rightarrow clonogenicity
- Active role played during irradiation time and cells counting

(10) : Ligne de radiobiologie de la plateforme Precy. Image Nicolas Busser, IPHC, Photothèque IN2P3

Adèle Pérus

Radiochromic film used for dose control

PRECy proton-beam energy measurement:

- Measurements performed at PRECy
- Python algorithms developed
- Energy of the beam determined
- Beam profile reconstructed

Acknowledgments

Thank you for your attention !

Special thanks to:

- Marc Rousseau: for your ionizing supervision
- **David Brasse:** enriching physical introspection
- All members of the **DRHIM TEAM**
- The biologists: Estelle Stantiago, Laurent Daeffler and Fabrice Bertile (how much fun it was counting cells !)
- Michel Pellicioli and Jacky Schuller: impressive proton-beam pilots

Back up slides

BackUp: ionizing radiations

Radiations with enough energy to ionize matter

BackUp: Dose, LET and Stopping Power

$D = \frac{dE}{dm} = \frac{1}{\rho} \frac{dE}{dV} = \frac{1}{\rho S} \frac{dE}{dx}$

(11): M. Krämer, M. Durante, Ion beam transport calculations and treatment plans in particle therapy, Eur. Phys. J. D., 60, 195-202 (2010)

BackUp: Bethe-Bloch

$$E = \frac{1}{2}mv^2$$

 $\Rightarrow E \propto v^2$

 $\Rightarrow \frac{dE}{dx} \propto \frac{1}{E}$

$$-\frac{dE}{dx} = \frac{4\pi e^4 z^2 n}{(4\pi\epsilon_0)^2 m_e v^2} \times \left[\ln\left(\frac{2m_e v^2}{I}\right) - \ln(1-\beta^2) - \beta\right]$$

$$\Rightarrow \frac{dE}{dx} \propto \frac{1}{v^2}$$

I - Context: Protontherapy and SOBP

Bragg peak \rightarrow localized deposited energy

(2): Y. Karakaya, Étude des performances d'un système d'imageur proton dans le cadre de l'approche faisceau à faisceau, PhD Thesis, Université de Strasbourg (2018) (12) : J. Constanzo, M. Vanstalle, C. Finck, D. Brasse, M. Rousseau, Dosimetry and characterization of a 25-MeV proton beam line for preclinical radiobiology research, Medical Physics, 46, 2356 (2019)

Adèle Pérus

SOBP \rightarrow uniform dose deposition (Spread Out Bragg peak)

BackUp: CYRCé Cyclotron

- H^- source \rightarrow accelerating electric field + magnetic field
- carbon foil \rightarrow two e^- stripped away
- $H^+ \rightarrow$ injected in irradiation lines
- $E_{\text{protons}} \in [16 \text{ MeV}, 24 \text{ MeV}]$

Adèle Pérus

(13) : Cyclotron TR24 ACSI et tronc commun des lignes d'irradiation, Image Nicolas Busser, IPHC, Photothèque IN2P3

BackUp: Coincidences

BackUp: Air Thicknesses Results

	Δx side 1 (in cm)	Δx side2 (in cm)
1	0.317 +/- 0.017	0.522 +/- 0.017
2	0.305 +/- 0.017	0.519 +/- 0.017
3	0.318 +/- 0.017	0.490 +/- 0.017
4	0.317 +/- 0.017	_

BackUp: Calibration Method

BackUp: Calibration Results

Calibration Si3 E0 = 24.69 MeV

BackUp: Calibration Results

Calibration Si2 E0 = 24.69 MeV

BackUp: Calibration Results

Calibration Si1 E0 = 24.69 MeV

Adèle Pérus

Calibration Si3 E0 = 24.75 MeV

Calibration Si2 E0 = 24.75 MeV

BackUp: Energy Profile

BackUp: Bear Serum

(14): X.J. Musacchia, R.E. Barr, Survival of whole-body-irradiated hibernating and active ground squirrels; Citellus tridecemlineatus, Radiat Res., 33(2):348-56 (1968)

Adèle Pérus

Better resistance of small hibernating animals during hibernation.

 \rightarrow hypometabolism and hypothermia

BackUp: Immunofluorescence

- <u>Immunofluorescence:</u> Antibodies + colored markers \rightarrow target DNA damages
- Tested Sera:

FBS: Fœtal Bovine Serum

SBS: Summer Bear Serum

WBS: Winter Bear Serum

Irradiation:

timepoints: 6h, 3h, 1h, 30min, 0s reaction mechanisms stopped with formaldehyde plates go to Clermont-Ferrand

BackUp: Clonogenicity

- Probe cellular survival rate after irradiation
- \rightarrow 3 sera
- \rightarrow Dose $\in [0 \text{ Gy}, 10 \text{ Gy}]$
- \rightarrow Dose rate = 2 Gy/s
- \rightarrow Count number of cells before and after irradiation

