Dark Matter and Neutron Stars

Aniket Joglekar

Assemblée Générale Enigmass2, Annecy 28 October 2021

1E 0657–56 Bullet Cluster

Galaxy Rotation Curves

CMB

Distance from the centre

Rotational velocity

Chandra 0.5 Msec image

0.5 Mpc

z=0.3

Gravitational Lensing

How to Probe the Nature of Dark Matter?

Direct Detection of Dark Matter

What Celestial Bodies Can Probe Lower $\sigma_{\chi_{\rm T}}$?

White Dwarfs

Sun-like Stars

Brown Dwarfs

by factor 10¹¹ - 10¹³

Density less by factor 10⁸ compared to NS

Neutron Stars $\sim 10^{-45} \, \mathrm{cm}^2$

Capture $\propto\,$ Density

by factor 10¹⁴

Other stuff $\,\sim 10^{-35}\, cm^2$

Much larger cross-section $\sigma_{\chi T}$ needed to gather enough DM to generate signals in bodies other than NS

 $10^{-35} \,\mathrm{cm}^2$ mostly excluded already! But not $10^{-45} \,\mathrm{cm}^2$

How Does the Capture Work?

Continuous dark matter flux incident on the NS

 $M_{\star} = 1.5 \, M_{\odot}$ $R_{\star} = 12.6 \, \mathrm{km}$

$$\sim 5 imes 10^{57}$$
 Targets

Densely Packed Accelerates DM to $v\sim 0.6\,c$

Interaction where DM loses more energy than its Halo KE

Flux

Continuous dark matter flux incident on the NS

DM being fed to NS with velocity v_{halo}

6

Flux

Continuous dark matter flux incident on the NS

Dark Kinetic Heating

NS Kinetic Heating : Dark Fires

How to Detect Excess Heating?

Find an old "nearby" NS with radio telescope with expected temp $\,\mathcal{O}(10-100)\,\mathrm{K}$

Point JWST towards it to see if it has infrared temperatures of $\mathcal{O}(1000)\,\mathrm{K}_{-10}$

 $\Lambda >> {\rm momentum}\ {\rm transfer}$

Λ

Light mediator

 $m_{\phi} < \text{momentum transfer}$

SM

Mediating Phys

Ε

Reach

Collapse to Black Hole Probing 'invisible' forces in the dark sector

Thermal radius : Virial balance between temperature & gravity

$$r_{th} \sim \left(\frac{T}{T_{\odot}}\right)^{1/2} \left(\frac{1\,{\rm GeV}}{m_{\chi}}\right)^{1/2} \,{\rm m}$$

Nudge due to an additional attractive force can trigger collapse

Resultant BH can eat up the star

onstraint on attraction strength

Exclusion Bounds from Non-observation of Collapse

AJ, Serpico 2112.xxxx

Summary

- Neutron stars are great for learning more about the nature of DM
- Can complement or exceed terrestrial searches
- Collapse or its non-observation can put strong bounds on dark sector parameters
- Thermal emission of old NS is an intriguing frontier. JWST launches very soon, so may be more data soon ...

Thank You!