

Hugo CALLONNEC

Development of a new experimental method to simultaneously measure inclusive and exclusive values of the ckm matric element |Vub| in hadronically tagged events with Belle

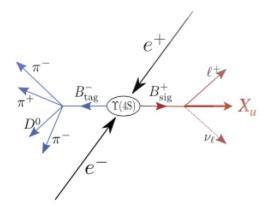
Supervised by Florian Bernlochner

01 March 2021 to 01 August 2021

Outline

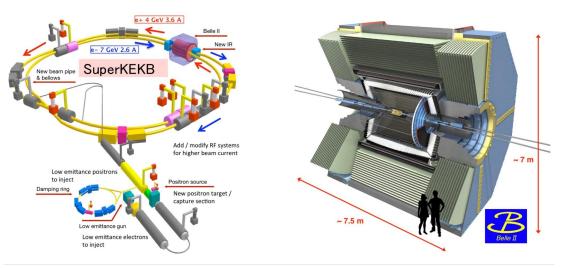
- Introduction
- Inclusive & Exclusive measurement idea
- Implementation and fitting procedure
- $|V_{ub}|$ calculation and toy generation
- Results
- Conclusion

Scientific context


- The Standard Model is very successful but has limits (CP Violation, dark matter and energy, neutrino masses, matter/antimatter asymmetry, ...)

- CKM matrix:
(Predicted unitary)
$$\begin{pmatrix}
d'\\
s'\\
b'
\end{pmatrix}_{\text{weak}} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub}\\
V_{cd} & V_{cs} & V_{cb}\\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
d\\
s\\
b
\end{pmatrix}_{\text{mass}}$$

- Need to obtain a precise measurement: B factories


Belle & Belle II experiment

1999-2008: BaBar experiment 1999-2010: Belle experiment 2018- : Belle II experiment

γ(4s) meson decay process

23/06/2021

Supe KEKB and Belle II

	KEKB/Belle	SuperKEKB/Belle II
Integrated Luminosity	1ab ⁻¹	50ab ⁻¹

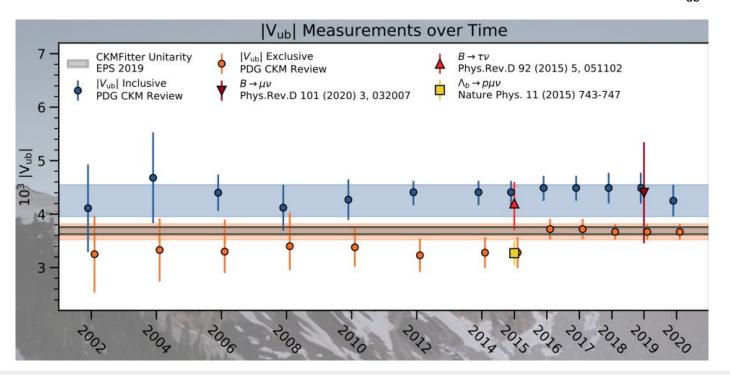
Hugo Callonnec - M2 PSA Oral defence | Introduction

Measurement of |V_{ub}|and |V_{cb}|

2 differents methods to measure $|V_{ub}|$ and $|V_{cb}|$:

- Exclusive:

- Focus on a single final state as: $B \to \pi^0 l \overline{\nu}_l$ or $B \to \pi^{\pm} l \overline{\nu}_l$
- Difficulties: low signal yield
- Inclusive:
 - Considering all final states containing an up quark: $B \to X_u l \overline{\nu}_l$ (for $|V_{ub}|$) or charm quarks $B \to X_c l \overline{\nu}_l$ (for $|V_{cb}|$)
 - Difficulties: Background contamination

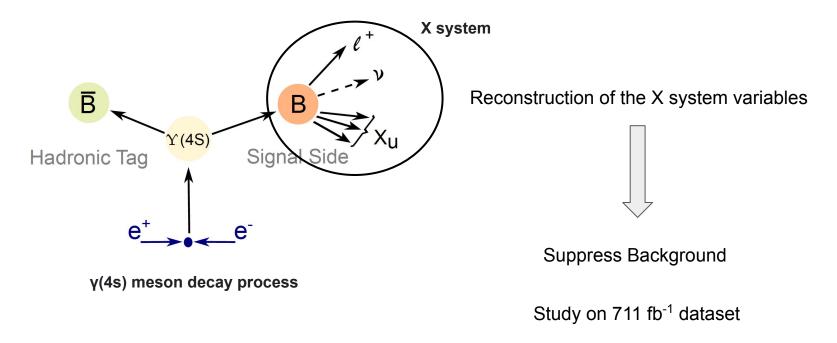

	Belle/Belle II	LHCb
Exclusive measurement	$ V_{ub} / V_{cb} $	$ V_{ub} / V_{cb} $
Inclusive measurement	$ V_{ub} / V_{cb} $	Not performed yet

23/06/2021

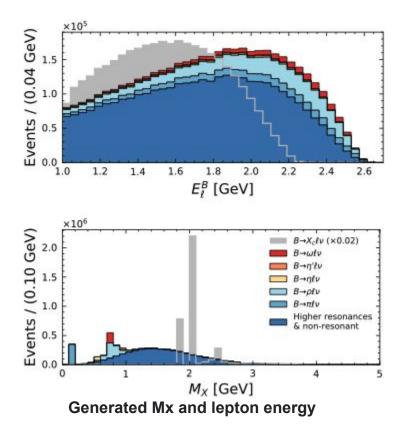
Hugo Callonnec - M2 PSA Oral defence | Introduction

Measurement of |V_{ub}|and |V_{cb}|

These two methods exhibit a sizeable tension of respectively 3 and 3.5 standard deviations $|V_{ub}|$ and $|V_{cb}|$:



23/06/2021


Hugo Callonnec - M2 PSA Oral defence | Introduction

Inclusive & Exclusive measurement idea

The idea is to measure both exclusive & inclusive $|V_{ub}|$ at the same time:

Background suppression

Main sources of Background:

- $B \rightarrow X_c$ lv decays
- continuum processes

Background suppression performed by Neural Network

Clear separation only possible in certain kinematic regions, e.g. lepton endpoint or low M_x

23/06/2021

Hugo Callonnec - M2 PSA Oral defence | Incl.&Excl. measurement idea

System reconstruction

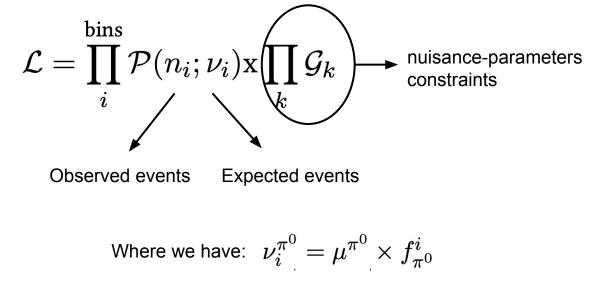
Finally we can reconstruct the kinematics variables of the system:

• The momentum of the X system:

$$p_{\mathrm{X}} = \sum_{i} (\sqrt{m_{\pi}^2 + |p_{\mathrm{i}}|^2}, p_{\mathrm{i}}) + \sum_{i} (E_i, k_i)$$

• We deduce the mass of the X system:

$$M_{\mathrm{X}} = \sqrt{(p_{\mathrm{X}})^{\mu} * (p_{\mathrm{X}})_{\mu}}$$


• Thefour-momentum transfer squared:

$$q^2 = (p_{\rm sig} - p_{\rm X})^2$$

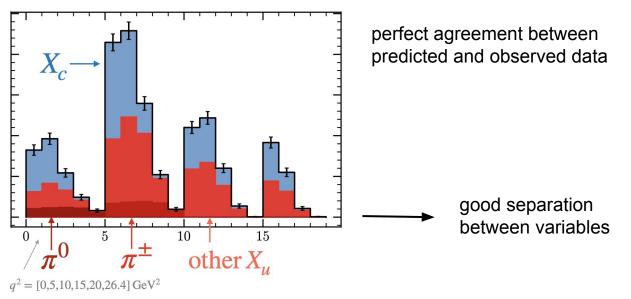
23/06/2021

Hugo Callonnec - M2 PSA Oral defence | Incl.&Excl. measurement idea

From the previous determined variables, we run a binned likelihood fit:

Divided into: - $B \rightarrow pi^0 lv$

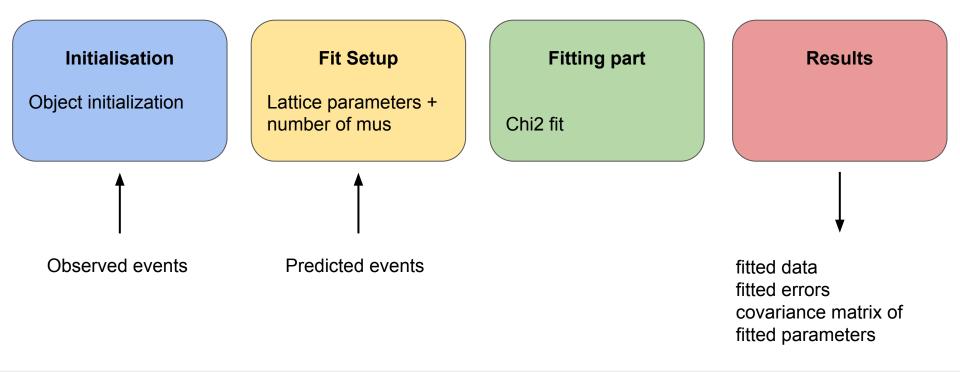
- $B \rightarrow pi^+ lv$
- $B \rightarrow Xu Iv$
- $B \rightarrow Xc \ lv$ + others background


Different fit setup:

	mu size = 3	mu size = 4	mu size = 6	mu size = 9	mu size = 10
pi0	mu0	mu0	mu0	mu0	mu0
pip		mu1			mu1
	mu1	mu2	mu1 (n $_{\pi}=0$)	mu1 (n $_{\pi}=0$)	mu2 (n $_{\pi}=0$)
Xu			mu2 (n $_{\pi}=1$)	mu2 (n $_{\pi}=1$)	mu3 (n $_{\pi} = 1$)
			mu3 (n $_{\pi}=2$)	mu3 (n $_{\pi}=2$)	mu4 (n $_{\pi} = 2$)
			mu4 (n $_{\pi}=3$)	mu4 (n $_{\pi} = 3$)	mu5 (n $_{\pi}=3$)
	mu2	mu3	mu5	mu5 (n $_{\pi}=0$)	mu6 (n $_{\pi}=0$)
bkg				mu6 (n $_{\pi}=1$)	mu7 (n $_{\pi}=1$)
				mu7 (n $_{\pi}=2$)	mu8 (n $_{\pi}=2$)
				mu8 (n $_{\pi}=3$)	mu9 (n $_{\pi}=3$)

23/06/2021 Hugo Callonnec - M2 PSA Oral defence | Implementation & fitting procedure

Proof of the concept:


$$N_{\pi^{\pm}} = 0$$
 $N_{\pi^{\pm}} = 1$ $N_{\pi^{\pm}} = 2$ $N_{\pi^{\pm}} \ge 3$

q² distribution resulting of an Asimov fit

23/06/2021 Hugo Callonnec - M2 PSA Oral defence | Implementation & fitting procedure

Fitting procedure:

23/06/2021 Hugo Callonnec - M2 PSA Oral defence | Implementation & fitting procedure

|V_{ub}| exclusive calculation

We start from the formulas:

$$|V_{ub}|_{exclusive, \pi^0} = \sqrt{rac{\mathcal{B}(B \to \pi^0 l^+ \overline{\nu}_l)}{\tau_B \Delta \Gamma(B \to \pi^0 l^- \overline{\nu}_l)}}$$

$$|\mathrm{V}_{\mathrm{ub}}|_{\mathrm{exclusive, }\pi^{\pm}} = \sqrt{rac{\mathcal{B}(\mathrm{B}
ightarrow \pi^{\pm} l^{+} \overline{
u}_{l})}{ au_{\mathrm{B}} \Delta \Gamma(\mathrm{B}
ightarrow \pi^{\pm} l^{-} \overline{
u}_{l})}}$$

In case we have the same mu for pi⁰ and pi⁺ we use:

$$|V_{ub}|_{ ext{exclusive}, \pi^{\pm}} = \sqrt{rac{\mathcal{B}(B o \pi^{\pm} l^{+} \overline{
u}_{l})}{ au_{B} \Delta \Gamma(B o \pi^{\pm} l^{+} \overline{
u}_{l})}}$$

23/06/2021 Hugo Callonnec - M2 PSA Oral defence | |V_{ub}| calculation and toy generation

Where:

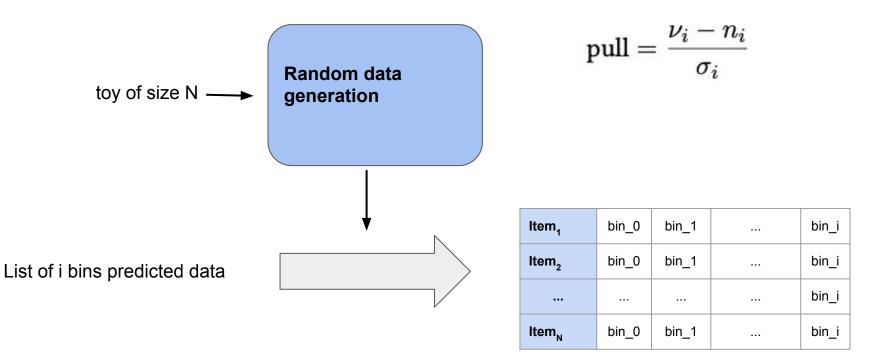
- $\mathcal{B}(B \to \pi^0 l \cdot \overline{\nu}_l) = mu_{\pi^0} \mathbf{x} \mathcal{B}_{MC}(B \to \pi^0 l^+ \overline{\nu}_l)$
- $\Delta\Gamma({
 m B} o\pi^0 l^{-}\,ar
 u_l)$ is the integral of q² distribution
- $au_{
 m B}$ is the B meson lifetime

|V_{ub}| inclusive calculation

We start from the formula:

$$\begin{split} |V_{ub}| &= \sqrt{\frac{\Delta \mathcal{B}(B \to X_u l \ \overline{\nu}_l)}{\tau_B \Delta \Gamma(B \to X_u l \ \overline{\nu}_l)}} \qquad \Delta \mathcal{B}(B \to X_u l \ \overline{\nu}_l) \Big|_{\mathsf{E}_l} > 1 \text{GeV} \end{split}$$
With:

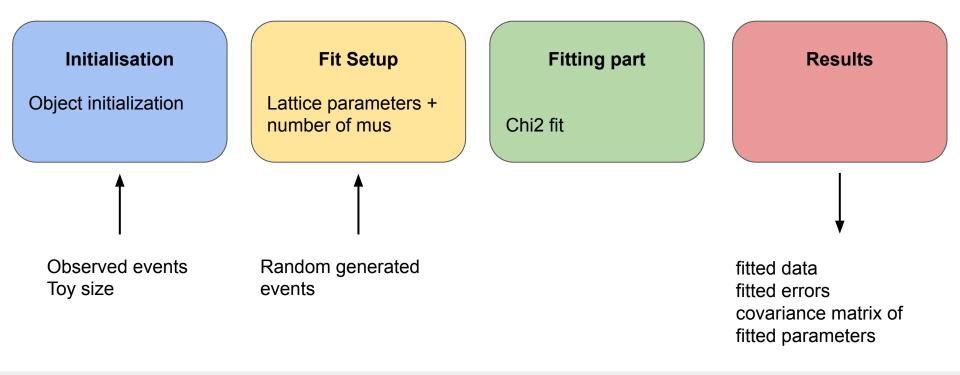
$$\Delta \mathcal{B}(B \to X_u l \ \overline{\nu}_l) = \underbrace{\epsilon_{\Delta BF}}_{K \Delta BF} * (m u_{\pi^0} \times \mathcal{B}_{MC}(B \to \pi^0 l \ \overline{\nu}_l) \\ + m u_{\pi^{\pm}} \times \mathcal{B}_{MC}(B \to \pi^{\pm} l \ \overline{\nu}_l) \\ + m u_{X_u} \times \mathcal{B}_{MC}(B \to X_u l \ \overline{\nu}_l)_{correct})$$
And:


$$\mathcal{B}_{MC}(B \to X_u l \ \overline{\nu}_l)_{correct} = \mathcal{B}_{MC}(B \to X_u l \ \overline{\nu}_l)$$

$$-\mathcal{B}_{MC}(B \to \pi^{0}l \ \overline{\nu}_{l}) \\ -\mathcal{B}_{MC}(B \to \pi^{\pm}l \ \overline{\nu}_{l})$$

Toy generation

Instead of using prediction, we generate random data:


We define:

23/06/2021 Hugo Callonnec - M2 PSA Oral defence | |V_{ub}| calculation and toy generation

New Fitting procedure:

23/06/2021 Hugo Callonnec - M2 PSA Oral defence | |V_{ub}| calculation and toy generation

Name	Value	Hesse Error
mu_sig_pi0	1.00	0.28
mu_sig_pip	1.00	0.25
mu_sig_Xu	1.00	0.12
mu_bkg	1.00	0.13
b0p	0.407	0.014
b1p	-0.65	0.09
b2p	-0.5	0.4
b3p	0.4	0.7
b00	0.507	0.020
b10	-1.77	0.10
b20	1.3	0.4
b30	4.2	1.0

Case of len(mu) = 4

 $|V_{ub}|_{exclusive, \pi^0} = (4.20 \pm 0.59) \times 10^{-3}$

 $|V_{ub}|_{exclusive, \pi^{\pm}} = (4.24 \pm 0.52) \times 10^{-3}$

$$|V_{ub}|_{inclusive} = (4.40 \pm 0.30) \times 10^{-3}$$

$$\begin{aligned} \frac{\mathrm{V_{ub}}|_{\mathrm{exclusive,} \pi^{0}}}{|\mathrm{V_{ub}}|_{\mathrm{inclusive}}} &= 0.96 \pm 0.14 \frac{|\mathrm{V_{ub}}|_{\mathrm{exclusive,} \pi^{\pm}}}{|\mathrm{V_{ub}}|_{\mathrm{inclusive}}} = 0.97 \pm 0.14 \\ \frac{|\mathrm{V_{ub}}|_{\mathrm{exclusive,} \pi^{0}} + |\mathrm{V_{ub}}|_{\mathrm{exclusive,} \pi^{\pm}}}{|\mathrm{V_{ub}}|_{\mathrm{inclusive}}} = 1.92 \pm 0.23 \end{aligned}$$

23/06/2021

Name	Value	Hesse Error
mu_sig_pi0	1.00	0.22
mu_sig_pip	1.00	0.23
mu_sig_Xu	1.00	0.06
mu_bkg	1.000	0.017
b0p	0.407	0.014
b1p	-0.65	0.09
b2p	-0.5	0.4
b3p	0.4	0.7
b00	0.507	0.019
b10	-1.77	0.10
b20	1.27	0.34
b30	4.2	0.9

$$|V_{ub}|_{exclusive, \pi^0} = (4.20 \pm 0.56) \times 10^{-3}$$

 $|V_{ub}|_{exclusive, \pi^{\pm}} = (4.24 \pm 0.51) \times 10^{-3}$

$$|V_{ub}|_{inclusive} = (4.40 \pm 0.20) \times 10^{-3}$$

$$\begin{aligned} \frac{|\mathbf{V}_{ub}|_{\text{exclusive, }\pi^{0}}}{|\mathbf{V}_{ub}|_{\text{inclusive}}} &= 0.96 \pm 0.13 \frac{|\mathbf{V}_{ub}|_{\text{exclusive, }\pi^{\pm}}}{|\mathbf{V}_{ub}|_{\text{inclusive}}} = 0.97 \pm 0.13 \\ \frac{|\mathbf{V}_{ub}|_{\text{exclusive, }\pi^{0}} + |\mathbf{V}_{ub}|_{\text{exclusive, }\pi^{\pm}}}{|\mathbf{V}_{ub}|_{\text{inclusive}}} = 1.92 \pm 0.22 \end{aligned}$$

23/06/2021

Name	Value	Hesse Error	Case of len(mu) = 3
mu_sig_pi	1.00	0.21	
mu_sig_Xu	1.00	0.11	$ V_{ub} _{exclusive} = (4.24 \pm 0.45) \times 10^{-3}$
mu_bkg	1.00	0.12	
b0p	0.407	0.014	$ \mathbf{v} = (4.99 \pm 0.90) \times 10^{-3}$
b1p	-0.65	0.09	$ V_{ub} _{ m inclusive} = (4.28 \pm 0.29) imes 10^{-3}$
b2p	-0.5	0.4	
b3p	0.4	0.7	
b00	0.507	0.020	$\frac{ V_{ub} _{exclusive}}{ V_{ub} _{exclusive}} = 0.99 \pm 0.12$
b10	-1.77	0.10	$ V_{ub} _{inclusive}$
b20	1.3	0.4	
b30	4.2	1.0	

23/06/2021

Hugo Callonnec - M2 PSA Oral defence | Results

				Case of len(mu) = 3	(including high Mx)
N	ame	Value	Hesse Error		
mu_s	ig_pi	1.00	0.17		$(1 + 0, 14) = 10^{-3}$
mu_się	g_Xu	1.00	0.06	$ V_{ub} _{exclusive} = (4.2)$	$4 \pm 0.44) \times 10^{-5}$
mu_	_bkg	1.000	0.017		
Г	b0p	0.407	0.014	$ V_{ub} _{inclusive} = (4.2)$	$8 \pm 0.20) \times 10^{-3}$
	b1p	-0.65	0.09	ub menusive (
	b2p	-0.5	0.4		
	b3p	0.4	0.7		
	b00	0.507	0.019	$\frac{ V_{ub} _{exclusive}}{ V_{ub} _{exclusive}} =$	$= 0.99 \pm 0.11$
	b10	-1.77	0.10	$ V_{ub} _{inclusive}$	
	b20	1.27	0.34		
	b30	4.2	0.9		

23/06/2021

Toy generation results

Case of len(mu) = 3

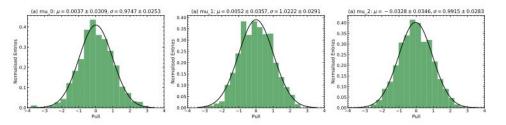


Figure 4.1: Mu of size 3 pull distribution This toy has a number of events of 1000

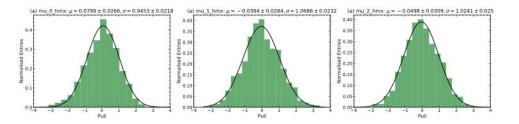


Figure 4.2: Mu of size 3 pull distribution (including high Mx) This toy has a number of events of 1000

23/06/2021

Toy generation results

Case of len(mu) = 4

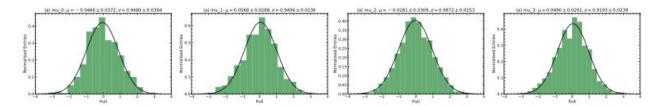


Figure 4.3: Mu of size 4 pull distribution This toy has a number of events of 1000

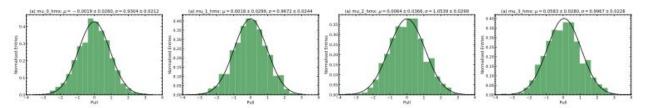


Figure 4.4: Mu of size 4 pull distribution (including high Mx) This toy has a number of events of 1000

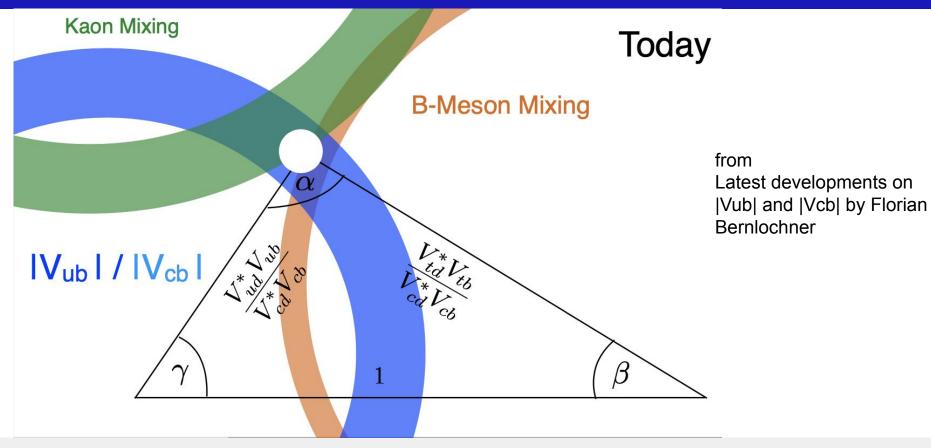
23/06/2021

Conclusion

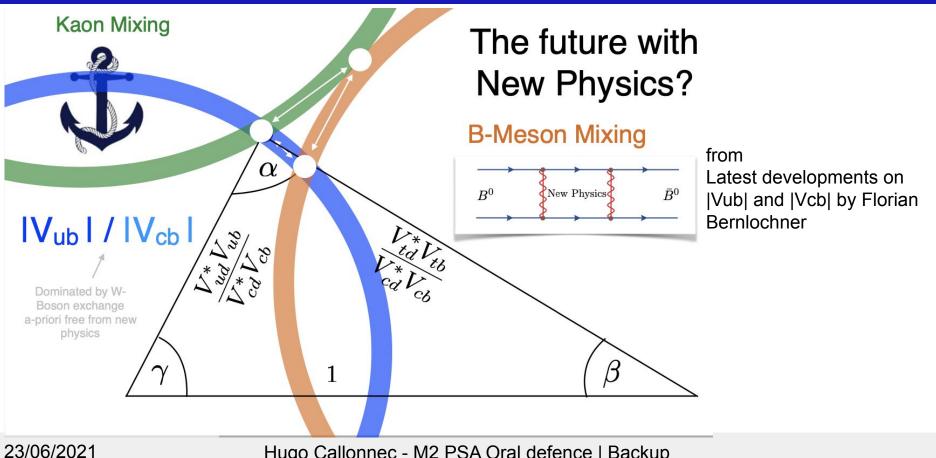
<u>|V_{ub}| calculation:</u>

- Coherent with previous calculations
- Need to be perform with other sizes of mu

- Toy generation:


- Implementation of toys is working
- Still biased

-


Thank you for your attention

23/06/2021

Hugo Callonnec - M2 PSA Oral defence | Outline

23/06/2021

B	Value B^+	Value B^0	
$B \to X_u \ell^+ \nu_\ell$			
$B o \pi \ell^+ u_\ell$	$(7.8 \pm 0.3) imes 10^{-5}$	$(1.5 \pm 0.06) \times 10^{-4}$	
$B o \eta \ell^+ u_\ell$	$(3.9 \pm 0.5) imes 10^{-5}$	-	
$B o \eta' \ell^+ u_\ell$	$(2.3\pm0.8) imes10^{-5}$	-	
$B o \omega \ell^+ \nu_\ell$	$(1.2 \pm 0.1) imes 10^{-4}$	140 C	
$B o ho \ell^+ u_\ell$	$(1.6 \pm 0.1) \times 10^{-4}$	$(2.9 \pm 0.2) \times 10^{-4}$	
$B \to X_u \ell^+ \nu_\ell$	$(2.2 \pm 0.3) \times 10^{-3}$	$(2.0 \pm 0.3) \times 10^{-3}$	

23/06/2021

$$|V_{ub}| (BLNP) = \left(4.01 \pm 0.08^{+0.15}_{-0.16} + 0.18_{-0.16}\right) \times 10^{-3},$$

$$|V_{ub}| (DGE) = \left(4.12^{+0.08}_{-0.09} \pm 0.16^{+0.11}_{-0.12}\right) \times 10^{-3},$$

$$|V_{ub}| (GGOU) = \left(4.11^{+0.08}_{-0.09} \pm 0.16^{+0.08}_{-0.09}\right) \times 10^{-3},$$

$$|V_{ub}| (ADFR) = \left(4.01 \pm 0.08^{+0.15}_{-0.16} \pm 0.18\right) \times 10^{-3}.$$

23/06/2021