Heavy-flavour baryon production and implications for fragmentation functions

WG1 GDR-QCD meeting

Jaime Norman University of Liverpool (UK)

Open heavy-flavour production in pp collisions

Open heavy-flavour production in pp collisions

- fragmentation functions \rightarrow assumed to be universal and determined from e⁺e⁻/ep collisions
 - Incorporates fragmentation kinematics *plus* fraction of charm going to given hadron $f(c \rightarrow H_c)$ (fragmentation fraction)
 - Hadron ratios (meson-over-meson, baryon-over-meson) sensitive to fragmentation

Heavy-flavour meson production

GDR-QCD/WG1 meeting 23-Jun-2021

- Charm and beauty meson production extensively studied at the LHC in pp collisions from $0.9 \rightarrow 13$ TeV
- Cross sections of D and B mesons at the LHC in agreement with pQCD predictions at central rapidity (ALICE, CMS) and forward rapidity (LHCb)
 - Predictions based on factorisation approach with universal fragmentation functions

Meson production ratios

- Fragmentation to mesons probed with meson-to-meson ratios
 - Relatively independent of pT
 - In agreement with measurements in e+e- collisions (Belle/Babar/Cleo) plus calculations utilising fragmentation functions measured in e+e- collisions

→ Factorisation with 'universal' fragmentation functions relatively successful for heavy-flavour meson production over wide kinematic region!

Charmed baryon Λ_c^+ production

- The Λ_c^+ baryon production cross section is significantly underestimated by the same models at mid-rapidity (ALICE, CMS), incorporating pQCD + universal fragmentation functions
 - Factorisation failing for Λ_c^+ production...?

 Λ_{C}^{+}/D^{0} Baryon-to-meson ratio

- Relative production of Λ⁺_c baryons with respect to D⁰ mesons significantly higher than e⁺e⁻ and ep collisions
 - Consistent results between CMS and ALICE at mid-rapidity
 - Significant p_T-dependence indicates significant difference between fragmentation functions of mesons and baryons

• Λ_c^+/D^0 ratio significantly underestimated by models which incorporate fragmentation functions from e+e-/ep collisions

- Better description of Λ_c^+/D^0 with models which lead to modified baryon production
 - **PYTHIA8** + colour reconnection modes
 - Colour reconnection beyond the leading colour approximation was implemented in PYTHIA as attempt to better describe light flavour observables (e.g. Λ/K_S^0)
 - Reconnection between uncorrelated strings in multi-parton system
 - Leads to *'junction'* configurations → baryon enhancement

J. Christiansen, P. Skands: JHEP08(2015)003

- Better description of Λ_c^+/D^0 with models which lead to modified baryon production
 - **PYTHIA8** + colour reconnection modes
 - Hadronisation via coalescence plus fragmentation
 - Charm quarks can recombine (coalesce) with light quarks from the underlying event
 - $p_T^{\text{hadron}} = \sum p_T^{\text{quark}}$: enhancement of low-pT baryons w.r.t mesons
 - Quarks not coalescing will hadronise via fragmentation

V. Minissale, S. Plumari, V. Greco: arXiv:2012.12001

- Better description of Λ_c^+/D^0 with models which lead to modified baryon production

- **PYTHIA8** + colour reconnection modes
- Hadronisation via coalescence plus fragmentation
- Statistical hadronisation plus additional baryon states
 - Hadron yields determined through Statistical Hadronisation model
 - Different hypotheses for underlying baryon resonant spectrum:
 - PDG: 5 Λc(I=0) , 3 Σc(I=1), 8 Ξc (I=1/2), 2 Ωc(I=0)
 - RQM: strong feed-down from additional (yet-unobserved) excited charm baryons: 18 extra Λc, 42 extra Σc, 62 extra Ξc, 34 extra Ωc (supported by lattice QCD)
- M. He, R. Rapp: Phys. Lett. B, 795 (2019), p. 117

GDR-QCD/WG1 meeting 23-Jun-2021

Charmed baryon production 'spectroscopy': $\Sigma_c^{0,+,++}$

ALI-DER-493901

From Belle: $\Sigma_c^{0,+,++}/D^0 \sim 0.02$ ~x10 enhancement!

Phys. Rev. D 97, 072005 (2018)

- Isospin /=1 partner of singlet /=0 Λ_c^+ baryon
- $\Sigma_c^{0,+,++}$ decays strongly to Λ_c^+ access to heavier baryonic contribution to Λ_c^+ yield
 - Significantly larger Σ^{0,+,++}/D⁰ than measured in e⁺e⁻ collisions + PYTHIA8 (tuned on e⁺e⁻)
 - **Described well** by models which modify baryon production
 - \rightarrow enhanced Λ_c^+ production partially comes from enhanced Σ_c feed-down

Charmed baryon production 'spectroscopy': $\Xi_c^{0,+}, \Omega_c^0$

- $\Xi_c^+ = usc, \Xi_c^0 = dsc, \Omega_c^0 = ssc \rightarrow access to charm-strange baryons$
- PYTHIA8 Monash tune significantly underestimates $\Xi_c^{0,+}/D^0$ ratio (by factor x20-40)
 - Models which enhance baryon production also underestimate $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 ratio \rightarrow something missing in models.
 - strangeness contribution not enough?
- Ω_c^0 yield ~of the order of the Ξ_c^+ yield

GDR-QCD/WG1 meeting 23-Jun-2021

Charm-quark fragmentation fractions and production cross section

• Note: Ξ_c and Ω_C^0 production poorly studied at e+ecollisions - previous fragmentation fraction calculations using e^+e^-/ep data use assumption: $\frac{f(s \to \Xi^-)}{f(s \to \Lambda)} = \frac{f(s \to \Xi_c^+)}{f(s \to \Lambda_c^+)} \sim 0.005$ and $\frac{f(s \to \Omega^-)}{f(s \to \Lambda)} = \frac{f(s \to \Omega_c^0)}{f(s \to \Lambda_c^+)} \sim 0.06$ M. Lisovyi, A. Verbytskyi, O. Zenaiev: EPJ C 76 (2016) no.7, 397 OPAL Collaboration: Z.Phys. C72, 1 (1996).

*p*_T-integrated fragmentation fractions confirm that fragmentation fractions not universal across collision systems

Charm-quark fragmentation fractions and production cross section

- *p*_T-integrated fragmentation fractions confirm that fragmentation fractions not universal across collision systems
- Total baryonic contribution included in charm production cross section at mid rapidity at $\sqrt{s} = 5.02$ TeV

$$d\sigma^{c\bar{c}}/dy|_{|y|<0.5} = 1165 \pm 44 \text{ (stat.)}_{-101}^{+134} \text{ (syst.)} \ \mu b$$

• Updated previous calculations at $\sqrt{s} = 2.76,7$ TeV which assumed universal fragmentation: ~40% increase

GDR-QCD/WG1 meeting 23-Jun-2021

Beauty baryon production

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-b-meson-prod-decay.pdf

Pre-LHC: at Tevatron, b-baryon
fragmentation in pp collisions over 2x
that in e⁺e⁻ (though uncertainties large)

Table 1: Fragmentation fractions of b quarks into weakly-decaying b-hadron species in $Z \to b\overline{b}$ decay, in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

b hadron	Fraction at Z [%]	Fraction at $\overline{p}p[\%]$
B^+, B^0	40.4 ± 0.9	33.9 ± 3.9
B_s	10.3 ± 0.9	11.1 ± 1.4
b baryons	8.9 ± 1.5	21.2 ± 6.9

Beauty baryon production

- Λ_{h}^{0} production at the LHC shows consistent picture:
 - Λ_h^0 cross section steeper-falling and underestimated by pQCD (POWHEG) at low pT

 $p_{_{T}}^{\Lambda_{_{b}}}$ (GeV)

Baryon-to-meson ratio indicates clear • decreasing trend vs p_T

Table 1: Fragmentation fractions of *b* quarks into weakly-decaying b-hadron species in $Z \to b\bar{b}$ decay, in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

b hadron	Fraction at Z $[\%]$	Fraction at $\overline{p}p[\%]$
$\overline{B^+, B^0}$	40.4 ± 0.9	33.9 ± 3.9
B_s	10.3 ± 0.9	11.1 ± 1.4
b baryons	8.9 ± 1.5	21.2 ± 6.9

dơ/dp_T(pp→Λ_bX→J/ΨΛ X) (nb/GeV)

data/POWHEG

10⁻¹

10⁻²

 10^{-3}

2.5

10

25

Beauty baryon production

- Λ_b^0 production at the LHC shows consistent picture:
 - Λ⁰_b cross section steeper-falling and underestimated by pQCD (POWHEG) at low p_T
 - Baryon-to-meson ratio indicates clear decreasing trend vs pT

 \rightarrow Similar mechanisms leading to low $p_T \Lambda_c^+$ and Λ_b^0 baryon enhancement?

Table 1: Fragmentation fractions of b quarks into weakly-decaying b-hadron species in $Z \to b\bar{b}$ decay, in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

Probing Λ_c^+ **fragmentation:** Λ_c^+ **in jets**

$$z_{||}^{ch} = \frac{\overrightarrow{p}_{jet}^{ch} \cdot \overrightarrow{p}_{hadron}^{ch}}{\overrightarrow{p}_{jet}^{ch} \cdot \overrightarrow{p}_{jet}^{ch}}$$

- 'soft' $z_{||}^{ch}$ PYTHIA requires colour reconnection modes to reproduce measurement
- Softer fragmentation with respect to D mesons would explain p_- dependence of Λ_c^+ ratio
- More differential studies of heavy-flavour baryon production promising way to further probe fragmentation...

GDR-QCD/WG1 meeting 23-Jun-2021

Heavy-flavour baryon production as a function of system size (from $pp \rightarrow Pb-Pb$ collisions)

- Heavy-flavour baryons have been proposed for some time as a sensitive test of hadronisation in heavy-ion collisions
 - Expected enhancement if hadronisation via coalescence(recombination) has large role to play
 - At what point (system/energy density/multiplicity) do 'traditional' heavy-ion effects take hold?
- Could heavy baryon production be described with 'unified' picture going from pp → Pb-Pb collisions?

multiplicity-dependence of Λ_c^+ production in pp collisions

Multiplicity measured at midrapidity: $dN_{ch}/d\eta$ in ALICE Silicon Pixel Detector

ALI-PREL-336422

• Significant enhancement in high-multiplicity Λ_c^+/D^0 ratio with respect to low multiplicity

multiplicity-dependence of Λ_c^+ production in pp collisions

Multiplicity measured at midrapidity: $dN_{ch}/d\eta$ in ALICE Silicon Pixel Detector

ALI-PREL-336434

- Significant enhancement in high-multiplicity Λ_c^+/D^0 ratio with respect to low multiplicity
- Multiplicity-dependence reproduced with PYTHIA Colour Reconnection modes
 - Increased baryon production due to higher energy density

- Λ_c^+/D^0 shows smooth evolution of enhancement vs multiplicity across pp, p-Pb and Pb-Pb collisions
- Underlying processes which lead to heavy flavour hadron production similar in different hadronic collision systems?

GDR-QCD/WG1 meeting 23-Jun-2021

Summary and outlook

- Heavy-flavour baryon production measurements offer important insights into hadronisation in hadronic collisions
- Indication that factorisation theorem with universal parton-to-hadron fragmentation is no longer valid
 - Colour reconnection between uncorrelated partons? Hadronisation via coalescence? Yet-unobserved baryon states?
 - Some models describe relative production of Λ_c^+ and Σ_c baryons w.r.t mesons, plus multiplicity-dependence of Λ_c^+ production... Though still generally underestimate Ξ_c and Ω_c^0
- Run 3 and 4 at the LHC:
 - Major detector upgrades will open new paradigm for studies of heavy-flavour baryon production
 - Production spectroscopy, searches for baryon resonances, high/low multiplicity in small systems, precision heavy baryon fragmentation measurements...
 - OO and pO runs will provide new opportunities to study baryon production vs system size
- Future Electron-Ion collider would offer unique opportunity to probe hadronisation going from e⁺e⁻ to heavy-ion collisions

arXiv:2102.08337

Λ_c^+ production in Pb-Pb collisions

- High p_T (p_T > 10 GeV/c): Λ_c/D^0 ratio consistent within uncertainties fragmentation dominant
- Mid-p_T (3 < p_T < 8 GeV/c): evolution of Λ_c/D^0 ratio vs multiplicity?

D-jet measurements

 Low-p_T charm jet fragmentation to D mesons not described well by MC generators

Baryon-to-meson ratios vs collision energy

- Λ_c^+/D^0 ratio consistent vs collision energy (5.02 TeV \rightarrow 13 TeV)
- Ξ_c^0/D^0 ratio consistent vs collision energy (5.02 TeV \rightarrow 13 TeV)

Beauty baryon production in GM-VFNS

arxiv:1803.11103

- Beauty baryon production in GM-VFNS:
 - Common fragmentation functions for mesons and baryons
 - Comparison with data indicates that fragmentation functions need to be modified

Λ_C^+/D^0 tension at mid-rapidity/forward rapidity?

- Tension in Λ_c^+ production measurement from LHCb in pp collisions at 7 TeV
 - Λ_c^+ production cross section in good agreement with pQCD (GM-VFNS)
 - Flat rapidity trend predicted by models not reproduced by LHCb
- Λ_c^+/D^0 in p-Pb collisions measured by the LHCb experiment shows a flatter trend with rapidity

