Assemblée Générale Enigmass2

Identification of ultra-high energy photons with Universality at the Pierre Auger Observatory for multi-messenger astronomy

Supervisors : Corinne Bérat Carla Bleve

UHE Cosmic Rays and Air Showers

* CR spectrum : 11 decades of energy + 32 decades in flux

* CR + atmosphere -> Cascade of particles

CR spectrum measured by ground detection experiments

At Ultra-High Energy :

* Flux of the order of 1 event /km²/yr ⇒ direct detection impossible

- * Air showers particles reach the ground
- * Indirect detection of air showers

Two main components :

- * muonic
- * electromagnetic (e+/e-/photons)

Zoé Torrès, AG Enigmass2

Zoé Torrès, AG Enigmass2

Interest of UHE photons

Origin of UHE photons :

1) During the production of UHECRs

* interaction of UHECRs near astrophysical sources ⇒ UHE photons ⇒ allows to point at these sources (multi-messenger astronomy)

* « top-down » models (SHDM,TD...) : most of them excluded by ULs

2) Along the propagation of UHECRs

* GZK effect = interaction of UHECR – CMB photon

 $\gamma + p \rightarrow \Delta^+ \rightarrow \pi^0 + p$ $\gamma + p \rightarrow \Delta^+ \rightarrow \pi^+ + n$

⇒ Flux suppression at $\sim 4.10^{19}$ eV (mass dependent)

Knowledge of the UHE photons flux ⇒ information on the sources + propagation of UHECRs

Zoé Torrès, AG Enigmass2

Identification of UHE photons

Based of the differences between photon-induced and nuclei-induced showers

2) less muons in photon-induced showers

* properties of hadronic and electromagnetic interactions

1) late development for photons

* multiplicity of interactions

* larger Xmax [g/cm²] (maximum depth of development)

Identification of UHE photons

Based of the differences between photon-induced and nuclei-induced showers

⇒ steeper lateral profile

- * large part of the energy goes in the EM component
- * lateral profile : steeper for the EM component (reinforced by large Xmax)

\Rightarrow delay in the arrival times of the particles at ground for photons

- * late development \Rightarrow larger delay in the arrival time of the particles
- * EM component : undergoes more scattering ⇒ reach ground later

UHE photon search in the Auger Collaboration

Mass dependent observables ⇒ Discriminant Analysis + photon search selection cut

In this work : use of the SD only : no access to Xmax

Current SD Analysis :

*Observables : LDF + Time Information

* Disavantages :

- background contamination
- restricted field of view (30°→60°)
- E = calibrated on data (LDF estimator)
 - + converted into the photon energy using photon simulations
- observables = deviation of photons from data

by looking at mass-dependent variables

 \Rightarrow no access to primary CR properties (Xmax,Nmu,E)

⇒ Use Universality to solve these problems (reconstruct photon Energy and Xmax)

Concept of Air Shower Universality

* Old concept from studies on EM cascades :

The average properties of a shower can be described with E and the age only P. Lipari, Phys. Rev. D 79, 063001

- * Concept extended to hadronic showers $\Rightarrow (Xmax, E, N_{\mu})$
- * universal features of secondary particles :
 - energy spectrum
 - angular and lateral distributions
 - longitudinal profile

Muons longitudinal profile

Zoé Torrès, AG Enigmass2

28/10/21

Muon content : mass dependent

Universality Model

* **4 shower components** behaving universally : pure EM + muonic + EM from muon decay + EM from low energy hadrons

28/10/21

* The model describes the **shape and the normalization of the signal** for each component

Shape : average time distribution of the signal

Reconstruction with Universality

<u>Aim</u>: use Universality to reconstruct Xmax and the Energy for photon showers, not directly accessible with the SD

Procedure : fix N_{μ} to its mean value that describes photon simulations

⇒ the reconstruction is **designed for photons** : Universality will follow the average behaviour of a photon.

First steps : * determine the mean N_{μ}

* validation of the Universality model

Working with : Photon simulations Energy : $[10^{18.5}, 10^{20.5}] \text{ eV}$

The mean Nmu for photon showers

 N_{μ} = the muon density at 1000m relative to QGSJetII-03 protons (hadronic interaction model)

Computation of the individual N_{μ} of the shower :

With the 12 dense stations + signal model (Dense stations : ring of 12 simulated stations at 1000m from the axis)

e = dense stations

Muonic signal predicted from Universality for QGSJetII-03 protons

Validation of the Universality Model

Verify if the model describes well the photon simulations

 \Rightarrow Dependence on the predicted signal

Predicted values = Function (MC parameters)

* For the signal model ⇒ look at the predicted signal

* For the time model ⇒ look at the RiseTime

* Strong bias for small and high predicted signals

⇒ cut at 5 VEM : removes trigger effects
⇒ cut at 800 VEM : removes saturation effects

⇒ keep stations with predicted signals between 5 and 800 VEM for the reconstruction

Validation of the Universality Model

Zoé Torrès, AG Enigmass2

Ongoing and future works

* **Different reconstructions** are tested/investigated :

- example : originally the direction of the shower was reconstructed : fixed it to the standart Auger one

- exploring adding iterations until convergence of the reconstructed parameters

*Currently checking the **likelihood function** maximized for the Signal Model

Future:

- * Reconstruct the whole photon/proton showers libraries : compare results and discriminating power of the reconstructed parameters
- * Could the analysis be extented to more vertical showers ? To lower energies ? (current analysis : above 10 EeV)

Zoé Torrès, AG Enigmass2

Expected photon flux for the Milky Way

Diffuse flux of UHE photons from CR interactions in the disk of the Galaxy and implications for the search for decaying super-heavy dark matter

Z. Torrès et al.

Paper in preparation

- local gas density

-CR flux

- cross section of (CR + gas)

- photon yield of the interaction

Expected UHE photon flux

Zoé Torrès, AG Enigmass2

<u>28/10/21</u>

Back up slides

Air showers

First interaction = mainly pions Charged pions ⇒ hadronic cascade : stops when they decay before interacting Neutral pions ⇒ decay into photons EM cascade : e+/e- pair production (small ratio of muons) + Bremsstrahlung

Stops when the ionisation process is dominant

Fluorescence Telescopes

Z-burst:

UHE neutrino + cosmic neutrino background -> Z boson -> UHECRs

SHDM:

SHDM observed if long engough life time

Cosmological long lifetime only explained by non pertubative phenomena

SHDM metastable particles decay –>UHE CRs + photons

Photon mean free path

Zoé Torrès, AG Enigmass2

Identification of photons

Smaller number of muons :

Mean path of photo-nuclear interaction and muon pair production is smaller than the radiation length

Arrival time distribution :

Particles produced at higher ernergies arrive sooner than the one produced closer to ground

Delay t between a particle produced at A and H :

SD Analysis observables

RNKG:

-based on a LDF parametrized on data

-mean ratio : Signal/Signal LDF

- photons : steeper LDF / smaller footprint \Rightarrow less signal \Rightarrow smaller RNKG

Delta Rise Time : mean diviation of the rise time from a benchmark parametrized on data

Zoé Torrès, AG Enigmass2

Expected photon flux for the Milky Way

- \ast it is the dominant cosmogenic flux between $~0.1\, EeV$ and $1\, EeV$
- * out of reach with current observatories
- * sets a floor below which other signals will be overwhelmed : relevant for SHDM searches

* sets a ceiling region for the lifetime of SHDM particles

Zoé Torrès, AG Enigmass2

Reconstruction Outputs

Zoé Torrès, AG Enigmass2