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Disclaimer

® When talking about PDFs we often mean unpolarised collinear

PDFs of the proton.

® |hey are relevant in processes that involve unpolarised protons n the immtal state
and 1n which all hard scales are of the same order and much larger than Agcp.

® 'lypical situation at the LHC.

® Many other kinds of PDFs exist:

collinear nuclear PDFs,

collinear longitudinally polarised PDFs,

collinear transversely polarised PDFs,

transverse-momentum-dependent (7AD) PDFs,
unintegrated PDFs
diffractive PDFss,

® All these different PDF's are appropriate in other contexts different
from that mentioned above.



Everything starts from...

A collinear factorisation theorem:
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Everything starts from...

A collinear factorisation theorem:

Hard cross sections: Parton distribution functions (PDFs):
® process dependent, ® universal,
® high-energy dominated, ® low-energy dominated,

® computable in perturbation theory. @ perturbation theory mapplicable.

How do we determine PDFs?

Currently, the most accurate and reliable way 1s through fits to data.



The general strategy

Each box requires a choice. Different choices lead to different determinations.



The general strategy




Experimental data
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Deep Inelastic Scattering
Fixed-Target Drell-Yan
Drell-Yan Rapidity Distribution
Drell-Yan Mass Distribution
Heavy Quarks Total Cross Section
Jet Transverse Momentum Distribution
Drell-Yan Transverse Momentum Distribution
Heavy Quarks Production Single Quark Rapidity Distribution
Heavy Quarks Production Rapidity Distribution
Jets Rapidity Distribution
Dijets Invariant Mass and Rapidity Distribution
Photon Production
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The general strategy




The general strategy

Fit methodology



Fit methodologies

FParametenisation: the “standard™ approach
® Distributions are parametrised by means of the functional form:

fz(ﬂl’) — Az ani(l — ZE)&PZ(%)

with:

| o 1+ YiL
Pl =9 14 Vit + i/

® O(3-5) free parameters for each distribution.

e Asymptotic behaviour defined by the exponents a; and f.
® Typically easy to transtorm analytically in Mellin space.
® Easy to handle 1n a fit thanks to its sismplicity.

® Potential source of bias.



Fit methodologies

Parametenisation: neural networks
® Distributions are parametrised in terms of artificial NNss:
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" (sigmoid, tanh, ReLu, ...)
Input » Hidden » Output

® Flach NN has a large number free parameters.
® NNs are usually augmented with constraints in the extrap. regions:
fi(x) = A;2¥ (1 — 2)P'NNy(z) or fi(xz) = NN;(x) — NN;(1)

® NNs are flexible and thus limit biases but are harder to handle.



Fit methodologies
Fagure of menit: the ¥? defuition

® A crucial aspect in the determination of PDVFs 1s the definition of
the figure of merit to be minimised/maximised.

® A popular choice 1s the ¥? but many variants are possible:
Naat
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® No correlation, no normalisation unc.: x° = Z Z > :
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® No correlation, with normalisation unc.: x* = (
j=1
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® Nuisance parameters:

2
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® Due to the D’Agostini bias, a sound treatment of normalisation
uncertainties requires particular care (e.g the # prescription).

Z ,unc

® (Covariance matrix:



Fit methodologies
Error propagation

® A faithful determination implies a solid estimate of the uncertainty
on PDF's propagating from the experimental dataset.

1. Hessian method: the 2 is expanded around its minimum ao:

Cldah) = (mh) + 5 55| (o= an) (e — o)

N————
H. -

. . . ° ° tJ .
The Hessian matrix Hjj 1s diagonalised and an uncertainty along each
eigenvector 1s defined as Ay2 = 1 (often a larger tolerance is introduced).

2. Monte Carlo sampling: artificial replicas of the dataset generated as:

k) (k) k=1,..., Nyep

D" =D+ Moy, !

i T 0 1 Ny

rik) 1s a normally distributed and unwarnate random number. A fit 1s performed to

each replica to produce Nrep sets of distributions {fx}, such that:
N
1 rep

N Olf] and oo = /(0?) — (0)?

rep L—1
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Fit methodologies
Mmmasation and stopping

® Simple parameterisations (Q(20) free parameters) are usually

fitted using MINUIT (or similar):

® the absolute mmimum of the y? 1s found determinmisiically by Computm%
(numerically or analytically) the first derivative and moving downhill.

® A NN parameterisation (0(200) free parameters) generates a
complex parameter space impossible to explore with MINUI'T:

a genetic algorithm is often used to explore the parameter space,

@

® this avoids getting trapped into local minima of the y2

® Algorithms inspired by machine-learning techniques are being explored,
® gradient-descent based algorithms are recently also being used.

® |'he extreme flexibility of NNs may cause overfitting, :.c. statistical
fluctuations of the data sample may be unwillingly fitted:

® the cross-validation method allows one to overcome this problem.



Fit methodologies
Cross validation
® Split the dataset into training and validation subsets.
® Minimise the training 2 while monitoring the validation 2.

® Stop the fit when the validation y2 reaches its absolute minimum.
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Main PDF collaborations
Unpolarised proton PDFs
e CTEQ collaboration:

® standard parameterisation (Bernstein polynomials),

® Hessian method (with dynamical tolerance) for error propagation.

® NNPDYF collaboration:

® necural network parameterisation (feed forward NN with preprocessing),

® Monte Carlo method for error propagation.

® MSHT collaboration:

® standard parameterisation (Chebyshev polynomials),

® Hessian method (with dynamical tolerance) for error propagation.

® Other collaborations exist (e.g. ABMP, HERAPDE, (], etc.) but they

are typically less inclusive 1in terms of data.



Parton luminosities

® Interesting quantities are the so-called parton luminosities:
1 [ dy M%
Lij = —/ — fi(y, Mx)f; (—X,Mx>
S M3 /s Y ys

® Relevant for invariant mass distributions of the final state in pp
collision processes, ¢.g:

® Drell-Yan mostly sensitive to &£
e Higgs production in gluon fusion mostly sensitive to &Z,,

e W+ charm mostly sensitive to Z,,



A snapshot back in 2015
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A snapshot today
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A snapshot today
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Positivity and PDFs

® PDFs have to such to guarantee the positivity of cross sections:

® cross sections can be interpreted as probabilities = must be positive.

® Possible ways to enforce positivity are:
1. determine PDFs enforcing that a specific set of observables is positive:
® does not guarantee all possible observables to be positive.
® allows PDFs to be negative (sometimes unwanted, e.g MU generators).
2. Assume PDFs to be positive definite from the start:

® does 1t really guarantee positivity of the observables?

® Positivity has a strong impact ot PDFs:
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Positivity and PDFs
e Recently it has been proposed that PDFs in MS are positive:

It is common lore that Parton Distribution Functions (PDFs) in the MS factorization scheme
can become negative beyond leading order due to the collinear subtraction which is needed
in order to define partonic cross sections. We show that this is in fact not the case and next-
to-leading order (NLO) MS PDFs are actually positive in the perturbative regime. In order
to prove this, we modify the subtraction prescription, and perform the collinear subtraction
in such a way that partonic cross sections remain positive. This defines a factorization
scheme in which PDF's are positive. We then show that positivity of the PDFs is preserved
when transforming from this scheme to MS, provided only the strong coupling is in the
perturbative regime, such that the NLO scheme change is smaller than the LO term.

. . POS scheme with NNPDF31 nlo_as 0118 at Q% = 100.0 GeV?
® Define an ad /oc tactorisation scheme (for DIS)

in which PDFs are positive (POS scheme). N = 3.000

S 0104 » v 4 r 7/ 7
® l'ind the transtormation that gives MS PDFs 1n / f

terms of the POS ones: 008{ + v 4 f

NS o L

fMS(Q2) _ [H i _SKPOS®:| fPOS(QQ) 0061 + v 4 f f ’
27T ) 0.04 - .i 4 4 f f f
® 'T'he authors find that this transformation tends 1 4
to make PDF's more positive. 0021 - 4 A f - \
e If POS PDFs are positive (by definition) = 0.00 , -------- VU A { S 1 --------- N

MS are to be even more positive. 0.00 0.02 0.04 0.06 0.08




Positivity and PDFs

® More recently though Collins, Rogers, and Sato have found an opposite result:

® by direct computation of the PDF using its operator definition focusing on the
removal of the UV divergence.

00 MS-bar pdf
\\ * Nothing forces the pdf to
0.75¢ renorm,a be strictly positive, even
\ ak(“) f (e) for relatively large Q.
0.501
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e The question remains open: are MS PDFs allowed to go negative?



Small-x resummation

® The issue of the NLO low-x gluon PDF going negative at low scales 1s greatly
mitigated by including small-x (BFKL) resummation effects in PDF fits:

® relevant for quarkoenium production at the LHC,

® Small-x resummation makes the DGLAP evolution 1s less steep and thus

allows for a larger small-x gluon PDF that behaves as a sea-like distribution.
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