ASSESSMENT OF SCINTILLATING DETECTORS FOR SPACE RADIATION PROTECTION

HUET Thomas (M2:PSA)

Supervisors: Marie VANSTALLE & Alexandre SECHER

Space radiation protection

GCR (Galactic Cosmic Rays) = main hindrance for long-term exploratory missions in deep space

- Important Z range: from ¹H to ²³⁸U
- Energies around 2GeV/n
- Lack of cross-sections data ⇒ Need of measurements on tissueequivalent + shielding targets

[R.A. Mewaldt, 1988]

Danger for the astronaut's health

- Ions inside matter: Bragg Peak
- 3-years mission to Mars: dose of approximately 1 Sv, increasing mortality due to radiation up to 10%

[Krämer et al., 2016]

	Absorbed dose (Gy)*	Effective dose (Sv)	Fatal risk, % (95% CI)		
			Men (age 40 years)	Women (age 40 years)	
Lunar mission (180 days)	0.06	0.17	0.68% (0.20–2.4)	0.82% (0.24–3.0)	
Mars orbit (600 days)	0.37	1.03	4.0% (1.0–13.5)	4.9% (1.4–16.2)	
Mars exploration (1000 days)	0.42	1.07	4.2% (1.3–13.6)	5.1% (1.6–16.4)	

Calculations are at solar minimum, where GCR dose is highest behind a 5 g/cm² aluminium shield. *Mean for tissues known to be sensitive to radiation and at risk of cancer² including lung, colon, stomach, bladder, bone marrow, and breast and ovaries in women.^{2,3} Competing causes of death are included in calculations because they decrease risk probabilities if high (ie, >5%).

Table: Radiation risks for men and women on missions to the moon or Mars

[Cucinotta, 2006]

CLINM experiment - DeSIs

- (Cross-sections of Light Ion and Neutron Measurements)
- Cross-sections measurements with incident beams of ⁴He, ¹²C, ¹⁶O, ⁵⁶Fe from 400 MeV/u (GSI-SIS) to 4 GeV/u (FAIR)

Internship goals

- Choose CeBr₃ detector because fast and good energy resolution
- Assessement of CeBr₃ detector:
- Gamma detector \rightarrow caracteristics with charged particles ?
- High light yield \rightarrow Saturation effect

Which High Voltage Supply to use ?

Energy resolution ?
 Time resolution ?
 (Determine the accuracy of the ToF measurements). We expect at least 200-300ps in coincidence

[Millert et al., 2018]

PHITS Simulation Peak Energy (MeV)

Cerium bromide detector

- Fast inorganics scintillator Provided by Advatech
- PhotoMultiplicator Hamamatsu (R6231-100)
 Manufacturer voltage supply of 1200V
- Theoretical values

Decay time	17ns		
Time resolution	0.2ns		
Energy resolution (FWHM)	3.6% at 662keV		

Encapsulation:

- 0.4mm of Aluminum
- 1mm of Teflon

Phoswich detector

- Use as a benchmark detector, for time resolution (coincidence)
- Photomultiplicator PHOTONIS (XP3990)
 Manufacturer voltage supply of 1300V
- Theoretical values

Nal(TI)	Decay time	230ns		
	Time resolution	4.07ns		
	Energy resolution (FWHM)	7% at 662keV		
LaBr ₃ (Ce)	Decay time	16ns		
	Time resolution	0.2ns		
	Energy resolution (FWHM)	3% at 662keV		

- Lanthanum bromide crystal (1''x1''x2'')
- Sodium iodide crystal (1''x1''x6'')

Encapsulation (hypothesis):

1.5mm of Aluminum

Acquisition system

- WaveCatcher L.A.L. (8-channel)
- PXI National Instrument (PXIe-1071)
 Support the software which is used to control the wavecatcher

Energy resolution

3 gamma sources:

60Co (1173keV & 1333keV), 137Cs (662keV) and 22Na (511keV & 1274keV)

Energy resolution CeBr3

Energy resolution CeBr3

Better energy resolution for higher voltages (expected behaviour) Far from the 3% announced by the manufacturer

Energy resolution Phoswich

900V: χ²/NDf = 1.28 1000V: χ²/NDf = 16.21

Energy resolution Phoswich

High FWHM/E especially for small energies (~25% for E_{γ} =662keV). Resolution dominated by Nal \rightarrow separate Nal and LaBr₃ with pulse shape analysis

Charge histogram 1100V with ⁶⁰Co source Identification of the two gamma rays?

Integrate the signal on a long time period (Qslow – 2000ns) and on a short time period (Qfast – 60ns)

Distinguish two groups: one corresponding to the NaI crystal events and the other to the $LaBr_3$ crystal events

Separation of the two signals is incomplete, the resolution of the Nal still dominates

- High voltage supply value may not be appropriate
- Rebound phenomenon was observed on the signal \rightarrow Use of an attenuator

Saturation effect

- CYRCé: Cyclotron (IPHC) accelerate protons up to 25MeV
- For high voltage supply \rightarrow saturation effect observed

20 positions 20 attenuation (Al foil) 20 proton energies from 4.03MeV to 23.71MeV

Saturation effect - CYRCé

Detector	High Voltage	γ sources and proton energy (MeV)
CeBr ₃	600V, 700V & 800V	137Cs; 60Co; 22Na
		23.71; 22.30; 20.90; 17.83; 16.08; 14.17; 12.02; 10.80; 9.56
Phoswich	900V & 1000V	137Cs; 60Co; 22Na
		23.71; 22.30; 21.60; 20.90; 19.46; 18.65; 17.83

- Before entering the CeBr₃ detector, the protons are going through 48.85mm of air, 0.4mm of Aluminum and 1mm of Teflon.
- Before entering the Phoswich detector, the protons are going through 48.85mm of air and 1.5mm of Aluminum.

CeBr3	E _{exit} (MeV)	23.71	22.30	20.90	17.83	16.08	14.17	12.02	10.80
	E _f (MeV)	20.61	19.03	17.44	13.80	11.60	9.02	5.66	3.14
Phoswich	E _{exit} (MeV)	23.71	22.30	21.60	20.90	19.46	18.65	17.83	
	E _f (MeV)	15.42	13.39	12.34	11.24	8.75	7.17	5.31	

Saturation effect CeBr3

Important saturation effect for supply voltages of 800V and 700V.

Saturation effect Phoswich

Important saturation effect for supply voltages greater than 1000V

Outcomes and prospects

- High voltage supply chosen for Cerium bromide detector: 600V
- High voltage supply chosen for Phoswich detector: 900V
- Another experiment with 4MeV Van de Graaff accelerator (IPHC). Targets: ²⁷Al (E_{γ} from 5 to 12 MeV), ⁵⁰Ti (E_{γ} from 5 to 7 MeV) and ⁵⁸Ni (E_{γ} from 5 to 10MeV).
- Calibration in Time for both detectors (Coïncidence)
 Determine the accuracy of the ToF measurements

Compare results with Monte Carlo simulation (e.g. Geant4)

Thanks for your attention.

Question ?

References

[R.A. Mewaldt, 1988] - R.A. Mewaldt, Elemental Composition and Energy Spectra of Galactic Cosmic Rays, in Interplanetary Particle Environment. *JPL Publication*. 1988

[Krämer et al., 2016] - Krämer, M. et al. Helium for radiotherapy? Physical and biological verifications of a novel treatment modality. *Med.Phys.* 1995-2004

[Cucinotta, 2006] - Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. *Lancet Oncol.* 2006

[Miller et al., 2018] - Miller et al., Investigation of the LaBr3 scintillator response to heavy ions. *Radiation Measurements*. 2018

Bragg Peak

At those energies, the energy loss per unit distance dE/dx is dominated by the inelastic collistions with the electrons of the target medium.

Bethe-Bloch formula :

$$\frac{dE}{dx} = \frac{4\pi e^4 Z_t Z_p^2}{m_e v^2} \left[\ln \frac{2m_e v^2}{\langle I \rangle} - \ln(1-\beta^2) - \beta^2 - \frac{C}{Z_t} - \frac{\delta}{2} \right]$$

Where Zp and Zt correspond to the nuclear charge of the projectile and the target, m_e and e to the mass and the charge of the electron, < I > to mean ionization energy of the target medium, v to the speed of the projectile, $\beta = v/c$, C to the charge sreening constant and δ the correction factor of charge density.

Recoil proton telescope

The RPT is based on the detection of the recoil proton elastically scattered by a neutron in a thin hydrogenated target. The energy of the recoil proton E_p is related to the incident neutron energy E_n by the relationship:

$$E_n = \frac{E_p}{\cos \theta}$$

where θ is the angle between the incident neutron and the recoil proton directions.

Full Width at Half Maximum

$$\frac{FWHM}{E} = 2.35 \frac{\sigma}{C}$$

 σ is the standard deviation and C is the mean value for the charge.

