

Etude de la structure des noyaux riches en neutrons au voisinage de N=50 et optimisation du tracking gamma par réseau de neurones

Sous la supervision de Didierjean François

Présentation M2PSA, 24.06.2021, GRILLET Antoine

I. Objectif du projet

I. Objectif du projet

Nombre de Neutrons

Figure 2 : Evolution, en fonction du nombre de neutrons de l' énergie du premier état excité 2+ du Ni, Zn et Ge

I. Contexte physique : Environnement local N=50

	z	77Kr	78Kr	79Kr	80Kr	81Kr	82Kr	83Kr	84Kr	85Kr	86Kr	87Kr	88Kr	89Kr	90Kr	91Kr	92Kr	93Kr
-		76Br	77Br	78Br	79Br	80Br	81Br	82Br	83Br	84Br	85Br	86Br	87Br	88Br	89Br	90Br	91Br	92Br
	34	7.5Se	76Se	77Se	78Se	79Se	80Se	81Se	82Se	83Se	84Se	85Se	86Se	87Se	88Se	89Se	90Se	91Se
		74As	75As	76As	77As	78As	79As	80As	81As	82As	83As	84As	85As	86As	87As	88As	89As	90As
	92	73Ge	74Ge	75Ge	76Ge	77Ge	78Ge	79Ge	80Ge	81Ge	82Ge	83Ge	84Ge	85Ge	86Ge	87Ge	88Ge	89Ge
		72Ga	73Ga	74Ga	75Ga	76Ga	77Ga	78Ga	79Ga	80Ga	81Ga	82Ga	83Ga	84Ga	85Ga	86Ga	87Ga	
	30	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80Zn	81Zn	82Zn	83Zn	84Zn	85Zn		
		70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79Cu	80Cu	81Cu	82Cu				
	28	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78Ni	79Ni	80Ni					
		41		43		45		47		49		51		53		55		N

Figure 3 : Zone d'intérêt de la carte des nucléides, autour de N=50

II. Montage expérimental : AGATA + VAMOS

Figure 4 : Vue d'ensemble du spectromètre VAMOS associé à un spectromètre gamma

II. Montage expérimental : VAMOS

- 1. Une chambre à fils (TMW) située à l'entrée du spectromètre qui permet de reconstruire la direction et le point de départ des ions. Elle sert également de start pour la mesure de temps de vol des ions dans le spectromètre.
- 2. Un ensemble de deux quadrupoles et d'un dipôle magnétique afin de disperser les ions en fonction de leur masse, charge et quantité de mouvement.
- 3. Une chambre à fils (MWPPAC) utilisée comme stop pour la mesure du temps de vol dans le spectromètre.
- 4. Deux chambres à dérive pour mesurer la position et la direction des ions dans le plan focal.
- 5. Quatre chambres à ionisation pour mesurer la perte d'énergie ΔE et l'énergie totale de l'ion.

Figure 5 : Schéma de principe de VAMOS

II. Montage expérimental : AGATA

Figure 6a : Photographie de AGATA monté avec VAMOS au GANIL

Figure 6b : Photographie de AGATA constitué de 30 cristaux de germanium

II. Montage expérimental : AGATA

EUROBALL N = 239

Figure 6c : Schéma d'une vue en coupe de EUROBALL

Figure 6b : Photographie de AGATA constitué de 30 cristaux de germanium

III.1 Traitement de données : Pulse Shape Analysis (PSA)

A3

C3

A3

B3

C3

11

III.3 Traitement de données : Principe du tracking

- 1. Créer des ensembles appelés clusters
- 2. Tester les mécanismes d'interaction photon-matière pour ces clusters
- 3. Sélectionner les clusters minimisant des grandeurs choisies

Figure 10b : représentation graphique de différentes interactions photon-matière

Figure 10a : exemple de la clusterisation de 3 points en 2 photons avec deux scénarii possibles.

III.3 Traitement de données : Principe du tracking

III.3 Traitement de données : Principe du tracking

III.4 RN : Changement d'origine local

Figure 15 : Schématique du changement d'origine sur les différents points d'interaction d'un évènement de multiplicité 10

III.4 RN : Appréciation locale de l'environnement.

• Comportement 1 : Le point évalué n'appartient pas au cluster.

Figure 16 : Appréciation locale de l'évènement vue du point 1

indice du point	1
1	0
2	0
3	0
4	0
5	1
6	1
7	1
8	1
9	1
10	1

III.4 RN : Principe de fonctionnement d'un réseau de neurones

- 1. Le premier layer tiers reçoit des informations grâce à ses entrées brutes
- 2. Les layers intermédiaires reçoivent les informations traitées par le précédent et les transmettent au suivant
- 3. Le dernier layer fournit le résultat final.

Figure 13 : Schématique d'un réseau de neurones

III.4 RN : Architecture du réseau de neurones

III.4 RN : Formation des clusters

Tableau 1 : Traitement d'un événement de multiplicité 10 par le réseau neuronal

III.4 RN : Performance de l'algorithme

DAF : Deterministic Annealing Filter RN : Algorithme réseau neuronal Cônes : Méthode dites des cônes actuellement déployée lors des expériences AGATA

- Chute brutale de l'efficacité pour une énergie de 100 keV.
- Efficacité dans l'ensemble comparable aux autres programmes.
- Globalement en dessous pour une énergie de 2500 keV.

	Efficacité DAF (%)	Efficacité RN (%)	Efficacité Cônes (%)
100 keV			
M2	63.5	67.6	64.2
M5	60.3	62.9	63.3
M15	62.8	52.4	59.7
M30	60.1	46.0	54.5
300 keV			
M2	54.0	58.8	54.6
M5	50.4	53.4	51.8
M15	49.0	52.9	47.3
M30	45.6	45.7	41.9
1000 keV			
M2	34.8	34.5	34.8
M5	32.1	32.8	32.5
M15	29.5	33.7	28.8
M30	26.5	25.1	24.6
2500 keV			
M2	21.1	19.9	21.0
M5	19.5	18.8	19.6
M15	17.6	15.1	17.2
M30	15.8	13.9	14.6

Tableau 2 : Récapitulatif de l'efficacité des différents algorithmes à énergie et multiplicité variables

Figure 19 : Exemple de fit d'un pic à 791.6 keV

Gamma à arranger en un schéma de niveaux

Gammas du germanium 80, ne seront pas étudiés

Energie [KeV]	Intensité [Nb Coups]	Intensité relative
1421.0	1921 (+- 205)	100(10)
791.6	1030 (+- 115)	53.6(6)
1302.9	654 (+- 87)	34.0(4)
1020.7	501 (+- 58)	26.0(3)
699.1	429 (+- 57)	22.3(3)
658.7	331 (+- 72)	17.2(3)
1082.1	272 (+- 44)	14.1(2)

Tableau 3 : Récapitulatif des gammas du Germanium 81

Principe de "gate" : Sélection des événements ayant un gamma d'une énergie comprise entre deux énergies choisies [gate_inf ; gate_sup].

Energie	1421.0	791.6	1302.9	1020.7	699.1
1421.0	//	Vu		Vu	
791.6	Vu	//		Vu	
1302.9		~Vu~	//		
1020.7	Vu	Vu		//	Vu
699.1	Vu			Vu	//

Tableau 4 : Récapitulatif des gates sur les différents pics du Germanium 81

Figure 20a : Spectre Germanium 81 gaté sur pic à 1421 keV

- On note une claire cascade de E2 avec les gammas de 1421.0, 791.6 et 1020.7.
- Les placements des gammas à 1302.9 et 699.1 restent incertains. N'ayant pas d'informations sur les niveaux desquels ils sont émis, on ne peut que attribuer les niveaux sur lesquels ils arrivent

Figure 21 : Proposition de schéma de niveaux germanium 81

Merci de votre attention

SLIDES BACKUP

III. Spectre dE(E)

III. Spectre Z(M)

III. Spectre Z(M); Z=32

III. Spectre Z(M)

III. Spectre Z(M); Z=32

III. Spectre M ; Z=32

III. Spectre EGamma

III. Spectre EGamma ; Z=32

III. Spectre EGamma ; Se_83

38

IV. Analyse Se_83

39

IV. Spectre Se_83 : pic 1296

OBJ

IV. Spectre Se_83 : pic 1296

41

IV. Tableau Pic Se_83

 Energie [KeV]	Intensité [Nb Coups]	Intensité relative
1807.9	5469(560)	100(10)
1296.7	4344(444)	79(8)
490.9	3593(370)	65(7)
180.0	2399(245)	43(4)
668.0	2269(257)	41(4)
682.5	1951(208)	35(4)
1455.2	1783(194)	32(3)
1418.8	1726(223)	31(4)
1003.9	1561(170)	28(3)
511.0	749(87)	13(2)

IV. Spectre Se_83 : Gate 1807.9

IV. Tableau gating Se_83

Energie	1807.9	1296.7	490.9	180.0	668.0	682.5	1455.2	1418.8	1003.9	511.0
1807.9	//		Vu	Vu						
1296.7		//	Vu	Vu	Vu				Vu	Vu
490.9	Vu	Vu	//	Vu	Vu		Vu	Vu		
180.0	Vu	Vu	Vu	//	Vu		Vu	Vu		
668.0	Vu	Vu	Vu	Vu	//		Vu	Vu		
682.5	Vu	Vu	Vu	Vu		//				
1455.2					Vu		//	Vu		
1418.8	Vu	Vu	Vu	Vu	Vu		Vu	//		
1003.9		Vu		Vu				Vu	//	
511.0		Vu	Vu	Vu						//

IV. Se_83 : Schéma de niveau

IV. Analyse : Ge_81

IV. Tableau Pic Ge_81

Energie [KeV]	Intensité [Nb Coups]	Intensité relative
1421.0	1921 (+- 205)	100(10)
791.6	1030 (+- 115)	53.6(6)
1302.9	654 (+- 87)	34.0(4)
1020.7	501 (+- 58)	26.0(3)
699.1	429 (+- 57)	22.3(3)
658.7	331 (+- 72)	17.2(3)
1082.1	272 (+- 44)	14.1(2)

IV. Tableau gating Ge_81

 Energie	1421.0	791.6	1302.9	1020.7	699.1	658.7	1082.1
1421.0	//	Vu		Vu			
791.6	Vu			Vu			
1302.9		~Vu~					
1020.7	Vu	Vu			Vu	Vu	
699.1	Vu			Vu		Vu	
658.7 GE_80	Vu	Vu		Vu	Vu	//	
1082.1 GE_80							//

IV. Ge_81 : Schéma de niveau inspiration

IV. Ge_81 : Schéma de niveau inspiration

V. Ge_81 : Schéma de niveau propositions

		-							1020.7	
Energie	1421.0	791.6	1302.9	1020.7	699.1	658.7	1082.1	2212.6	•	
1421.0	//	Vu		Vu					791.6	69
791.6	Vu	//		Vu				2 <u>120.1</u>		
1302.9		~Vu~	//					1421.0		69
1020.7	Vu	Vu		//	Vu	Vu				
699.1	Vu			Vu	//	Vu		1 <u>302.9</u>		
658.7 GE_80	Vu	Vu		Vu	Vu	//		0.0	1421.0	
1082.1 GE_80							//	G	e_81	

V. Ge_81 : Schéma de niveau propositions

VI. Le mystère du 711 KeV

53

isomer at 679 keV and $\frac{1}{2}^{-}$ for the 896 keV level, but that no completely firm assignment can be made for them.

The level at 711 keV can be assigned $\frac{7}{2}^{-}$ or $\frac{5}{2}^{+}$ from selection rules alone. The available level systematics given in fig. 10, and the presently measured level half-life of 3.9 ± 0.2 ns both strongly favour the $\frac{5}{2}^{+}$ alternative. The multipolarity is probably almost purely E2, implying a hindrance factor $F_w = 26.6 \pm 1.4$. The E2 transition from the $\frac{5}{2}^{+}$ intruder state to the $\frac{9}{2}^{+}$ ground state in the isotonic nucleus ⁸³Se has $F_w \approx 14$ [ref. ³⁷)], and it is thus likely that this state is of similar type. Firm assignments can be given to only a few of the higher excited states. The

VI. Le mystère du 711 KeV : doppler_corr

VI. Le mystère du 711 KeV : monte_carlo (theta rand)

VI. Le mystère du 711 KeV : Ge_81

VI. Le mystère du 711 KeV : theta_real

VI. Le mystère du 711 KeV : monte_carlo (theta real)

VI. Le mystère du 711 KeV : monte_carlo (theta_real)

VI. Le mystère du 711 KeV : Ge_81

VI. Le mystère du 711 KeV : monte_carlo (theta_rand)

Cluster 1 Cluster 2 Cluster 3 Noise

TABLE DES MATIÈRES

I. Contexte physique

Schéma de niveau, couche N=50, modèle en couche

II. Dispositif expérimental

Agata + Vamos

III. Traitement des données

PSA, DAF, RNN

IV. Analyse

Germanium 81

V. Résultats ouverture

Schéma de niveau Ge 81, suite algorithme

