Galaxy cluster masses from magnification and the effects of intracluster dust

CALUM MURRAY, CELINE COMBET & CONSTANTIN PAYERNE. -LABORATOIRE DE PHYSIQUE SUBATOMIQUE ET COSMOLOGIE, GRENOBLE

Enidmor

Galaxy clusters

- Largest bound objects in the universe $> 10^{14} \, \mathrm{M_{\odot}}$
- Composition
 - 85% dark matter
 - 12% hot gas
 - 3 % stellar mas
- Provided early evidence for dark matter through observations of galaxy velocities (Zwicky 1933)
- They provide strong constraints on the matter content, geometry, the nature of gravity and the formation of structure in the universe and gravitational lensing gives information on all of this!

Intracluster dust

- Dust may be thrown into the intracluster medium by
 - Supernova explosions
 - Ram pressure stripping
 - Tidal interactions
 - Super massive blackholes!
- However once in the medium they will be heated by the intracluster X-ray gas
- Dust can cool the intracluster medium but also inform us of the phenomena that may send dust into the medium

Cluster Lensing

- Shears galaxy images (primary probe)
- Increases galaxy magnitudes
- Galaxy surveys are magnitude limited, magnification introduces faint galaxies into the sample which we would not normally see
- Deflects galaxy images away from the cluster centre, which reduces the number of galaxies in radial annuli from the centre
- Magnification has different systematics than shear!

Dust and magnification

- Dust
 - Reduces background galaxy magnitude
- Lensing
 - Galaxies appear further from the cluster centre
 - Increase galaxy magnitudes
- However the dust effects are wavelength dependent!
- Galaxy magnitude is m, κ is the lensing convergence, τ_{λ} is the optical dust depth at a given wavelength, $\overrightarrow{\theta}$ is the position of a background galaxy and $\overrightarrow{\alpha}$ is the lensing angle

$$m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right)$$
$$\overrightarrow{\theta}_{obs} = \overrightarrow{\theta}_{int} + \overrightarrow{\alpha}_{lens}$$

Dust and magnification

- Galaxy magnitude is m, κ is the lensing convergence, τ_{λ} is the optical dust depth at a given wavelength, $\overrightarrow{\theta}$ is the position of a background galaxy and $\overrightarrow{\alpha}$ is the lensing angle

$$m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right)$$
$$\overrightarrow{\theta}_{obs} = \overrightarrow{\theta}_{int} + \overrightarrow{\alpha}_{lens}$$

 $\delta m_{lens} \approx 0.1$

Towards the centre of a cluster we expect

 $\delta m_{dust} \approx 0.01$

Objectives

- -Joint measure of cluster dust content and cluster masses with magnification
- clustering, magnitude and redshift information

- Introduce a new (and hopefully improved) likelihood which incorporates galaxy

Redmapper clusters and Hyper Suprime Cam

- 458 SDSS Redmapper clusters are found in the HSC field
- Red dots are SDSS Redmapper clusters
- White dots are Redmapper clusters within the HSC field
- HSC has a high galaxy density $n_{gal} \approx 20 [arcmin^2]$
- 5 magnitude bands (grizy) important for dust searches
- HSC is a good testing ground for Rubin LSST (weak lensing)

CALUM MURRAY

wavelength

Stacked magnitude profiles

- Using a subsample of 90 clusters in the redshift interval $0.2 < z_{cluster} < 0.3$
- We measure the average magnitude for a stack of clusters in annuli from the cluster centre
- Clear chromatic signal
- **Attention!** Lensing introduces colour changes, faint galaxies which are introduced to the sample have different colours to bright galaxies
- These profiles have been used to measure dust, not strictly true (Menard et al. 2009)

$$\left< \delta m \right> = \left< m(\theta) \right> - \left< m_{field} \right>$$
$$m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right)$$

Galaxy number counts

- We need to consider both the shift in galaxy position and the magnitude change
 - Lensing deflects galaxy images away from the cluster centre reducing the number of galaxies
 - Lensing introduces faint galaxies into the sample by increasing their brightness
 - Dust dims galaxies, reducing the number of galaxies
- *n* is the number density if galaxies, α is the **slope of the galaxy magnitude function** and as before κ is the lensing convergence, τ_{λ} is the optical dust depth at a given wavelength
- α is calculated from the global galaxy distribution

$$n_{obs}(\vec{\theta}) \approx n_{int}(\vec{\theta}) \left[1 + \alpha(e^{-\tau_{\lambda}} - 1) + 2\kappa(\alpha - 1)\right]$$

 $\vec{\theta}_{obs} = \vec{\theta}_{int} + \vec{\alpha}_{lens}$ $m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda}\right)$ $\alpha = 2.5 \frac{dlog_{10}n}{dm}$ New term due to dust that we have introduced

The usual method $n_{obs}(\vec{\theta}) \approx n_{int}(\vec{\theta}) [1 + 2\kappa(\alpha - 1)]$

- Choose **one magnitude cut** which gives a α which maximises the signal
 - This is a game between the best value of α and keeping as many galaxies as possible
 - Does not make much use of galaxy magnitude or redshift information
- Chiu, Umetsu et al. 2020, Schmidt et al. 2010, Broadhurst, Taylor and Peacock 1994

Incorporating galaxy magnitude and redshift information

- Bin observed galaxy distribution into magnitude and redshift bins
- α must now incorporate galaxies which leave and enter the magnitude bin
- The lensed/dusted galaxy distributions can be calculated from the unlensed/undusted distributions
- Dust depends on wavelength and angular separation
- Convergence depends on galaxy redshift and angular separation

 $n_{obs}(\vec{\theta}, m, z_{gal}) \approx n_{int}(\vec{\theta}, m, z_{gal}) \left| 1 + \alpha(m_{obs}) \right|$

$$\alpha = -2.5 \left(\frac{d \log_{10} n}{d m} \Big|_{m_{high}} - \frac{d \log_{10} n}{d m} \Big|_{m} \right)$$

$$(a, z_{gal})(e^{-\tau_{\lambda}(\overrightarrow{\theta})} - 1) + 2\kappa(\overrightarrow{\theta}, z_{gal})(\alpha(m, z_{gal}))$$

Future work

- Estimate stacked cluster masses on mocks
- Incorporate dust models into the mock and our likelihood
- Estimate dust content and cluster masses with Redmapper clusters and HSC galaxies

Poisson likelihood

- Analogous to that used in cluster abundance cosmology
- Simply measure the galaxy counts, $n_{meas,k}$ in bins, k, of θ , redshift, and magnitude and compare to the theoretical expectation $n_{obs,k}$
- Uses more information than the standard method!

 $n_{obs}(\overrightarrow{\theta}, m, z_{gal}) \approx n_{int}(\overrightarrow{\theta}, m, z_{gal}) \left| 1 + \alpha(m, z_{gal})(e^{-\tau_{\lambda}(\overrightarrow{\theta})} - 1) + 2\kappa(\overrightarrow{\theta}, z_{gal})(\alpha(m, z_{gal}) - 1) \right|$

Mock result validation

- We generate random positions within the HSC footprint and inject a fake cluster signal
 - Lensed galaxy positions
 - Lensed/dusted galaxy magnitudes

$$\vec{\theta}_{obs} = \vec{\theta}_{int} + \vec{\alpha}_{lens}$$

 $m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \chi_{\lambda} \right)$

Nock result validation

- We generate random positions within the HSC footprint and inject a fake cluster signal
 - Lensed galaxy positions
 - Lensed/dusted galaxy magnitudes

$$\vec{\theta}_{obs} = \vec{\theta}_{int} + \vec{\alpha}_{lens}$$

 $m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \chi_{\lambda} \right)$

Mock result validation

- We generate random positions within the HSC footprint and inject a fake cluster signal
 - Lensed galaxy positions
 - Lensed/dusted galaxy magnitudes

$$\overrightarrow{\theta}_{obs} = \overrightarrow{\theta}_{int} + \overrightarrow{\alpha}_{lens}$$

 $m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \chi_{\lambda} \right)$

Nock results

- For these mocks we have only injected the cluster signal, **no** dust, we still see chromatic effects
- For reference we measure the signal around random points in the HSC footprint

Nock results

- For these mocks we have only injected the cluster signal, no dust, we still see chromatic effects
- Galaxy counts in agreement with predictions
 - Here for two different magnitude cuts

 $n_{obs}(\vec{\theta}, m, z_{gal}) \approx n_{int}(\vec{\theta}, m, z_{gal}) \left[1 + 2\kappa(\alpha - 1)\right]$

Cluster mass estimates

- Work in progress
- 275 synthetic clusters
- 3 different cases, only angular bins is the standard method
 - 16 i-band magnitude bins between 20 and 26.5
 - 5 redshift bins between 0.6 and 3
 - 7 angular bins between 1.5 and 55 arc minutes
- MCMC estimation of the cluster concentration, c, and the cluster mass, M_{l}
- Clearly not working yet
 - Biased
 - Errors underestimated

Galaxy source count
$$n_{obs}(\vec{\theta}) = n_{int}(\vec{\theta}) \left(1 + [2 + x(1)]\right)$$

motion

 $-\beta = v/c$

 $x = \frac{dln n_{int}}{dln f} \Big|_{f_{lim}} \text{ slope of the galaxy luminosity function}$

- α is the (power law) shape of the galaxy flux spectrum

- Lensing dipole from local structures
- Galaxy source counts ~3 times larger than Planck inferred velocity

dipole

 $1 + \alpha)]\beta cos(\theta) + 2[x - 1]\kappa(\vec{\theta}))$

- Kinematic dipole, galaxies are (de)magnified into the sample and angles on the sky change, from observer

- The effects can be completely distinguished with different magnitude cuts, **the value of x changes**

Galaxy source count dipole

- Using Tiwari et al. 2015 measurements we can constrain the dipoles
- For the red band $x \approx 1$
- Clearly magnification by local structures cannot resolve the issue

