WG1 GDR-QCD – Kick off meeting: Simple and Multiple interactions between Partons Online

Collective behaviour in small systems

An experimental overview

Maxime Guilbaud⁽¹⁾

(1) IMT-Atlantique, SUBATECH – guilbaud@subatech.in2p3.fr

21/06/21

Discovery of the "Ridge"

- Discovery of the ridge
 - Long range correlation
 - Signature of collective flow!

21/06/21

Collective nature

- Multi-particle correlation
 - Rooted in the early stage of the collision
- Similar patterns

Nature of the "Ridge"

21/06/21

What about PID flow?

Subatech

Similarities also observed with identified particle

- Using V⁰
- Heavier particle spectra
 - Steeper as a function of multiplicity
 - Stronger boost
- Quantify with model dep. study
 - Blast wave fit

For same multiplicity $\implies T_{kin}$ similar and $<\beta_T>$ stronger Smaller system are denser/more explosive

Some continuity are observed as a function of multiplicity

• Flow

Some continuity are observed as a function of multiplicity

• Flow

• Strangeness enhancement

Nature Physics (2017)13, 535-539

Observed long-range correlations in \eta \implies Rooted in **intial/early** stage

V		PRC (2020) 101 021901
Scenario #1	Initial spatial ε _s	+ final interactions
		Hydrodynamics Parton transport, escape
AMACHUM	0	τ
Scenario #2	Initial spatial ε _p	
	by initial interactions	

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Observed long-range correlations in \eta \implies Rooted in intial/early stage

V		PRC (2020) 101 021901
Scenario #1	Initial spatial ε _s	+ final interactions
		Hydrodynamics Parton transport, escape
	0	τ
Scenario #2	Initial spatial ε _p	
$\sim Q_s^{-1}$	by initial interactions	

Do we also have a QGP-like scenario in small systems?

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

A look at v_n evolution:

- > Difference coming from the **birth time** of the correlation
- #1 is driven by geometry #2 is not
- In presence of QGP: one would expect #1 and hydro. behaviour

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

√s_{NN} = 200 GeV 0-5%

+³He+Au

-d+Au

0.18

0.16

Nature Physics (2019) 15 214-220

 \succ If geometry driven, at first order: $v_n = k \cdot \varepsilon_n$

Int Atlantique Geometry driven phenomena: Bretagne - Pays de la Loire LHC

PRC (2020) 101 014912
 Eccentricity fluctuations are universal
 Geometry driven phenomena
 Consistent with RHIC

Hydro. description in small systems

> Hydro. models seems to reproduce the data

Favour models which include a droplet of QGP

Importance of the UE (I)

strangeness enhancement

- Out-of-jet dominant contribution
 - Dominant contribution from soft processes

Importance of the UE (II)

strangeness enhancement

Small relative contribution from jet to strangeness prod.
 O UE dominant – role of MPI?

Toward the smallest colliding

system

Significant flow observed for γ–A collisions

- Weaker than pp or pA
- Similar p_T dependence

γ oscillate into a vector mesons – importance of IS fluctuations

Interplay with the heavy sector Substeed

- Collective behaviour observed for heavy quarks
 - Magnitude surprisingly high

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Interplay with the heavy sector Subate

- Collective behaviour observed for heavy quarks
 - Magnitude surprisingly high

- Large mass effect in small system
 - charm flow similarly to light quarks
 - bottom doesn't

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Interplay with the heavy sector Sub

Collective behaviour observed for heavy quarks

• Magnitude surprisingly high

- charm flow similarly to light quarks
- bottom doesn't
- Strong collectivity w/o p_T spectra modification

Wrap-up

- Inclusive soft probes can be described with scenario #1 (using hydro)
 - The IS + fluctuation are important
 - **#2** can still play a role to describe the IS
 - Can we still have a unified picture for all systems?
- From strangeness studies: UE dominate in observed effects
 - Role of MPI
 - Is multiplicity the correct observable to look at?
- The interplay between the soft and hard sector need further investigation
 - Heavy flavour production (see next talk)
 - Energy loss

What's more?

There are still questions to answer at RHIC/LHC

What's more?

There are still questions to answer at RHIC/LHC

 $\langle N_{ch} \rangle$

What's more?

There are still questions to answer at RHIC/LHC

- Rise and fall of collectivity
 - Onset?
 - multiplicity: down to 0?
 - system size: smaller than γ -A?
 - c.o.m energy: any minimun?
 - Behaviour at high multiplicity?

Study the transition from p-p to A-A in details: intermediate ion size run (O-O)

Run-3 is coming

- More statistics and more differential measurements
- O-O and p-O run should help to bridge the gap

Future accelerator and experiments

- FCC
- o EIC

Back-up

