EFT with ATLAS

Elemora Ressi
Assemblée Générale Enigmass - 28/10/2021

[華] UNIVERSITÉ

Overview

The LHC has not found any evidence of New Physics.

- Direct searches for SUSY or exotics continue, but the focus on indirect exploration is increasing...
- Increasing number of Effective Field Theory (EFT) measurements and reinterpretations in ATLAS:
- EW : reinterpretation of differential fiducial XS;
- Top : $t \bar{t}$ differential cross-sections, Charge asymmetries, ttV , ecc..
- Higgs: STXS (Simplified template cross section)-based interpretations in all main decays modes ($\mathrm{H} \rightarrow \gamma \gamma, 4 \mathrm{l}, \mathrm{WW}^{*}, \mathrm{bb}, \tau \tau$) and combination; dedicated analyses for CP .
- Input observables: asymmetries, angles, pT , mass...
- Interpretation in context of EFT complementing (or superseding) other interpretations -> application on a variety of analyses.
- к-framework (Higgs);
- anomalous couplings (SM, Top);
- polarisation measurements (SM, Top).
- EFT results interpret unfolded spectrum (reinterpretation - indirect) or measure coefficients with the primary likelihood (reparameterisation - direct).

Theoretical framework

- An EFT approach can be used to set model-independent constraints on BSM physics, assuming that the scale of new physics is high enough to decouple from the SM.
- Constrain EFT coefficients \rightarrow constrain large classes of UV theories.
- Consider an EFT generalisation of the SM, SMEFT (SM Higgs doublet is present in the EFT construction); it describes BSM effects @LHC in scenarios where BSM is out of collider reach.
- In SMEFT, the effects of BSM dynamics at high energies $\Lambda \gg \mathrm{v}$, can be parametrised at low energies, $E \ll \Lambda$, in terms of higher-dimensional operators built up from the Standard Model fields, respecting its symmetries such as gauge invariance and using the same fields:

- only CP-even dimension-6 operators are considered (dim-5/7 operators -> violate lepton and/or baryon number conservation);
- the Warsaw basis, which provides a complete set of independent operators allowed by the SM gauge symmetries, is used; a value of $\Lambda=1 \mathrm{TeV}$ is assumed.
- Flavour symmetry $(\mathrm{U}(3) 5)$ assumed to reduce the number of parameters $-25 / 85$ (CP odd - all)

CAPP (Selection of) ATLAS recent results

ATL-PHYS-PUB-2021-010

Top summary plots

- Combination of two Hbb analyses:
resolved $\mathrm{ptV}>75 \mathrm{GeV}+$ two separate jets
boosted $\mathrm{ptV}>250 \mathrm{GeV}+$ one large- R jet ATLAS-CONF-2021-051

STXS measurements

- Dedicated particle-level (truth) regions of the production phase space (approximately fiducial on production side), inclusive for all Higgs decays.
- Compromise between differential distributions and experimental sensitivity; designed to minimise theory uncertainty and provide BSM sensitivity.
- Measurements available for all main decay modes ($\gamma \gamma$, $41,212 v, b b, \tau \tau)$.
- Measured signal strength for each STXS category used in EFT analysis to extract constraints on (combinations of) Wilson coefficients.

Decay channel	Target Production Modes	$\mathcal{L}\left[\mathrm{fb}^{-1}\right]$
$H \rightarrow \gamma \gamma$	ggF, VBF, $W H, Z H, t \bar{t} H, t H$	139
$H \rightarrow Z Z^{*}$	ggF, VBF, $W H, Z H, t \bar{t} H(4 \ell)$	139
$H \rightarrow W W^{*}$	Updated ggF, VBF	139
$H \rightarrow \tau \tau$ Updated ggF, VBF, $W H, Z H, t t H$		139
$H \rightarrow b \bar{b}$ Up	NEW WH,ZH	139
	dated VBF	126
	dated tith	139

EFT workflow
Focus on the methodology used in the Higgs combination than can/is used also in other combinations.

EFT workflow - 1

CAPP Impact of SMEFT operators on STXS

- Impact of each Wilson coefficient in the different STXS bins or partial widths.
- The impact of most Wilson coefficients is rescaled to fit in the plot.
- Insufficient kinematic information to probe simultaneously 26 parameters!
- Principle Component Analysis in parameter groups to identify sensitive directions.
- EFT parameterisation is affected by analysis level selections used to reconstruct SM Higgs.
- Acceptance effects are included for HWW and HZZ channels.

ATLAS-CONF-2021-053

Sensitivity studies

- Principal Component Analysis to reduce the dimensionality of the fit.
- Combinations of Wilson coefficients to which measurements are not sensitive manifest themselves as flat directions in the likelihood.
- These directions are identified using the Fisher information matrix of the

Sensitivity Study original $H \rightarrow \gamma \gamma$ STXS likelihood ($C_{S T X S}^{-1}$), parameterised in terms of the STXS parameters and obtained using the HESSE method within Minuit.

- Removing degenerate directions in the likelihood
- Keep only the sensitivity directions for final fits

- CEFT covariance matrix of the Wilson coefficients;
- C $C_{\text {STXS }}$ covariance matrix of the STXS cross sections;
- P: matrix that gives the parametrisation of the STXS bin cross sections as a function of the Wilson coefficients;

- $A_{i}^{b_{j}}$ factors obtained from the simulation.

Sensitivity studies

- Principal Component Analysis to reduce the dimensionality of the fit.
- Combinations of Wilson coefficients to which measurements are covarianc sensitive manifest themselves as flat directions in the likelihood.
- These directions are identified using the Fisher information matrix of the original $H \rightarrow \gamma \gamma$ STXS likelihood ($C_{\text {STXS }}^{-1}$), parameterised in terms of the STXS parameters and obtained using the HESSE method within Minuit.

Sensitivity Study

> Removing degenerate directions in the likelihood
> - Keep only the sensitivity directions for final fits
[Linear Algebra]

28/10/2021

CARP
 Summary of results (linear only)

Expected

Observed

ATLAS-CONF-2021-053

- All measured parameters are consistent with the SM expectation within their uncertainty.
- Setting parameters to SM (zero) can be a strong model assumption-> in order to keep the generality of results, show that the impact on fitted directions is negligible within EFT validity range.

CAPP
 Summary of results (linear only)

- Additional sensitivity from the $H \rightarrow \tau \tau, V B F, H \rightarrow b \bar{b}$ and $t \bar{t} H, H \rightarrow b \bar{b}$ input channels-> $c_{e H^{\prime}} c_{d H}+$ independent constraints for $c_{\text {top }}^{[1]}$.
- Sensitivity to the most sensitive directions in each of the remaining groups of the parameters is in general improved by up to 70%.

(لAPP Summary of results (linear+quadratic, ICHEP combination)

- Open point of the SMEFT interpretation, linear+quadratic theoretically robust? inclusion of quadratic terms: in some cases quadratic terms might drive the sensitivity -> study dim-8 terms since the Λ^{4} term is not complete without these terms.

ICHEP2020

Tyler Corbett, Adam Martin, and Michael Trott: Consistent higher order $\sigma(g g \rightarrow H), \Gamma(H \rightarrow g g)$ and $\Gamma(H \rightarrow \gamma \gamma)->$ testing in $H \rightarrow \gamma \gamma$

Plans

- Paper including EFT interpretations of $H \rightarrow \gamma \gamma$ channel.
- Paper including EFT interpretation of the Higgs combination-> more channels included, additional results provided for interpretations.
Higgs studies are just one input of global EFT analyses; furthermore, current Higgs measurements are not enough to disentangle all possible EFT interactions entering in Higgs physics-> avoid having to fix many coefficients to SM-> Combine analyses to get a more comprehensive picture!
- ATLAS Global EFT-> effort to combine Higgs, top, EW (+LEP constraints):
- experience with interpretations in Higgs combination and $\mathrm{H}->\mathrm{WW}+\mathrm{WW}$;
- make use of the best knowledge of our measurement correlations.

- Likelihood-level EFT combination including EW, Higgs \& top measurements from ATLAS \& CMS (LHC EFT Twiki).
- Exercise with CMS-> first combination using public results -> discussion ongoing to understand which analyses can be included for a first exercise (Twiki)
- Very active field both from experimental and theoretical point of view:
- e.g. dim-8 contributions + theory uncertainties for
 EFT truncation + matching with UV models (From Models to SMEFT and Back)

Plans

- Paper including EFT interpretations of $H \rightarrow \gamma \gamma$ channel.
- Paper including EFT interpretation of the Higgs combination-> more channels included, additional results provided for interpretations
Higgs studies are just one input of global EFT analyses; furthermore, current Higgs measurements are not enough to disentangle all possible EFT interactions entering in Higgs physics-> avoid having to fix many coefficients to SM-> Combine analyses to get a more comprehensive picture!
- The LAPP group is active also in High Mass (mll>116 GeV) Drell Yan studies.
- Measurements of beauty hadron decays from LHCb display a seemingly coherent pattern of deviations with respect to the SM predictions, which suggest that new physics couples differently to three generations of matter.
- quark-level processes responsible for these so-called ' B anomalies' could be connected to $\mathrm{b} \overline{\mathrm{s}} \rightarrow \mathrm{ll}$ and $\mathrm{b} \overline{\mathrm{c}} \rightarrow \mathrm{lv} \rightarrow \mathrm{ll}$ and $\mathrm{b} \overline{\mathrm{c}} \rightarrow \mathrm{lv}$ and $\mathrm{b} \overline{\mathrm{c}} \rightarrow \mathrm{lv} \rightarrow \mathrm{lv}$ scattering processes by crossing symmetry.
- Search for deviation from the SM prediction in the cross sections of the Drell -Yan process, for all three lepton families consistently, studying single/ double differential DY cross section, trying to optimise the sensitivity of the analysis to new phenomena throughout EFT effects (L3 - M2 students have worked / will work on this!!).

Thanks for your attention!

New SMEFTsim v3.0

	general		U35		MFV		top		topU31	
	all	CP								
$\mathcal{L}_{6}^{(1)}$	4	2	4	2	2	-	4	2	4	2
$\mathcal{L}_{6}^{(2,3)}$	3	-	3	-	3	-	3	-	3	-
$\mathcal{L}_{6}^{(4)}$	8	4	8	4	4	-	8	4	8	4
$\mathcal{L}_{6}^{(5)}$	54	27	6	3	7	-	14	7	10	5
$\mathcal{L}_{6}^{(6)}$	144	72	16	8	20	-	36	18	28	14
$\mathcal{L}_{6}^{(7)}$	81	30	9	1	14	-	21	2	15	2
$\mathcal{L}_{6}^{(8 \mathrm{a})}$	297	126	8	-	10	-	31	-	16	-
$\mathcal{L}_{6}^{(8 b)}$	450	195	9	-	19	-	40	2	27	2
$\mathcal{L}_{6}^{(8 c)}$	648	288	8	-	28	-	54	4	31	4
$\mathcal{L}_{6}^{(8 d)}$	810	405	14	7	13	-	64	32	40	20
tot	2499	1149	85	25	120	-	275	71	182	53

From Ilaria's talk

New SMEFTsim v3．0

SMEFT Sim 运 13.0 弪

SMEFTsim package：
－LO tool with effective vertices for ggH ， $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma(H \rightarrow g g)$ ．
－Different flavour assumptions included （U（3）${ }^{5}$ flavour symmetry）；
－Two input parameter schemes $\left(M_{W^{-}}\right.$ scheme）．
－Truncation of the Lagrangian at $1 / \Lambda^{2}$ ．

Follow standards for top quark physics proposed in Aguilar－Saavedra et al 1802．07237
Based on $U(2)$ symmetry in quark sector
Barbieri et al．1105．2296，1203．4218

$$
\begin{array}{lcc}
\rightarrow \text { st, 2nd gen. } & \left(q_{L}, u_{R}, d_{R}\right) & U(2)_{q} \times U(2)_{u} \times U(2)_{d} \\
\rightarrow \text { 3rd gen. } & \left(Q_{L}, t_{R}, b_{R}\right) & \text { no sym }
\end{array}
$$

$V_{C K M} \equiv \mathbb{1} \cdot q u a r k s$ of the first two generations and quarks of the 3rd are described by independent fields．

Two alternative options for lepton sector

top	$\left[U(1)_{l+e}\right]^{3} \quad$corresponds to simple flavor－diagonality \rightarrow only diagonal entries． allows $e \neq \mu \neq \tau$
topU31 $\quad U(3)_{I} \times U(3)_{e} \rightarrow$same as $U(3)^{5}$ model． diagonal $+e=\mu=\tau$ imposed	
	In the lepton sector，this setup matches exactly the structure of the U35 and MFV models．More restrictive w．r．t top scheme

－Linear propagator corrections added to the package：

SMEFTsim 3．0，I．Brivio

 mass terms and decay widths of the SM particles generally receive corrections from dim－6 operators－＞include them in order to compute amplitudes consistently at $\mathrm{O}\left(\Lambda^{-2}\right)$ ．$q q \rightarrow H q q$ production：negligible effect in VBF bins，significant in VH ones

$$
\frac{\sigma_{S M E F T}}{\sigma_{S M}}=1-0.29 \frac{\delta \Gamma_{Z}}{\Gamma_{Z}^{S M}}-0.65 \frac{\delta \Gamma_{W}}{\Gamma_{W}^{S M}}+\text { direct } \quad \text { Example of correction for } \mathbf{V H}
$$

Higgs-boson properties: precision measurements

Two complementary measurements used to explore the properties of the Higgs boson:

Total phase space

Detector phase space

LHCHWGFiducialAndSTXS
Fiducial cross sections:

- largely model-independent measurements.
- Include information on the decay.
- Different distributions can be measured.
Fiducial selection matches experimental selection (reduce full phase space extrapolation).

Simplified template cross section (STXS):

- STXS targets phase space regions within production modes, using Standard Model kinematics as a template.
- Categorise each production mode in bins of key (truth) quantities $\left(p_{T}^{H}, N_{j e t s^{\prime}} m_{j j^{\prime}}, \ldots\right)$.
- Reduce theory systematics, but more model-dependent.
- No decay information available in STXS (for the moment).

CAPP $H \rightarrow \gamma \gamma$: differential and fiducial cross sections

- The distributions are compared to the state-of-the art theory predictions and used for the interpretations.
- Kinematics observables with sensitivity to new physics.
- $\Delta \phi_{j j}$ sensitive to CP properties of the Higgs boson.
- Good agreement observed w.r.t. SM predictions.

CAPP Anomalous Higgs-boson interactions through EFT

An effective field theory (EFT) approach can be used to interpret Higgs-boson interactions:

- additional CP-even and CP-odd interactions can change the event rates, the kinematic
properties of the Higgs boson, etc.., from those predicted by the SM.
- The differential $H \rightarrow \gamma \gamma$ cross sections are sensitive to operators that

$$
\mathscr{L}_{E F T}=\mathscr{L}_{S M}+\sum_{i, D} \frac{c_{i}^{(D)}}{\Lambda^{D-4}} \sigma_{i}^{(D)}
$$

Wilson coefficients affect the Higgs-boson interactions with gauge bosons (5 differential distributions).

$$
d(\sigma \times B R) / d x, x=p_{T}^{\gamma \gamma}, N_{j e t s}, p_{T}^{j 1}, m_{j j}, \Delta \varphi_{j j}
$$

$$
\begin{array}{ll}
\mathcal{L}_{\text {eff }}^{\text {SILH }} \supset \quad & \bar{c}_{g} O_{g}+\bar{c}_{\gamma} O_{\gamma}+\bar{c}_{H W} O_{H W}+\bar{c}_{H B} O_{H B} \\
& +\tilde{c}_{g} \widetilde{O}_{g}+\tilde{c}_{\gamma} \widetilde{O}_{\gamma}+\tilde{c}_{H W} \widetilde{O}_{H W}+\tilde{c}_{H B} \widetilde{O}_{H B}
\end{array}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}^{\text {SMEFT }} \supset \\
& \begin{array}{c}
\bar{C}_{H G} O_{g}^{\prime}+\bar{C}_{H W} O_{H W}^{\prime}+\bar{C}_{H B} O_{H B}^{\prime}+\bar{C}_{H W B} O_{H W B}^{\prime} \\
+\widetilde{C}_{H G} \widetilde{O}_{g}^{\prime}+\widetilde{C}_{H W} \widetilde{O}_{H W}^{\prime}+\widetilde{C}_{H B} \widetilde{O}_{H B}^{\prime}+\widetilde{C}_{H W B} \widetilde{O}_{H W B}^{\prime}
\end{array}
\end{aligned}
$$

Plots including CPodd (SILH) and CPeven (SMEFT) are in backup

CAPP Anomalous Higgs-boson interactions through EFT

- 1D and 2D limits obtained fitting one or two WC at the time (and fixing the others to $0->S M$).

$$
\begin{array}{ll}
\mathcal{L}_{\text {eff }}^{\text {SILH }} \supset \quad & \bar{c}_{g} O_{g}+\bar{c}_{\gamma} O_{\gamma}+\bar{c}_{H W} O_{H W}+\bar{c}_{H B} O_{H B} \\
& +\tilde{c}_{g} \widetilde{O}_{g}+\tilde{c}_{\gamma} \widetilde{O}_{\gamma}+\tilde{c}_{H W} \widetilde{O}_{H W}+\tilde{c}_{H B} \widetilde{O}_{H B}
\end{array}
$$

- Destructive interference causes the ggF production cross section $=0$ around $\bar{c}_{g} \sim-2.2 \cdot 10^{-4}$ for $\tilde{c}_{g} \sim 0->$ structure seen in the observed limits in the two-dimensional parameter plane.

$\bar{C}_{H W}$

nit

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\text {SMEFT }} \supset & \bar{C}_{H G} O_{g}^{\prime}+\bar{C}_{H W} O_{H W}^{\prime}+\bar{C}_{H B} O_{H B}^{\prime}+\bar{C}_{H W B} O_{H W B}^{\prime} \\
& +\widetilde{C}_{H G} \widetilde{O}_{g}^{\prime}+\widetilde{C}_{H W} \widetilde{O}_{H W}^{\prime}+\widetilde{C}_{H B} \widetilde{O}_{H B}^{\prime}+\widetilde{C}_{H W B} \widetilde{O}_{H W B}^{\prime}
\end{aligned}
$$

- The limits in the interference and interference + pure BSM cases are very similar for coefficients of CP-even operators (interference terms dominate).
- Significant differences emerge for the CPodd ones for which the interference term is vanishing (for inclusive observables).

Coefficient	Observed 95% CL limit	Expected 95% CL limit
\bar{c}_{g}	$[-0.26,0.26] \times 10^{-4}$	$[-0.25,0.25] \cup[-4.7,-4.3] \times 10^{-4}$
\tilde{c}_{g}	$[-1.3,1.1] \times 10^{-4}$	$[-1.1,1.1] \times 10^{-4}$
$\bar{c}_{H W}$	$[-2.5,2.2] \times 10^{-2}$	$[-3.0,3.0] \times 10^{-2}$
$\tilde{c}_{H W}$	$[-6.5,6.3] \times 10^{-2}$	$[-7.0,7.0] \times 10^{-2}$
\bar{c}_{γ}	$[-1.1,1.1] \times 10^{-4}$	$[-1.0,1.2] \times 10^{-4}$
\tilde{c}_{y}	$[-2.8,4.3] \times 10^{-4}$	$[-2.9,3.8] \times 10^{-4}$

$H \rightarrow \gamma \gamma:$ STXS cross sections

- The relative uncertainties on the measurements range from 20% to more than 100%.

STXS Stage 1.2

- Physical cross sections defined in mutually exclusive regions of phase space (bins).
- Simplified kinematic cuts: measurements unfolded to STXS bins \rightarrow facilitate ATLAS and CMS combination
- Cuts defined for specific production modes, with the SM serving as kinematic template.
- Minimise dependence on theory uncertainty folded into the measurements.
- Maximise experimental sensitivity.
- Isolate possible BSM effects.
- Limit number of bins to match the experimental sensitivity \Rightarrow this number evolves as data increases.

Impact of quadratic terms

ATLAS-CONF-2020-053 ICHEP2020

Non-negligible impact from quadratic terms-> study dim-8 terms

EFT parameterisation

- Analyses primarily measure cross-sections (or signal strengths) with likelihood fit

$$
L(\boldsymbol{\mu}, \boldsymbol{\theta})=\prod_{i}^{\text {bins }} P\left(n_{i}^{\text {obs }} \mid \mu_{i} n_{i}^{\text {sig }}(\boldsymbol{\theta})+n_{i}^{\mathrm{bkg}}(\boldsymbol{\theta})\right) \cdot \prod_{j}^{\text {nuis }} G\left(\theta_{j}\right)
$$

- For direct interpretations, we should replace the number of signal events:

$$
n^{\text {sig }}(\boldsymbol{c}) \cdot \mathcal{L}^{-1}=\sigma_{\mathrm{SM}}+\sum_{j} \overbrace{\frac{c_{j}}{\Lambda^{2}} \int\left|\mathcal{M}_{\mathrm{SM}}^{d-1} \mathcal{O}_{j}^{(6)}\right| d \Omega}^{\text {"linear" }}+\sum_{j k} \overbrace{j}^{c_{j} c_{k}} \Lambda^{4} \int\left|\mathcal{M}_{\mathrm{SM}}^{d-2} \mathcal{O}_{j}^{(6)} \mathcal{O}_{k}^{(6)}\right| d \Omega+\ldots
$$

- For indirect interpretations (like differential measurements), perform the same procedure on the cross-sections in the rewritten likelihood based on published, unfolded result with data bin correlation matrix C :

$$
L(\boldsymbol{\Delta} \boldsymbol{\sigma})=\frac{1}{\sqrt{(2 \pi)^{n_{\text {bins }} \operatorname{det} C}}} \exp \left(-\frac{1}{2} \boldsymbol{\Delta} \boldsymbol{\sigma}^{T} \boldsymbol{C}^{-1} \boldsymbol{\Delta} \boldsymbol{\sigma}\right) \quad \text { with } \Delta \sigma=\sigma^{\text {obs }}-\sigma^{\text {sig }}
$$

HWW + WW combination

- Combine unfolded WW distribution (14 bins - indirect interpretation, Gaussan likelihood) and H(WW*) $\operatorname{ggF}+\mathrm{H}\left(\mathrm{WW}^{*}\right) \mathrm{VBF}$ signal strength modifiers in likelihood (direct interpretation $\mu \mathrm{ggF} / \mu \mathrm{VBF}$);
\star correlated treatment of systematics;
\star simultaneous fit of 8 coefficients;
\star rotation to sensitive basis.
- Orthogonal SRs, but WW CR in H (WW*) overlaps with SM WW signal.
\star replace WW CR with SM WW measurement, correlate as appropriate.
- Constrain 22 Wilson coeffs. of bosonic and two-fermion operators in SMEFT framework.
- Stepping stone towards more global EFT combinations.

ATLAS Preliminary $\sqrt{s}=13 \mathrm{TeV}, 36 \mathrm{fb}^{-1}$ $p_{S M}=53 \%$	
	\cdots
	\cdots
	\cdots
	-
$\mu_{p o m o p}^{m w} 110-130 \mathrm{GeV}$	\cdots
$\mu_{0}^{\mu m m o m e r ~} 100-110 \mathrm{GeV}$	-
	-
	-
	-
	-
	-
	\sim
	\cdots
$\mu_{\text {ght }}^{\text {Hm }}$	-
${ }_{4}{ }^{\text {HGEF }}$	

ATL-PHYS-PUB-2021-010

Clipping

Clipping approach

- Use the EFT prediction only up to a clipping energy $\sqrt{ } s=E_{\text {clip }}$ and set any contribution from this theory to 0 beyond this energy
- The clipping is done at parton level
- The SM predictions as well as the data remain untouched
- Derive limits for various Eclip
- Considering to use: Last data point can be use as reference point to start clipping scan

JManjarres-LHCEFT

High Mass DrellYan

HM DY talk

High energy probes of EW sector

- High mass Drell-Yan measurements can indirectly probe heavy new physics
- Modification of the SM in self energies of vector bosons
- Focus on oblique corrections: S, T, W, and Y
- W and Y modify the propagators off the pole
- W and Y modify the cross section by a factor that grows with energy as q^{2} / mV (can be generated by dim-6 EFT operators)
- Is the energy enhancement at hadron colliders sufficient to beat the precision at lepton colliders?
- Look at the "tails" of charged and neutral Drell-Yan lepton pairs

