

TRACKER GEOMETRY OPTIMIZATION AND TRACKING PERFORMANCE AT THE FUTURE CIRCULAR COLLIDER AT CERN

Nathan LORBER

under the supervision of

Jeremy ANDREA

Auguste **BESSON**

An heir to the LHC/LEP

Large Electron-Positron Collider (1989-2000) ➤ 27 km diameter

Up to 209 GeV

Large Hadron Collider (2009-present) ≥ 27 km diameter ≥ 13 TeV

Motivations for future colliders

- Study the Higgs Boson
- Search for dark matter
- Test supersymmetry models
- Study Z/W bosons, top quarks...

Some candidates

International Linear Collider

- > 30-50 km long
- > 250 GeV (baseline) I TeV (upgrades)

Compact Linear Collider
➢ 11-30 km long
➢ 380 GeV - 3 TeV

Future Circular Collider

- > 80-100 km diameter
- > Up to 365 GeV (ee) 100 TeV (hh)

FCC-ee

Synchrotron radiation First subdetector on the particle's path $\Delta E \propto \frac{1}{m^4 R}$ Lower energy cap, BUT: Reconstructs trajectories of charged particles (tracks) and Circular collider High luminosity determine their momentum e+e- collision Good knowledge of initial states (thanks to \vec{B}) Good event reconstruction. Clean production channels provided that we have an (no hadronic background noise) Essential to do track fitting efficient tracker Ex: Higgs Strahlung and associate with hits in the following subdetectors |Z|Goal of this internship: to explore elements of tracker configuration optimization for the FCCee

FCC-ee

A reference tracker: CLD

 Faculté

 de physique et ingénierie

 Université de Strasbourg

A reference tracker: CLD

IPHC Institut Pluridisciplinaire Hubert CURIEN Hysabourg

averaged by layer and implemented

as Si-equivalent on modules

A reference tracker: CLD

+20% material budget (sensors, cooling, support...)

- Error margins: Calculated without correlation (formula in backup)
 - Driven down statically with numerous tracks
 - Persistent \rightarrow correlation between runs, worth further exploring

Lowering the local resolution

Single-layer vertex detector or double-layer trackers

Smaller beam pipe radius

Reference configuration: r = 15 mm

Conclusions

- Design choices are highly dependent on the momentum of the particles whose detection we favor
- For low-momentum particles, reducing the material budget can be very interesting. Ways to achieve this may include lower local resolution or single-layer detectors
- Reducing the beam pipe and vertex detector radii is a promising direction, with some technological prerequisites (ladder width, sensor time resolution...)

Side notes: tkLayout

- Promising tool, fast and modular
- Could benefit from being even more flexible: change of coordinates, plots in $\phi...$
- Even some potential as an educational tool, but needs to be better documented and more user-friendly

Backup

Institut Pluridisciplinaire Hubert CURIEN

tkLayout CLD configuration file excerpt

@include SimParms	reso
Peor Dine (Lave
beampipe pipe {	Laye
thicknoss 1.2	Laye
unickness 1.2	Laye
intlength 0.0034014	
1 Inclength 0.0028504	3
<i>I</i>	Laye
Tracker VXD {	
bigDelta 0.0	3
smallDelta 0.0	Lave
zOverlap 0.0	
phiOverlap 0.0	
rOverlap 0.0	}
etaCut 2.6	} Endcan W
<pre>trackingTags VXD,Tracker</pre>	@ind
Barrel VXD B {	@ind
numLayers 3	bigD
<pre>@include Pixel_VXD_B.cfg</pre>	sma
@include Material_VXD_B.cfg	nump
bigDelta 1.0	ptot
innerRadius 17.0	inne
outerRadius 112.0	oute
plotColor 3	oute
outerZ 125.0	modu
length 12.5	reso
phiSegments 2	reso
<pre>startZMode moduleedge</pre>	Disk
isTilted false	
moduleType VXDPXL	
resolutionLocalX 0.003	
resolutionLocalY 0.003	

olutionLocalX 0.003 olutionLocalY 0.003 1 { radius 18 } 2 { radius 37.5 } - 3 { radius 57.5 } r 1 { width 12.5 numberRods 10 r 2 { width 21 numberRods 12 - 3 { width 24 numberRods 16 /XD_D { clude Pixel_VXD_D.cfg clude Material_VXD_D.cfg elta 0.5 llDelta 0.5 isks 3 Color 4 egments 12 erZ 160 rZ 300 rRadius 101 leShape wedge uleType VXDPXL olutionLocalX 0.003 olutionLocalY 0.003 1 { innerRadius 24 Ring 1 { waferDiameter 19 Ring 2 {

Disc designs

Cable mapping

Error Propagation

General formula:
$$f = \frac{A}{B}$$
 $\sigma_f = \sqrt{\left(\frac{\Delta A}{B}\right)^2 + \left(\frac{A\Delta B}{B^2}\right)^2}$

$$\sigma_{d_0} = \sqrt{\left(\frac{\Delta \delta d_{0_{test}}}{\delta d_{0_{ref}}}\right)^2 + \left(\frac{(\delta d_{0_{test}})(\Delta \delta d_{0_{ref}})}{(\delta d_{0_{ref}})^2}\right)^2}$$

$$\sigma_p = \sqrt{\left(\frac{\Delta\delta p_{test}}{\delta p_{ref}}\right)^2 + \left(\frac{(\delta p_{test})(\Delta\delta p_{ref})}{(\delta p_{ref})^2}\right)^2}$$

