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Outline

● Stellar Nucleosynthesis
● Reaction Rates
● 12C+12C 

● Significance
● Challenges in cross section measurement

● Cross sections: features
● The STELLA Experiment
● PIXEL detector Characterisation
● Outlook: Simulation work
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Stellar Nucleosynthesis

Ireland, Trevor. (1996). Isotopic anomalies in extra 
terrestrial grains. Journal of the Royal Society of 
Western Australia. 79 Pt 1. 43-50.

● Stellar evolution determined by 
mass

● Massive enough stars will fuse 
elements to iron peak

● Determines elemental 
abundance in the universe

● Studies relevant to:
○ Astrophysics- stellar 

evolution
○ Biology-source of carbon
○ Nuclear physics- molecular 

states
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Reaction Rates
● Energy available from thermal motion
● T~15x10  K (eg our sun)          kT ~ 1keV

○ During static burnings kT << E
● Charged Particles           Coulomb barrier
● Reactions occur via Tunnel effect

6

coul

Images provided by S. Courtin
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Carbon-12 + Carbon-12

Kettner, K.U., ”The12C+12C Reaction at Subcoulomb Energies.” InZeitschrift fr PhysikA Hadrons 
and Nuclei, 65-75. Springer Berlin / Heidelberg, 1980.
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Compound Nuclear Reactions 
and Resonances

Krane, pg. 425
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Fusion Hindrance
● heavy-ion fusion hindrance at 

extreme sub-barrier energies has 
been found

● first observed in medium mass 
systems for the fusion reaction  

64Ni+ 64Ni

● excitation function σ(E) drops much 
faster at very low energies than 
predicted by standard 
coupled-channels (CC) calculations

● Interesting behaviour to probe
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Experiments: The STELLA Apparatus
Goals:

● Make direct cross section measurements of 
carbon burning reaction rates

● Challenge: relevant cross sections are well 
below nanobarn level

● Background suppression: measure 
coincidences between emitted charged 
particles and gamma rays

Resource: “The STELLA apparatus for particle-Gamma 
coincidence fusion measurements with nanosecond timing”, 
22/2/2018, M. Heine, S. Courtin, et. al

Key Aspects:
● Rotating targets
● High efficiency particle and gamma 

detection system
● Nanosecond timing
● Employment of coincidence technique

S3F

S3B

Two S3 type detectors: Front-most S3 is 
denoted S3F (forward) and the rear-most 
S3B (backward).



9

Angular 
Acceptance

Fruet,Guillaume
2018, ED182

● Benefit to increasing 
angular acceptance

● Would require 
placement of third 
detector

● Limited space inside 
chamber

Angular distribution of α0 at Elab = 10.75 MeV obtained with the 
S3B detector (blue points) and S3F detector (red points), while 
the points in purple represent their symmetry with respect toθcm 
= 90◦.
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Experimental Setup

● 1cm x 3mm pixel
● Ohmic side sectors: surface
● Junction side strips:recombine for total 

energy

● S3 test bench:
● Placement of triple alpha source

− 2.5cm +/- 1mm from detector

− 6 point mesh for collimation

−  T= 25C, allows for time stable measurements

− Measurement time 1-2 days
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The Signal
● Junction side left
● Ohmic upper 

right

● J1+J2, fitting
gives resolution

● Fitting ohmic
→ energy calibration

● Source position: 
run 1, x=16.6mm, 
y=14mm
● lower rh side, Q2

Ohmic sideJunction 1

Junction 2 Junction 1 + Junction 2

Energy channel
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ts



12

● Using parameters from ohmic histogram fitting and values from nudat for energies 
● Establish: offset, slope
● Apply to data

Energy Calibration

Energy channel
co

un
ts
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Double gauss fitting procedure

Energy [keV]

co
un

ts

● Compared to single gauss fitting 
procedure

● Contribution of secondary peaks 
for Plutonium most significant

● Overall, single gauss fitting 
procedure yielded better fitting 
results 

239 Pu 241Am

244 Cm
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Procedure

1. Fit Ohmic side, Junction side, and combined plot for energy resolution comparison
2. Repeated procedure for 3 positions 
3. Plot and fit the energy difference and the time difference at junctions for each position
4. Calculated the spatial resolution from the time domain and energy domain
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Correlation between ohmic side and total junction side 

Features:
● Peaks associated with

triple alpha source
● Line corresponds to 

energy loss, same for both sides

Before entering detector

● Along junction axis peaks

May fail to hit sector

Energy channel, Ohmic side
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Fitting of correlation
plot and projection plot

Energy channel, Ohmic side
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Ohmic+junction energy channel

● Linear fit on correlation plot
● Projected onto x-axis
● Applied fitting routine
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Energy Resolution by Source Position

● Americium peaks compared
● Small fluctuations in relative resolution on junction side
● Ohmic side generally better
● Increased uncertainty on run three ohmic side

Side run/peak Mean Uncertainty Sigma Uncertainty Relative resolution

Junction 1/2 19909.3 1.4 88.62 1.4 (4.45±0.07)×10−1

Junction 2/2 19717.4 1.2 89.7 1.2 (4.55±0.06)×10−1

Junction 3/2 19761.7 1.3 94.2 1.3 (4.77±0.07)×10−1

Ohmic 1/2 12884.09 1.0 57.20 1.0 (4.44±0.08)×10-1

Ohmic 2/2 12624.56 .50 41.00 .48 (3.25±0.04)×10-1

Ohmic 3/2 12809.46 2.8 52.40 3.0 (4.1±0.2)×10−1
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Energy Resolution by Detector Side

● Here the Americium peak is shown
● Selected the second run with best measurements 
● Ohmic side is better than junction side due to propagation of uncertainties
● Combined plot has best resolution because it contains more information

Side run/peak Mean Uncertainty Sigma Uncertainty Relative resolution

Junction 2/2 19717.4 1.2 89.7 1.2 (4.55±0.06)×10−1

Ohmic 2/2 12624.56 .50 41.00 .48 (3.25±0.04)×10-1

Combined 2/2 15160.33 .64 48.72 .62 (3.21±0.04)×10−1
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Position Resolution
● Calculated a scaling factor from the three positions for time and energy
● Picked with lowest uncertainty
● Applied to data to calculate mean, standard deviation and uncertainties
● Not enough bins for timing fit to be reliable
● Faster DAQ would increase binning
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Time domain versus Energy domain

● Agreement within uncertainties on measurements in energy domain
● Better resolution with energy domain

○ Best at central position

Time 

Energy

Run number Sd (mm) uncertainty Relative 
uncertainty

1(lower) 2.18 .03 1.38%

2(upper) 1.80 .03 1.67%

3 (central) 1.66 .02 1.20%

Run number Sd (mm) uncertainty Relative 
uncertainty

1(lower) 1.45 ±0.02 1.75%

2(upper) 1.41 ±0.02 1.41%

3 (central) 1.20 ±0.02 1.67%
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Conclusions of Experimental Section

● In combination with the DAQ, we observe 
possible explanations to improve the timing 
resolution

● With the class A detectors, we do not expect to 
see marked differences in the timing resolution 
when compared with the class B detector.

● Future Analysis with Class A detectors coming 
soon

● A desired timing resolution of ~30 nanoseconds 
therefore depends mostly on a faster data 
acquisition system. 
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Outlook: GEANT4 simulations of C12+C12 exit 
channels

Source: Marcel Heine, Pixel calibration, May 7th 2021

Timing          Distinguish alphas from protons
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12C+12C→20Ne∗+α,Erel= 2.5 MeV, Isotropic Emission

● r= 5 cm, 7%, centered
● ∆E= 2%
● Micron Super X31.
● 1. bare distribution
● 2. + acceptance effects
● 3. + detector resolution

Next step: 12C + 16O Source: Marcel Heine, Pixel calibration, May 7th 2021
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Thank you for your time!

Acknowledgments: A special thanks to Marcel Heine, Sandrine Courtin, Emma Monpribat, and 
the rest of the DNE and STELLA group. 
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Appendices 



run/peak Mean Uncertainty Sigma Uncertainty Relative resolution [%]

1/1 12099.28 .89 59.36 .89 (4.44±0.08)×10-1

1/2 12884.09 1.0 57.20 1.0 (4.44±0.08)×10-1

1/3 13647.32 3.0 59.53 3.1 (4.4±0.2)×10-1

2/1 11846.48 .62 46.72 .65 (3.94±0.05)×10-1

2/2 12624.56 .50 41.00 .48 (3.25±0.04)×10-1

2/3 13358.10 1.6 41.54 1.7 (3.1±0.1)×10-1

3/1 12017.70 2.8 55.62 2.6 (4.6±0.2)×10−1

3/2 12809.46 2.8 52.40 3.0 (4.1±0.2)×10−1

3/3 13538.83 9.6 43.73 11 (3.2±0.8)×10−1

Energy Resolution by position:ohmic



Energy Resolution by position: combined Junction side

run/peak Mean Uncertainty Sigma Uncertainty Relative resolution

1/1 18686.8 1.5 92.7 1.4 (4.96±0.07)×10−1
1/2 19909.3 1.4 88.62 1.4 (4.45±0.07)×10−1
1/3 21078.1 5.7 96.4 5.2 (4.6±0.2)×10−1
2/1 18508.8 1.4 95.5 1.4 (5.16±0.08)×10−1
2/2 19717.4 1.2 89.7 1.2 (4.55±0.06)×10−1
2/3 20882.8 4.0 95.8 4.6 (4.6±0.2)×10−1
3/1 18545.7 1.5 98.0 1.4 (5.29±0.08)×10−1

3/2 19761.7 1.3 94.2 1.3 (4.77±0.07)×10−1

3/3 20927.4 4.5 94.0 3.8 (4.5±0.2)×10−1



Energy Resolution by position: combined Junction + Ohmic side

run/peak Mean Uncertainty Sigma Uncertainty Relative resolution

1/1 14435.03 .78 67.55 .58 (4.68±0.04)
×10−1

1/2 15387.80 .80 52.83 .80  (3.43±0.05)
×10−1

1/3 16299.15 2.5 54.44 2.4 (3.3±0.1)×10−1

2/1 14230.04 .79 53.43 .78 (3.75±0.05)
×10−1

2/2 15160.33 .64 48.72 .62 (3.21±0.04)
×10−1

2/3 16048.93 2.3 49.50 2.2 (3.1±0.1)×10−1

3/1

3/2

3/3
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Triple Gauss fit
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Mesh
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