

EFT with ATLAS

Eleonora Rossi

Assemblée Générale Enigmass - 28/10/2021

CAPP

The LHC has not found any evidence of New Physics.

- Direct searches for SUSY or exotics continue, but the focus on indirect exploration is increasing...
- Increasing number of Effective Field Theory (EFT) measurements and reinterpretations in ATLAS:
 - EW : reinterpretation of differential fiducial XS;
 - Top : $t\overline{t}$ differential cross-sections, Charge asymmetries, ttV, ecc..
 - Higgs: STXS (Simplified template cross section)-based interpretations in all main decays modes (H $\rightarrow\gamma\gamma$, 4l, WW^{*}, bb, $\tau\tau$) and combination; dedicated analyses for CP.
- Input observables: asymmetries, angles, pT, mass...
- Interpretation in context of EFT complementing (or superseding) other interpretations
 - -> application on a variety of analyses.
 - κ-framework (Higgs);
 - anomalous couplings (SM, Top);
 - polarisation measurements (SM, Top).
- EFT results interpret unfolded spectrum (reinterpretation indirect) or measure coefficients with the primary likelihood (reparameterisation direct).

Eleonora Rossi

Theoretical framework

- An EFT approach can be used to set **model-independent constraints** on BSM physics, assuming that the scale of new physics is high enough to decouple from the SM.
- Constrain EFT coefficients \rightarrow constrain large classes of UV theories.
- Consider an EFT generalisation of the SM, SMEFT (SM Higgs doublet is present in the EFT construction); it describes BSM effects @LHC in scenarios where BSM is out of collider reach.
- In SMEFT, the effects of BSM dynamics at high energies $\Lambda \gg v$, can be parametrised at low energies, $E \ll \Lambda$, in terms of higher-dimensional operators built up from the Standard Model fields, respecting its symmetries such as gauge invariance and using the same fields:

Wilson coefficients

- only CP-even dimension-6 operators are considered (dim-5/7 operators -> violate lepton and/or baryon number conservation);
- the Warsaw basis, which provides a complete set of independent operators allowed by the SM gauge symmetries, is used; a value of $\Lambda = 1$ TeV is assumed.
- Flavour symmetry (U(3)5) assumed to reduce the number of parameters 25/85 (CP odd all)

Enigmass

Eleonora Rossi

APP (Selection of) ATLAS recent results

CAPP

STXS measurements

- Dedicated particle-level (truth) regions of the production phase space (approximately fiducial on production side), inclusive for all Higgs decays.
- Compromise between differential distributions and experimental sensitivity; designed to minimise theory uncertainty and provide BSM sensitivity.
- Measurements available for all main decay modes (γγ, 4l, 2l2ν, bb, ττ).
- Measured signal strength for each STXS category used in EFT analysis to extract constraints on (combinations of) Wilson coefficients.

			a 1.
Decay channe	I Target P	roduction Modes	\mathcal{L} [fb ⁻¹]
$H \rightarrow \gamma \gamma$	ggF, VBF, V	$WH, ZH, t\bar{t}H, tH$	139
$H \rightarrow ZZ^*$	ggF, VBF, W	$VH, ZH, t\bar{t}H(4\ell)$	139
$H \to WW^*$	Updated	ggF, VBF	139
$H \rightarrow \tau \tau$ Upc	dated ggF, VE	BF, WH, ZH, tĪH	139
	IEW	WH, ZH	139
$H \rightarrow b\bar{b}$ Up	dated	VBF	126
Up	dated	$t\bar{t}H$	139

s = 13 TeV.	139 fb ⁻¹	$B_{\gamma\gamma}/B_{ZZ^*}$		ter (1 .0'	9 +0.14	$^{+0.12}_{-0.11}$, ±0
$m_{\mu} = 125.09$	GeV, ly < 2.5	B _{bb} /B _{ZZ} .	H		0.7	B + 0.28 - 0.21 (+0.23 +0
p = 92%	, , H	B _{WW} /B _{ZZ} .		-	 1.00	6 + 0.14 - 0.13	+0.11 +0
'SM	01-1	B ₁₁ /B ₂₂ .			0.8	6 + 0.16 + 0.16 = 0.14	+0.12 +0.
	Stat.	L		<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·
0,3t.	SIVI	·	0.0			Total	Stat Sv
	0-iet. p ^H < 10 GeV	a			0.80	+ 0.22	+0.19 +0
	0-iet. $10 < p^{H} < 200 \text{ GeV}$	1			1.1/	- 0.20 + 0.15	-0.18 '-0 +0.12 +0
	1-jet $p^{H} < 60 \text{ GeV}$		1		1.14	-0.14	+0.22
	1-jet $60 < n^{H} < 120 \text{ GeV}$	<u> </u>			0.57	+ 0.28	+0.25 +0
	1-jet $120 < p^{H} < 200 \text{ GeV}$				1.00	- 0.27	-0.24 '-0 +0.36 +0
gg →H × B _{ZZ*}	$2 \text{ list} m < 350 \text{ GeV} n^{H} < 60 \text{ GeV}$				0.00	- 0.39	-0.35 '-0
	$2 \text{ Lift} m < 350 \text{ GeV} 60 < n^{H} < 12$		-		0.47	- 1.06	± 0.98 ,- 0
	22 jet, $m_{jj} < 350$ GeV, $00 \le p_T < 12$				0.25	± 0.53 (± 0.46 ,± 0 + 0.38 + 0
	$22 \text{ jet}, m_{jj} < 350 \text{ dev}, 120 \le p_T < 2$				0.54	- 0.42	-0.36'-0 +0.99'+0
	$\geq 2 - jei, 300 \le m_{jj} < 700 \text{ GeV}, p_T^2 < 2$			- '	2.76	- 1.04 (-0.93'-0
	$\geq 2 - jel, m_{jj} \geq 700 \text{ GeV}, p_T' < 200 \text{ GeV}$				0.74	- 1.43 (-1.29 -0
	$200 \le p_T'' < 300 \text{ GeV}$	9	*		1.06	-0.31	-0.27 '-0
	$300 \le p_T'' < 450 \text{ GeV}$				0.65	-0.43	-0.39 -0
	$p_T'' \ge 450 \text{ GeV}$				1.86	- 1.19	- 1.12 '- 0
						. 1 10	+1.02 + 0
	≤ 1-jet				1.40	- 0.99 (+ 1.02 + 0
	≥ 2-jet, m _{jj} < 350 GeV, VH veto				2.98	+ 1.64 - 1.52	+1.46 +0
	≥ 2-jet, m _{jj} < 350 GeV, VH topo		-		1.00	+ 0.58 - 0.52 (+0.51 +0
	\geq 2-jet, 350 \leq m_{jj} < 700 GeV, p_T^H < 2	00 GeV 📕 💶 🖬			0.33	+ 0.49 - 0.47 (+0.44 +0
na→Hoa × R	\geq 2-jet, 700 \leq m_{jj} $<$ 1000 GeV, $p_{_T}^H <$	200 GeV	-		0.95	+ 0.71 - 0.65 (+0.62 +0
14 - 144 × D _{ZZ} ,	\geq 2-jet, 1000 \leq m_{jj} $<$ 1500 GeV, p_T^H $<$	< 200 GeV 🛛 📥			1.38	+ 0.57 (+0.50 +0
	\geq 2-jet, $m_{jj} \geq$ 1500 GeV, $p_{_{T}}^{_H} < 200$ G	eV 📥	9		1.15	+ 0.39	+0.35 +0
	\geq 2-jet, $m_{jj} \geq$ 350 GeV, $p_T^H \geq$ 200 GeV	v 🕂	9		1.21	+ 0.31 - 0.27 (+ 0.27 + 0
	V 75 0 V	·				. 4 47	1.1.15
	$p_T^{v} < 75 \text{ GeV}$	I		9	2.47	-1.02 (-1.02 '-0
	$75 \le p_T^v < 150 \text{ GeV}$	e e			1.64	- 0.80	+0.97 +0
$qq \rightarrow Hlv \times B_{ZZ}$	$150 \le p_{T}^{V} < 250 \text{ GeV}$				1.42	+ 0.74 - 0.58	+0.61 +0
	$250 \le p_T^V < 400 \text{ GeV}$	÷			1.36	+ 0.72 - 0.53 (+0.63 +0
	$p_T^V \ge 400 \text{ GeV}$	· +			1.91	+ 1.45 - 1.08 (+ 1.22 + 0
		·					
	$p_T^v < 150 \text{ GeV}$				0.21	+ 0.71 - 0.76 (± 0.54 ,+ 0
na/aa→Hll v B	$150 \le p_{T}^{V} < 250 \text{ GeV}$	÷			1.30	+ 0.63 - 0.46 (+0.53 +0
22, 44 . 1	$250 \le p_T^V < 400 \text{ GeV}$	- ÷			1.28	+ 0.73 (+0.64 +0
	$p_{\tau}^{V} \ge 400 \text{ GeV}$] -1		0.39	+ 1.28 - 1.14 (+ 1.04 + 0
-	-H - 00 O-14						+0.72 . 0
	$p_T < 60 \text{ GeV}$		•		0.75	-0.66	-0.63 -0
	$b_0 \le p_T' < 120 \text{ GeV}$		_		0.69	- 0.44	-0.42'-0
TH × B	$120 \le p_T'' < 200 \text{ GeV}$		•		0.86	- 0.47 (-0.43 '-0
- 22*	$200 \le p_T'' < 300 \text{ GeV}$		-		0.96	+ 0.62	+0.56 +0
	$300 \le p_T'' < 450 \text{ GeV}$				0.28	+ 0.79	+0.66 +0
	$p_T^n \ge 450 \text{ GeV}$				0.16	+ 1.93 - 1.76 (+1.44 +1 -1.24 -1
H × B _{ZZ⁺}		·			2.90	+ 3.63 - 2.87 (+ 3.35 + 1 - 2.73 ' - 0
		• • • • •	<u> </u>				
0 /			-				

EFT workflow

Focus on the methodology used in the Higgs combination than can/is used also in other combinations.

Eleonora Rossi

EFT workflow - 1

Eleonora Rossi

APP Impact of SMEFT operators on STXS

- Impact of each Wilson coefficient in the different STXS bins or partial widths.
- The impact <u>of mos</u>t Wilson coefficients is rescaled to fit in the plot.
- Insufficient kinematic information to probe simultaneously 26 parameters!
- Principle Component Analysis in parameter groups to identify sensitive directions.
- EFT parameterisation is affected by analysis level selections used to reconstruct SM Higgs.
- Acceptance effects are included for HWW and HZZ channels.

ATLAS-CONF-2021-053

Eleonora Rossi

CAPP

Sensitivity studies

Eleonora Rossi

Sensitivity studies

- Principal Component Analysis to reduce the dimensionality of the fit.
- Combinations of Wilson coefficients to which measurements are not sensitive manifest themselves as flat directions in the likelihood.
- These directions are identified using the Fisher information matrix of the original $H \rightarrow \gamma \gamma$ STXS likelihood (C_{STXS}^{-1}), parameterised in terms of the STXS parameters and obtained using the HESSE method within Minuit.

ATLAS-CONF-2021-053

Eleonora Rossi

Summary of results (linear only)

ATLAS-CONF-2021-053

- All measured parameters are consistent with the SM expectation within their uncertainty.
- Setting parameters to SM (zero) can be a strong model assumption-> in order to keep the generality of results, show that the impact on fitted directions is negligible within EFT validity range.

Eleonora Rossi

28/10/2021

Enigmass

Eleonora Rossi

P Summary of results (linear+quadratic, ICHEP combination)

Open point of the SMEFT interpretation, linear+quadratic theoretically robust? inclusion of quadratic terms: in some cases quadratic terms might drive the sensitivity -> study dim-8 terms since the Λ^4 term is not complete without these terms.

28/10/2021

Eleonora Rossi

0.2

60

CAPP

Plans

- Paper including EFT interpretations of $H \rightarrow \gamma \gamma$ channel.
- Paper including EFT interpretation of the Higgs combination-> more channels included, additional results provided for interpretations.

Higgs studies are just one input of global EFT analyses; furthermore, current Higgs measurements are not enough to disentangle all possible EFT interactions entering in Higgs physics-> avoid having to fix many coefficients to SM-> Combine analyses to get a more comprehensive picture!

- ATLAS Global EFT-> effort to combine Higgs, top, EW (+LEP constraints):
 - experience with interpretations in Higgs combination and H->WW+WW;
 - make use of the best knowledge of our measurement correlations.
- Likelihood-level EFT combination including EW, Higgs & top measurements from ATLAS & CMS (<u>LHC EFT Twiki</u>).
 - Exercise with CMS-> first combination using public results

 -> discussion ongoing to understand which analyses can be
 included for a first exercise (<u>Twiki</u>)
- Very active field both from experimental and theoretical point of view:
 - e.g. dim-8 contributions + theory uncertainties for

EFT truncation + matching with UV models (<u>From Models to SMEFT and Back</u>)

Enigmass

Eleonora Rossi

CAPP

Plans

- Paper including EFT interpretations of $H \rightarrow \gamma \gamma$ channel.
- Paper including EFT interpretation of the Higgs combination-> more channels included, additional results provided for interpretations

Higgs studies are just one input of global EFT analyses; furthermore, current Higgs measurements are not enough to disentangle all possible EFT interactions entering in Higgs physics-> avoid having to fix many coefficients to SM-> Combine analyses to get a more comprehensive picture!

- The LAPP group is active also in High Mass (mll>116 GeV) Drell Yan studies.
- Measurements of beauty hadron decays from LHCb display a seemingly coherent pattern of deviations with respect to the SM predictions, which suggest that new physics couples differently to three generations of matter.
- quark-level processes responsible for these so-called 'B anomalies' could be connected to bs
 → ll and bc
 → lv → ll and bc
 → lv → lv and bc
 → lv → lv
 scattering processes by crossing symmetry.
- Search for deviation from the SM prediction in the cross sections of the Drell
 -Yan process, for all three lepton families consistently, studying single/
 double differential DY cross section, trying to optimise the sensitivity of the
 analysis to new phenomena throughout EFT effects (L3 M2 students have
 worked / will work on this!!).

10

-10

-15

-10

-5

0

W×10⁴

5

Υ×10⁴

Eleonora Rossi

10

Thanks for your attention!

New SMEFTsim v3.0

	gene	ral	U	J35	MI	FV	t	op	top	U31
	all	C٢	all	CP	all	C٢	all	CP	all	C٢
$\mathcal{L}_{6}^{(1)}$	4	2	4	2	2	-	4	2	4	2
$\mathcal{L}_{6}^{(2,3)}$	3	-	3	-	3	-	3	-	3	-
$\mathcal{L}_{6}^{(4)}$	8	4	8	4	4	-	8	4	8	4
$\mathcal{L}_{6}^{(5)}$	54	27	6	3	7	-	14	7	10	5
$\mathcal{L}_{6}^{(6)}$	144	72	16	8	20	-	36	18	28	14
$\mathcal{L}_{6}^{(7)}$	81	30	9	1	14	-	21	2	15	2
$\mathcal{L}_{6}^{(8a)}$	297	126	8	-	10	-	31	-	16	-
$\mathcal{L}_{6}^{(8b)}$	450	195	9	-	19	-	40	2	27	2
$\mathcal{L}_{6}^{(8c)}$	648	288	8	-	28	-	54	4	31	4
$\mathcal{L}_{6}^{(8d)}$	810	405	14	7	13	-	64	32	40	20
tot	2499	1149	85	25	120	-	275	71	182	53

From Ilaria's talk

Eleonora Rossi

New SMEFTsim v3.0

SMEFTsim package:

• LO tool with effective vertices for ggH, $H \rightarrow \gamma \gamma$ and $H \rightarrow Z\gamma (H \rightarrow gg)$.

SMEFT słm 🛠 v3.0 🛠

- Different flavour assumptions included (U(3)⁵ flavour symmetry);
- Two input parameter schemes (M_W -scheme).

• Truncation of the Lagrangian at $1/\Lambda^2$.

Follow standards for top quark physics proposed in Aguilar-Saavedra et al 1802.07237

Based on U(2) symmetry in quark sector

Barbieri et al. 1105.2296,1203.4218

 $\begin{array}{ll} \rightarrow \mbox{ 1st, 2nd gen.} & (q_L, u_R, d_R) & U(2)_q \times U(2)_u \times U(2)_d \\ \rightarrow \mbox{ 3rd gen.} & (Q_L, t_R, b_R) & \mbox{ no sym} \end{array}$

 $V_{CKM} \equiv 1$ • quarks of the first two generations and quarks of the 3rd are described by independent fields.

Two alternative options for lepton sector

top	$[U(1)_{l+e}]^3$ • corresponds to simple flavor-diagonality \rightarrow only diagonal entries. allows $e \neq \mu \neq \tau$
topU31	$U(3)_I \times U(3)_e \rightarrow \text{same as } U(3)^5 \text{ model.}$ diagonal $+ e = \mu = \tau \text{ imposed}$
	In the lepton sector, this setup matches exactly the
	structure of the U35 and MFV models. More restrictive
	w.r.t top scheme

SMEFTsim 3.0, I.Brivio

 Linear propagator corrections added to the package: mass terms and decay widths of the SM particles generally receive corrections from dim-6 operators-> include them in order to compute amplitudes consistently at O(Λ⁻²).
 qq → Hqq production: negligible effect in VBF bins, significant in VH ones

 $\frac{\sigma_{SMEFT}}{\sigma_{SM}} = 1 - 0.29 \frac{\delta\Gamma_Z}{\Gamma_Z^{SM}} - 0.65 \frac{\delta\Gamma_W}{\Gamma_W^{SM}} + \text{direct} \quad \text{Example of correction for VH}$

Eleonora Rossi

> Higgs-boson properties: precision measurements

Two complementary measurements used to explore the properties of the Higgs boson:

Fiducial cross sections:

- largely model-independent measurements.
- Include information on the decay.
- Different distributions can be measured.
- Fiducial selection matches experimental selection (reduce full phase space extrapolation).

LHCHWGFiducialAndSTXS

Simplified template cross section (STXS):

- STXS targets phase space regions within production modes, using Standard Model kinematics as a template.
- Categorise each production mode in bins of key (truth) quantities $(p_T^H, N_{jets'}, m_{jj'}, ...).$
- Reduce theory systematics, but more model-dependent.
- No decay information available in STXS (for the moment).

Eleonora Rossi

Eleonora Rossi

APP Anomalous Higgs-boson interactions through EFT

• 1D and 2D limits obtained fitting one or two WC at the time (and fixing the others to 0 -> SM).

 $\mathcal{L}_{\text{eff}}^{\text{SILH}} \supset \qquad \overline{c}_g O_g + \overline{c}_\gamma O_\gamma + \overline{c}_{HW} O_{HW} + \overline{c}_{HB} O_{HB}$ $+ \widetilde{c}_g \widetilde{O}_g + \widetilde{c}_\gamma \widetilde{O}_\gamma + \widetilde{c}_{HW} \widetilde{O}_{HW} + \widetilde{c}_{HB} \widetilde{O}_{HB}$ $\mathcal{L}_{\text{eff}}^{\text{SMEFT}} \supset \qquad \overline{C}_{HG}O'_{g} + \overline{C}_{HW}O'_{HW} + \overline{C}_{HB}O'_{HB} + \overline{C}_{HWB}O'_{HWB}$ $+ \widetilde{C}_{HG}\widetilde{O}'_{g} + \widetilde{C}_{HW}\widetilde{O}'_{HW} + \widetilde{C}_{HB}\widetilde{O}'_{HB} + \widetilde{C}_{HWB}\widetilde{O}'_{HWB}$

• The limits in the interference and interference + pure BSM cases are very similar for coefficients of CP-even operators (interference terms dominate).

• Destructive interference causes the ggF production cross section=0 around $\bar{c}_g \sim -2.2 \cdot 10^{-4}$ for $\tilde{c}_g \sim 0$ -> structure seen in the observed limits in the two-dimensional parameter plane. • Significant differences emerge for the CPsum (for inclusive construction of the co

$H \rightarrow \gamma \gamma$: STXS cross sections

•	The	relative	uncertainties	on	the	measurements
	rang	e from 20	% to more than	n 100	%.	

$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$		Total	Stat	Svet
$H \rightarrow \gamma \gamma, m_{\mu} = 125.09 \text{ GeV}$	**************************************	+0.31	01a1.	+0.18
yy→n 00 0 < p _T 10	0.76	-0.30 +0.20	(± 0.26,	-0.16 +0.1
gg→H 0J p _T > 10	1.17	-0.19	(± 0.15	, -0.11
gg→H 1J 0 < p [¬] _T < 60	0.91	-0.43	(± 0.40,	-0.16
gg→H 1J 60 < p _T ^H < 120	1.18	+0.39 -0.37	(± 0.37	, +0.1
gg→H 1J 120 < p ^H _T < 200	0.70	± 0.52	2 (± 0.5	0, + 0.1
gg→H ≥2J 0 < m_{JJ} < 350, 0 < p_{T}^{H} < 60	0.47	+1.28 -1.21	(^{+1.16} (_{-1.15} ,	+0.55, -0.38
gg→H ≥2J 0 < m_{JJ} < 350, 60 < p_T^H < 120	0.28	± 0.59	(+0.57 (-0.58	+0.13 , -0.12
gg→H ≥2J 0 < m_{JJ} < 350, 120 < p_T^H < 200	 0.60	+0.48 -0.47	(± 0.45	+0.17 ,-0.14
gg→H ≥2J m _{JJ} > 350, 0 < p _T ^H < 200	2.25	+0.99 -0.91	(<mark>+0.88</mark> -0.87 ,	+0.47,
gg→H 200 < p _T ^H < 300	1.00	+0.40	(^{+0.38} ,	+0.13
gg→H 300 < p ^H _T < 450	0.20	+0.57	(+0.55 (-0.49,	+0.14
gg→H $p_T^H > 450$	1.64	+1.45	+1.44	+0.17
qq→Hqq ≤ 1J	1.55	+1.23	+1.15	+0.44
qq→Hqq ≥2J 0 < m_u < 60 ll 120 <m_u 350<="" <="" td=""><td>3.16</td><td>+1.84</td><td>+1.70</td><td>+0.71</td></m_u>	3.16	+1.84	+1.70	+0.71
qq→Hqq ≥2J 60 < m_, < 120	0.76	+0.95	+0.91	-0.577 +0.25
qq→Hqq ≥2J 350 < m _{.1} < 700, 0 < p_{\perp}^{H} < 200	0.79	-0.83 +0.73	+0.62	+0.38
qg→Hqq ≥2J m _ > 700, 0 < p ^H < 200	1.09	-0.65 +0.35	(+0.28)	-0.32 +0.21
aa→Haa>2.1 m > 350 n ^H > 200	1.05	-0.31 +0.46	·-0.26 , , +0.41	-0.17 +0.20
aa→Hhu 0 < n ^V < 150		-0.40 +0.71	(-0.36,	-0.17 +0.22
	2.41	-0.70 +1.16	(± 0.67, +1.14	-0.19 +0.19
qq→Hiv p _t > 150	2.64	-0.99	(-0.97 ,	-0.17
HII 0 < p ^v _t < 150	-1.08	-0.87	(_{-0.85} ,	-0.20
HII $p_t^V > 150$	 -0.10	-0.93	(-0.91,	-0.19
ttH 0 < p_T^H < 60	0.76	+0.83	(+0.80 -0.68,	+0.21
ttH 60 < p_T^H < 120	0.72	+0.54 -0.46	+0.53 (_{-0.46} ,	+0.10 -0.08
ttH 120 < p_T^H < 200	1.06	+0.63 -0.54	(<mark>+0.61</mark> (_{-0.52} ,	+0.17 -0.14
ttH $p_T^H > 200$	0.96	+0.53 -0.46	(<mark>+0.52</mark> , -0.45,	+0.12 -0.10
tH	0.85	+3.28 -2.41	(<mark>+3.13</mark> (_{-2.21} ,	+0.97 -0.98

28/10/2021

Eleonora Rossi

ATLAS

STXS Stage 1.2

- Physical cross sections defined in mutually exclusive regions of phase space (bins).
- Simplified kinematic cuts: measurements unfolded to STXS bins → facilitate ATLAS and CMS combination
- Cuts defined for specific production modes, with the SM serving as kinematic template.
- Minimise dependence on theory uncertainty folded into the measurements.
- Maximise experimental sensitivity.
- Isolate possible BSM effects.
- Limit number of bins to match the experimental sensitivity \Rightarrow this number evolves as data increases.

Eleonora Rossi

CAPPImpact of quadratic terms

Eleonora Rossi

EFT parameterisation

• Analyses primarily measure cross-sections (or signal strengths) with likelihood fit

$$L(\boldsymbol{\mu}, \boldsymbol{\theta}) = \prod_{i}^{\mathsf{bins}} P\left(n_i^{\mathsf{obs}} \mid \mu_i n_i^{\mathsf{sig}}(\boldsymbol{\theta}) + n_i^{\mathsf{bkg}}(\boldsymbol{\theta})\right) \cdot \prod_{j}^{\mathsf{nuis}} G(\theta_j)$$

• For direct interpretations, we should replace the number of signal events:

$$n^{\text{sig}}(\boldsymbol{c}) \cdot \mathcal{L}^{-1} = \sigma_{\text{SM}} + \sum_{j} \underbrace{\frac{c_{j}}{\Lambda^{2}} \int \left| \mathcal{M}_{\text{SM}}^{d-1} \mathcal{O}_{j}^{(6)} \right| d\Omega}_{j} + \sum_{jk} \underbrace{\frac{c_{j} c_{k}}{\Lambda^{4}} \int \left| \mathcal{M}_{\text{SM}}^{d-2} \mathcal{O}_{j}^{(6)} \mathcal{O}_{k}^{(6)} \right| d\Omega}_{k} + \dots$$

• For indirect interpretations (like differential measurements), perform the same procedure on the cross-sections in the rewritten likelihood based on published, unfolded result with data bin correlation matrix *C*:

$$L(\Delta \sigma) = \frac{1}{\sqrt{(2\pi)^{n_{\text{bins}}} \det C}} \exp\left(-\frac{1}{2}\Delta \sigma^T C^{-1} \Delta \sigma\right) \qquad \text{with } \Delta \sigma = \sigma^{\text{obs}} - \sigma^{\text{sig}}$$

Eleonora Rossi

CAPPHWW+ WW combination

- Combine unfolded WW distribution (14 bins indirect interpretation, Gaussan likelihood) and H(WW*) ggF + H(WW*) VBF signal strength modifiers in likelihood (direct interpretation μ ggF/ μ VBF);
 - ★ correlated treatment of systematics;
 - ★ simultaneous fit of 8 coefficients;
 - \star rotation to sensitive basis.
- Orthogonal SRs, but WW CR in H (WW*) overlaps with SM WW signal.
 - ★ replace WW CR with SM WW measurement, correlate as appropriate.
- Constrain 22 Wilson coeffs. of bosonic and two-fermion operators in SMEFT framework.
- Stepping stone towards more global EFT combinations.

ATL-PHYS-PUB-2021-010

28/10/2021

Eleonora Rossi

27

ATLAS

Clipping

Clipping approach

- Use the EFT prediction only up to a clipping energy $\sqrt{s} = E_{clip}$ and set any contribution ۲ from this theory to 0 beyond this energy
- The clipping is done at parton level
- The SM predictions as well as the data remain untouched
- Derive limits for various Eclip
- Considering to use: Last data point can be use as reference point to start clipping scan

JManjarres-LHCEFT

Eleonora Rossi

High Mass DrellYan

HM DY talk

High energy probes of EW sector

- High mass Drell-Yan measurements can indirectly probe heavy new physics
- Modification of the SM in self energies of vector bosons
 - Focus on oblique corrections: S, T, W, and Y
- W and Y modify the propagators off the pole
- W and Y modify the cross section by a factor that grows with energy as q^2/mV (can be generated by dim-6 EFT operators)
 - Is the energy enhancement at hadron colliders sufficient to beat the precision at lepton colliders?
 - Look at the "tails" of charged and neutral Drell-Yan lepton pairs

Eleonora Rossi

