

Some news on GPDs and TDAs

from diverse reactions at JLab and EIC (+UPC)

in electroproduction and in (real or quasi-real)photoproduction.

Work *still in progress* with W. Cosyn, K Semenov-Tian-Shansky, L Szymanowski, J. Wagner

B. Pire, CPHT, CNRS, Ecole polytechnique, Palaiseau

Understanding the proton structure through GPDs

25 years of successful theoretical physics progresses \rightarrow early scaling for DVCS

First (positive) attempts to extract GPDs from DVCS (JLab program)

and TCS :

Timelike Compton scattering: exclusive photoproduction of lepton pairs

E.R. Berger , M. Diehl & B. Pire

The European Physical Journal C - Particles and Fields 23, 675–689 (2002) First-time observation of Timelike Compton Scattering

Pierre Chatagnon* and Silvia Niccola
i IJCLab

Stepan Stepanyan *Jlab* (CLAS Collaboration) (Dated: June 8, 2021)

diphoton photo-production (or electroproduction)

QED process at Born level, as DVCS and TCS!

diphoton invariant mass $M_{\gamma\gamma}$ is the large scale

simplest $2 \rightarrow 3$ process

Only the charge-odd quark GPDs contribute, contrarily to DVCS or TCS

diphoton photo-production at LO

$$\begin{aligned} \mathscr{H}^{q}(\xi) &= \int_{-1}^{1} dx CF_{q}^{V}(x,\xi) H^{q}(x,\xi) = (-e_{q}^{3}) \left[A^{V} \mathscr{H}_{A^{V}}^{q}(\xi) + B^{V} \mathscr{H}_{B^{V}}^{q}(\xi) + C^{V} \mathscr{H}_{C^{V}}^{q}(\xi) \right] \\ &= (-e_{q}^{3}) (\alpha_{1}A^{V} + \alpha_{2}B^{V}) \frac{i\pi}{\xi s^{2} \alpha_{1} \alpha_{2}} (H^{q}(\xi,\xi) + H^{q}(-\xi,\xi)) \,, \\ \mathscr{\tilde{H}}^{q}(\xi) &= \int_{-1}^{1} dx CF_{q}^{A}(x,\xi) \widetilde{H}^{q}(x,\xi) = (-e_{q}^{3}) \left[A^{A} \mathscr{\tilde{H}}_{A^{A}}^{q}(\xi) + B^{A} \mathscr{\tilde{H}}_{B^{A}}^{q}(\xi) \right] \\ &= (-e_{q}^{3}) (\alpha_{1}A^{A} + \alpha_{2}B^{A}) \frac{-i\pi}{\xi s^{2} \alpha_{1} \alpha_{2}} (\widetilde{H}^{q}(\xi,\xi) - \widetilde{H}^{q}(-\xi,\xi)) \,, \end{aligned}$$

The hard amplitude is purely imaginary and proportional to $\delta(x \pm \xi)$

Figure 2: The $M_{\gamma\gamma}^2$ dependence of the unpolarized differential cross section $\frac{d\sigma}{dM_{\gamma\gamma}^2dt}$ on a proton(left panel) and on a neutron(right panel) at $t = t_{min}$ and $S_{\gamma N} = 20 \text{ GeV}^2$ (full curves), $S_{\gamma N} = 100 \text{ GeV}^2$ (dashed curve) and $S_{\gamma N} = 10^6 \text{ GeV}^2$ (dash-dotted curve, multiplied by 10⁵).

The cross-section is large enough for JLab

diphoton photo-production at NLO

Calculate $O(\alpha_s)$ corrections : the first step of a factorization proof.

48 (=8 x 6 γ permutations) diagrams

(Oskar Grocholski MSc thesis)

Technicalities

$$\mathcal{A} = \sum_{q} \int_{-1}^{1} dx \operatorname{GPD}^{q}(x) \mathcal{T}^{q}(x), \qquad \qquad \mathcal{T}^{q}(x) = \mathcal{C}_{0}^{q} + \frac{\alpha_{s}}{2\pi} \Big(\frac{M_{\gamma\gamma}^{2} e^{\gamma}}{4\pi \mu_{R}^{2}} \Big)^{-\varepsilon/2} \Big(\frac{2}{\varepsilon} \mathcal{C}_{coll.}^{q} + \mathcal{C}_{1}^{q} \Big).$$

$$C_{coll.}^{q} = iC_{F} \times C \times \operatorname{Im}\left[\frac{3}{(x - \xi + i0^{+})(x + \xi - i0^{+})} + \frac{1}{\xi}\frac{\log\left(\frac{x - \xi + i0^{+}}{-2\xi}\right)}{x - \xi + i0^{+}} - \frac{1}{\xi}\frac{\log\left(\frac{x + \xi - i0^{+}}{2\xi}\right)}{x + \xi - i0^{+}}\right].$$

QCD evolution means : $GPD^{q}(x) = GPD^{q}_{R}(x;\mu_{F}) + \frac{\alpha_{s}}{2\pi} \left(-\frac{2}{\varepsilon} + \ln \frac{\mu_{F}^{2}e^{\gamma}}{4\pi\mu_{R}^{2}} \right) \int dx' K^{qq}(x,x') GPD^{q}_{R}(x';\mu_{F}) ,$

and you can verify that :

$$\mathcal{C}^q_{coll.}(x) = \int_{-1}^1 dy \ K^{qq}(y,x) \mathcal{C}^q_0(y).$$

Factorization is proven at NLO (first time for such a $2 \rightarrow 3$ process)

$$\mathcal{A} = \sum_{q} \int_{-1}^{1} dx \operatorname{GPD}_{R}^{q}(x; \mu_{F}) \left(\mathcal{C}_{0}^{q}(x) + \frac{\alpha_{S}}{2\pi} \left[\mathcal{C}_{1}^{q}(x) + \ln\left(\frac{\mu_{F}^{2}}{M_{\gamma\gamma}^{2}}\right) \mathcal{C}_{coll.}^{q}(x) \right] \right)$$

Phenomenolgy still to be performed!

heavy meson neutrino-production

Difficulty with chiral-odd sector : proposal to use heavy quark property of helicity changing propagation (2015-2017)

Graphes de Feynman pour la neutrino-production d'un méson D ; la ligne épaisse désigne le quark charme, la ligne en forme de ressort désigne un gluon.

BP et al, Phys Rev Lett. 115, PRD 95; PRD 96

but experimentalists with neutrino beams do not care about GPDs!

Exclusive electroweak heavy meson production at EIC

The thick line represents the heavy quark.

mplitude proportional to CKM matrix element, so production of $D_s~(1968)$ or $D_s^*~(2112)$ charmed and strange meson dominates.

Exclusive electroweak heavy meson production at EIC

The hard amplitude is very different from the DVCS/TCS case $\frac{1}{x+\xi-i\epsilon} \pm \frac{1}{x-\xi+i\epsilon}$

The symmetric and antisymmetric hard amplitudes read:

$$\mathcal{M}^{S} = \left\{ \frac{Tr_{a}^{S}}{D_{1}D_{2}} + \frac{Tr_{b}^{S}}{D_{3}D_{4}} + \frac{Tr_{c}^{S}}{D_{4}D_{5}} \right\} + \left\{ x \to x \right\} ,$$

$$\mathcal{M}^{A} = \left\{ \frac{Tr_{a}^{A}}{D_{1}D_{2}} + \frac{Tr_{b}^{A}}{D_{3}D_{4}} + \frac{Tr_{c}^{A}}{D_{4}D_{5}} \right\} \quad \left\{ x \to x \right\} ,$$

and the denominators read (with $=\frac{2\xi M^2}{M^2+Q^2}$, $\beta=\frac{2\xi(\bar{z}^2M^2-m_c^2)}{\bar{z}(M^2+Q^2)}$):

$$D_{1} = z[\bar{z}M_{D}^{2} \quad Q^{2} + i\varepsilon],$$

$$D_{2} = z\frac{Q^{2} + M_{D}^{2}}{2\xi}(x \quad \xi + z + i\epsilon),$$

$$D_{3} = \bar{z}(Q^{2} + M_{D}^{2}) + \bar{z}^{2}M_{D}^{2} \quad m_{c}^{2} + i\epsilon,$$

$$D_{4} = \bar{z}\frac{Q^{2} + M_{D}^{2}}{2\xi}(x \quad \xi + \beta + i\epsilon),$$

$$D_{5} = z\frac{Q^{2} + M_{D}^{2}}{2\xi}(x \quad \xi + z + i\epsilon).$$

Exclusive electroweak heavy meson production at EIC

small but measurable at EIC!

(not at JLab)

Figure: The Q^2 dependence of the cross section $\frac{d\sigma(e N \rightarrow \nu ND_s)}{dy dQ^2 dt}$ (in pb GeV⁴) for T = 0 and s = 20000 GeV² and $y = 10^{-4}$ with GK (blue lines), and simple (black lines) GPD models, and with D s from [Kurimoto et al, PRD 65] (solid lines) and [Serna et al, EPJC 0] (dashed lines).

Diffractive exclusive reactions: 2 case studies

- diffractive vector meson + dilepton pair (top) or 2nd meson (bottom)
- Large rapidity gap between diffractive ρ and other hadrons: $s_1 \gg s_2 \gg \Lambda_{\text{QCD}}^2$
- Hard scales Q^2 , Q'^2 (top); $(q p_\rho)^2$ (bottom) ensure small-sized dipole + GPD vertex
- No gluon GPD contribution (C-even)
- (virtual)photoproduction cross section independent of s
- Probes ERBL region of the GPDs
- In two meson case: probe transversity with polarized M_T

$$ho$$
 $+$ dilepton pair production: $t_{N}=-0.1~{
m GeV^2}$, $t_{
ho}=t_{
ho}^{
m min}$

$$\gamma_{L/T}^* + \mathbf{N} \rightarrow \rho_L^0 + (\rho_T^0/\omega_T) + \mathbf{N}'$$

picobarn/GeV⁸

nanobarn/GeV⁴

promissing

undetectable !

WE WILL TRY OTHER CHANNELS

Backward meson electroproduction : from GPDs to TDAs

Theory developments from 2005 BP and L.Sz., PL B622 \rightarrow 2021 BP et al, submitted to Physics Reports

First experimental signals at JLab 2018 Park et al., PL B877 and 2019 Li et al., Phys.Rev.Lett. 123

Right order of magnitude

Dominance of σ_T for large Q^2

Backward timelike Compton Scattering

$$\gamma N \to N' \gamma^* (Q'^2) \to N' (e^+ e^-)$$

or

When and where does the proton emit a photon?

Real or quasi-real photoproduction.

JLab, EIC or Ultraperipheral collisions in proton/nucleus collisions

From nucleon to meson TDAs \rightarrow Nucleon to photon TDAs

Work still in progress

Backward timelike Compton Scattering

Backward photon electroproduction \leftrightarrow Backward lepton pair photoproduction

i.e. backward kinematics (in γN CMS)

and

large Q^2 to access quark and gluon level large *s* to avoid resonance effects.

Impact picture Nucleon to photon TDAs

Fourier transform to impact parameter : $\Delta_T \rightarrow b_T$

Where in the transverse plane does the nucleon emit a photon?

ERBL region : Do we see the inner light within the Nucleon?

Phenomenology

Order of magnitude estimate : multiply ρ electroproduction predictions by $\frac{e^2}{f_a^2} \approx \frac{\alpha_{em}}{2.6}$

deduced from $N \rightarrow \rho$ TDA model PRD 91 based on COZ and KS nucleon DA models.

To get
$$\frac{d\sigma^{\gamma N \to e^+ e^- N'}}{d\Omega dQ'^2 dcos \theta}$$
 multiply by $\frac{2\alpha_{em}(1+cos^2 \theta)}{\pi Q'^2}$

- Bethe-Heitler contribution is negligible (to be precisely checked)
- need to detect lepton pair with small momentum but large invariant mass :

each lepton should be easily detectable

- data probably already exist at JLab!

They need to be analyzed!

Conclusions

GPD and TDA phenomenology just becoming exploitable !

Need more than DVCS to perform nucleon tomography.

Thank you for your attention!

Post scriptum : Color transparency workshop 2 weeks ago Why not explore nuclear transparency of backward meson electroproduction to settle the question whether a small proton is produced in a hard reaction