

## Nuclear GPDs with the ALERT Detector



### Raphaël Dupré





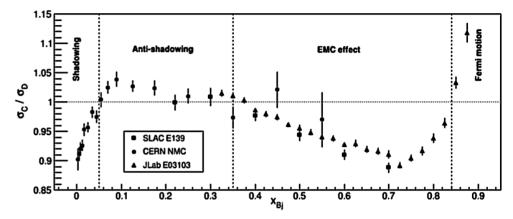
European Research Council Established by the European Commission For the CLAS Collaboration

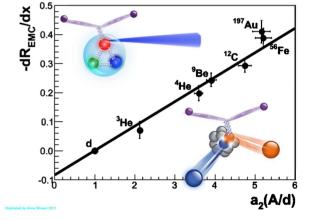
# **Nuclear Effects**

#### Nuclei change nucleons

- Several nuclear effects

June 22, 2021


- The most studies the EMC
  - Reduction of large x quarks


#### We do not understand why and how

- There are no widely accepted explanation
  - Recent interest with short range nucleon correlations
- Often quantitavie statements are off

### So, how do we progress from here ?

- More precision or More observables !

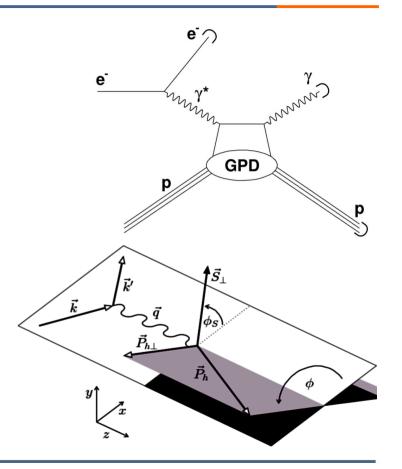






# **Deeply Virtual Compton Scattering**

#### Generalizing the parton distributions


- Three dimensional (x,  $\xi$  and t) structure functions
- Accessible through exclusive processes
  - DVCS, DVMP, TCS, DDVCS...

#### Deeply virtual Compton scattering

- The exclusive electro-production of a photon
- The simplest access to GPDs
- Or more precisely to Compton Form Factors...

#### Lead to a complex phenomenology

 Many observables (cross section, beam, target and charge asymmetries ...)

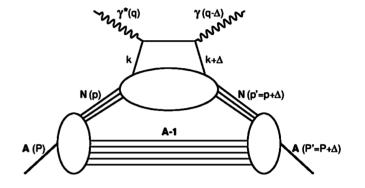


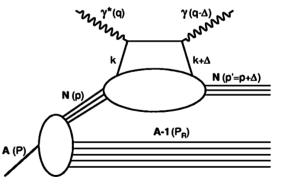


# Measuring Nuclear DVCS

#### Nuclei give control over the spin

- Spin-0  $\rightarrow$  2 GPD ; Spin-1/2  $\rightarrow$  8 GPDs ; Spin-1  $\rightarrow$  18 GPDs
- Half of these intervene in DVCS


#### In the nucleus two processes


- Coherent and incoherent channels
  - Similar to elastic and quasi-elastic
- Probe the whole nucleus and the bound nucleons

#### A perfect tool to study the EMC effect

June 22, 2021

- Offer localization with the t dependence
- Coherent DVCS gives access to non-nucleonic degrees of freedom
- Incoherent DVCS gives access to the modifications of the nucleon *R. Dupré and S. Scopetta. 3D Structure and Nuclear Targets. Eur. Phys. J., A52(6):159, 2016*



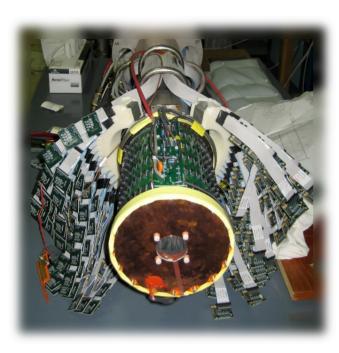




# Jefferson Laboratory and CLAS



### **Jefferson Laboratory**

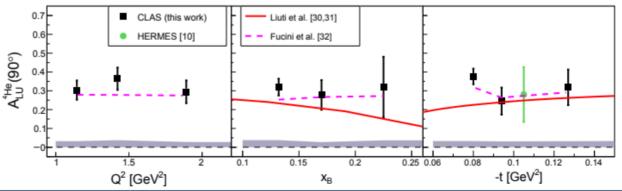

- 6 GeV electron beam (now 12 GeV)
- High stability, 100 % duty factor

### The CLAS spectrometer

- 2п acceptance
- Luminosity  $\sim 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>
- Upgraded for DVCS measurements
  - A Low angle calorimeter for photons
  - A Solenoid to protect it from secondaries



# **The Coherent Helium DVCS**

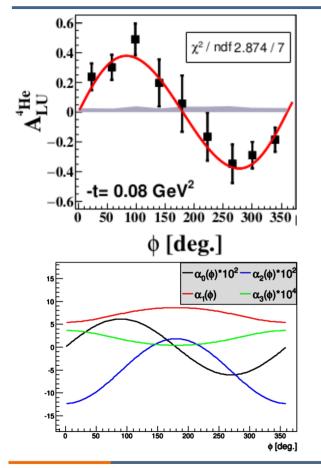



#### **Coherent DVCS on helium**

- Measured with CLAS at Jefferson Lab
  - With the addition of a recoil detector to detect helium nuclei
- We observed large beam spin asymmetry

### Interpretation

- This strong signal shows we isolated coherent DVCS M. Hattawy et al. (CLAS Coll.) Phys. Rev. Lett., 119(20):202004, 2017.






June 22, 2021

R. Dupré – Nuclear DVCS from CLAS to the EIC

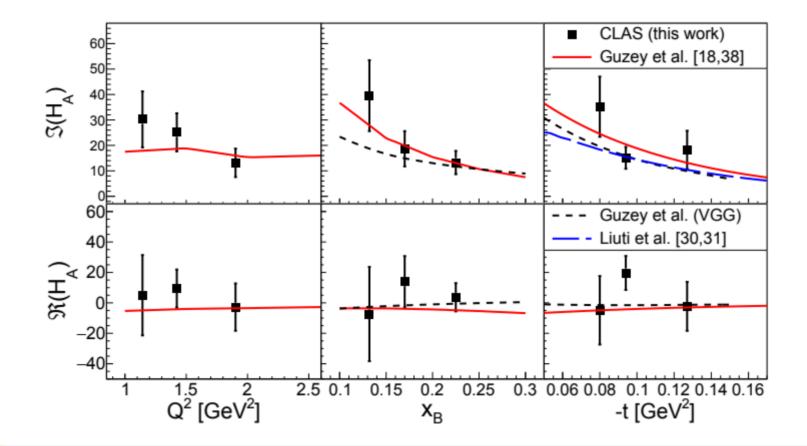
# Helium CFF extraction



### The Helium CFF extraction

- Simplified by the spin-0 (1 GPD/CFF) **Different contributions in phi** 

- They are calculable within pQCD


 $A_{LU}(\phi) = \frac{\alpha_0(\phi) \,\Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \,\Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$ 

- The fit converges immediately

*M. Hattawy et al. (CLAS Coll.) Phys. Rev. Lett., 119(20):202004, 2017.* 



### Helium Compton Form Factor





June 22, 2021

R. Dupré – Nuclear DVCS from CLAS to the EIC

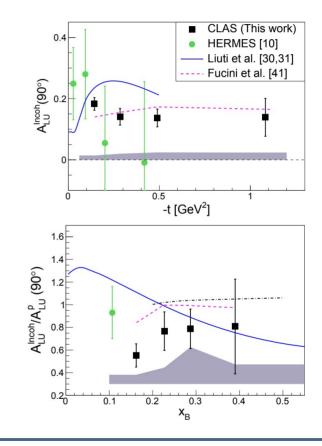
# **Incoherent Helium DVCS**

#### Measurement with CLAS at Jefferson Lab

– Proton bound in helium target

#### Gives a "generalized" EMC

- Strongly suppressed in particular for anti-shadowing
- Strange behavior compared to the models


#### A New kind of EMC effect?

- It could be a nuclear effect
- Or it could be due to final state interactions
  - Can be very complicated in DVCS

M. Hattawy et al. (CLAS Coll.) Phys. Rev. Lett., 123(3):032502, 2019.

#### More work is ongoing on these questions

- On the theoretical side for a better description
- On the experimental side with nitrogen data





# **The ALERT Project**

#### Program of measurements at Jefferson Lab with CLAS12

- Measure nuclear DVCS and DVMP on helium-4
- Measure tagged DIS on helium-4 and deuterium
- Measure tagged DVCS on helium-4 and deuterium

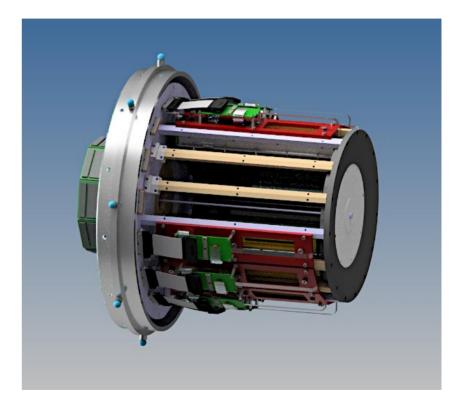
### Common point of these measurements

- We need to detect nuclear recoils at low energy
- This cannot be done with base CLAS12
- Previously used RTPC is limited in term of PID

#### We need to use a new detector

June 22, 2021

### **The ALERT Detector**


### A Low Energy Recoil Tracker

- Hyperbolic drift chamber
- Time-of-Flight array

### Collaborative effort within CLAS12

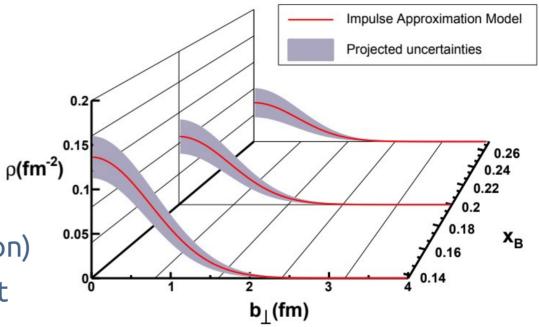
- ANL, IJCLab, JLab, NMSU, and Temple
- We tested a prototype with a nuclear beam in the Fall at the ALTO facility (Orsay, France)

### We hope to take data in 2023





## On the side of GPDs


### Tomography of a nucleus

- A view into the nucleus in three dimensions
- Using the wider phase space and larger statistics

### Extension to the gluons

June 22, 2021

- We will measure DVMP (Phi meson)
- We hope to obtain a similar result for gluon tomography



## Nuclear DVCS at the EIC

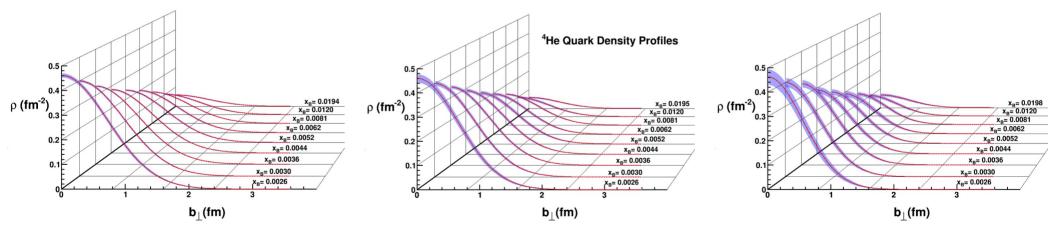
### We are preparing for nuclear DVCS at the EIC

- Measuring nuclear DVCS at much lower x
- Make a 3D image of the shadowing region

#### We developed A New Monte-Carlo Event Generator

- ROOT based event generator use the TFoam class to generate a grid and then events
- Use of a recent model tested against data

Sara Fucini, Sergio Scopetta, Michele Viviani Phys.Rev.C 98 (2018) 1, 015203


- We named it TOPEG (The Orsay Perugia Event Generator)

### These simulations are part of the EIC Yellow Report (2021)

## Nuclear DVCS at the EIC

#### We expect very nice results from the EIC

- The key detector for this is the Roman pot
- Detecting the nuclear recoil very close to the beam line
- Here we show profile extractions
  - For transverse momentum thresholds of 0.1 (left), 0.2 (center) and 0.3 GeV (right)





#### R. Dupré – Nuclear DVCS from CLAS to the EIC

14/15

## Summary

#### We measured nuclear DVCS with CLAS at JLab

- Large asymmetries are observed in coherent DVCS on helium, as expected by theory
- We made a CFF extraction without model assumptions
- Small asymetries are observed in incoherent DVCS on helium, not expected by theory

#### We are preparing for more measurements soon

- Re-analysis of old data for incoherent DVCS on nitrogen
  - To provide some A dependence for the nuclear effect measured on helium
- The ALERT program at JLab 12 GeV
  - Will provide much more statistics, cover a larger phase space and explore new channels

#### We are preparing for the EIC

- Nuclear DVCS can be performed at the EIC
- We are developping the phenomenological tools for future studies

