Measurement of the very rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay from NA62

Francesco Brizioli

University of Perugia and INFN (Italy) francesco.brizioli@cern.ch

on behalf of the NA62 Collaboration

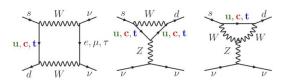
Seminar at Laboratoire Leprince-Ringuet, Paris (France)

June 7, 2021

$$Br(K^+ \to \pi^+ \nu \bar{\nu})$$
 measurement at NA62

- Physics case
- Beam and detector
- Experimental strategy
- Signal selection
- Single Event Sensitivity
- Background estimation and validation
- Result from 2016+2017+2018 data
- Reinterpretation for $K^+ \to \pi^+ X$ search
- Prospects

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ search @ NA62

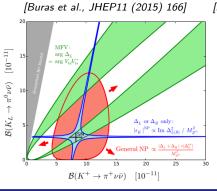

- Full detector installation completed in 2016
- $K^+ \to \pi^+ \nu \bar{\nu}$ physics runs in 2016, 2017 and 2018
- Result from 2016+2017 data is published [JHEP 11 (2020) 042]
- Result from 2016+2017+2018 data (Run 1) accepted for publication by JHEP [arXiv 2103.15389] → this seminar!
- Data taking will resume in July after CERN LS2

NA62 is located at CERN in the North Area, exploiting a 400 GeV/c proton beam extracted from the SPS accelerator

The physics case: $Br(K^+ \to \pi^+ \nu \bar{\nu})$

- $\bar{s} \to \bar{d}\nu\bar{\nu}$ transition: flavour changing neutral current process (GIM mechanism) with high CKM suppression
- Clean theoretical prediction: short distance contributions
- Hadronic matrix elements: obtained from $K^+ \to \pi^0 I^+ \nu$ (K_{I3}) measurements and SU(2) isospin symmetry

Standard Model prediction [Buras et al., JHEP11(2015)033]


$$Br^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

main uncertainty due to CKM elements knowledge:

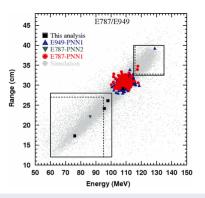
$$Br^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.839 \pm 0.030) \cdot 10^{-10} \cdot \left(\frac{|V_{cb}|}{40.7 \cdot 10^{-3}}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74}$$

The $K^+ o \pi^+ \nu \bar{\nu}$ decay beyond the Standard Model

New Physics search, Br sensitive to the highest mass scales

[Isidori et al., Eur.Phys.J. C (2017) 77: 618]

5 / 48


New Physics models for $K \to \pi \nu \bar{\nu}$

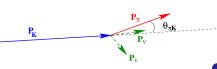
MFV; Simplified Z, Z'; LFU violation; Custodial Randall-Sundrum; MSSM; Littlest Higgs with T-parity; Leptoquarks.

Experimental status before NA62

BNL E787/E949 experiments

[Phys. Rev. D 77, 052003 (2008)] - [Phys. Rev. D 79, 092004 (2009)]

- Kaon decay-at-rest technique
- ullet sensitivity for ~ 1 SM signal event
- 7 events observed in signal regions
- statistical reweighing procedure to take into account the background


$$Br^{BNL}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \cdot 10^{-10}$$

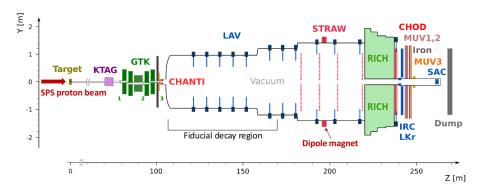
Francesco Brizioli $K^+ \to \pi^+ \nu \bar{\nu}$ at NA62 June 7, 2021 6 / 4

NA62: the experimental strategy

Keystones

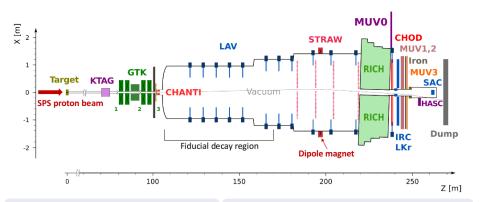
- decay-in-flight technique ($P_K = 75 \text{ GeV}/c$)
- main kinematic variable: $m_{miss}^2 = (P_K P_{\pi})^2$
- pion momentum range: [15; 45] GeV/c
- charged particle identification
- muon and photon rejection
- signal and control kinematic regions blinded during the analysis

$K^+ \rightarrow \pi^+ \pi^0(\gamma)$ $(1/\Gamma_{\rm tot}) \left({ m d}\Gamma/{ m dm}_{ m mis}^2 \right)$ 10^{-1} K+→π'VV (×1010) 10^{-2} $K^+ \rightarrow \pi^+ \pi^+ \pi$ 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10 -0.040 0.04 0.08 0.12 m_{miss}^2 [GeV²/c⁴]


Required performance

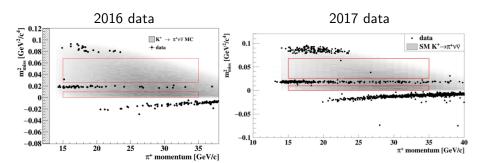
- time coincidence: O(100 ps)
- kinematic rejection: $O(10^4)$
- muon rejection: > 10⁷
- π^0 rejection: $> 10^7$

K^+ main (background) decays


Decay channel	Branching Ratio	
V+ ,+ (V)	$(63.56 \pm 0.11) \cdot 10^{-2}$	
$K^+ \rightarrow \mu^+ \nu \ (K_{\mu 2})$		
$K^+ \rightarrow \pi^+ \pi^0 (K_{2\pi})$	$(20.67 \pm 0.08) \cdot 10^{-2}$	
$K^+ \to \pi^+ \pi^+ \pi^- (K_{3\pi})$	$(5.583 \pm 0.024) \cdot 10^{-2}$	
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu \ (K_{e4})$	$(4.247 \pm 0.024) \cdot 10^{-5}$	

NA62 beam [2017 JINST 12 P05025]

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- 70% pions, 24% protons, 6% kaons
- Nominal beam particle rate (at GTK3): 750 MHz
- Average beam particle rate during 2018 data-taking: 450 500 MHz


NA62 detector [2017 JINST 12 P05025]

- KTAG: Cherenkov threshold counter;
- GTK: Si pixel beam tracker;
- CHANTI: stations of plastic scintillator bars;
- LAV: lead glass ring calorimeters;
- STRAW: straw magnetic spectrometer;
- RICH: Ring Imaging Cherenkov counter;
- MUV0: off-acceptance plane of scintillator pads;

- CHOD: planes of scintillator pads and slabs;
- IRC: inner ring shashlik calorimeter;
- LKr: electromagnetic calorimeter filled with liquid krypton;
- MUV1,2: hadron calorimeter;
- MUV3: plane of scintillator pads for muon veto;
- HASC: near beam lead-scintillator calorimeter;
- SAC: small angle shashlik calorimeter.

NA62 results of the 2016 and 2017 data analyses

2016 result

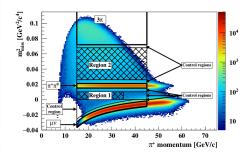
$$Br_{16}^{NA62}(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \cdot 10^{-10} \ @ 95\% \ CL$$
 [Physics Letters B 791 (2019) 156–166]

2016+2017 result

$$Br_{16+17}^{NA62}(K^+ \to \pi^+ \nu \bar{\nu}) < 1.78 \cdot 10^{-10}$$
 @ 90% CL [JHEP 11 (2020) 042]

Selection steps

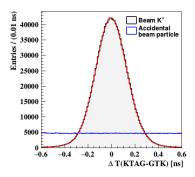
- π^+ and K^+ tracks reconstruction
- $K^+ \pi^+$ matching
- decay vertex reconstruction
- π^+ identification (μ^+ rejection)
- photon rejection
- multi-track rejection
- kinematics $(m_{miss}^2 \ vs \ p_{\pi})$

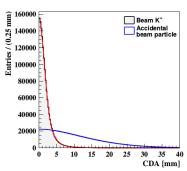

$\pi\nu\nu$ trigger stream

- L0 (hardware): presence of charged particle + muon and photon veto
- L1 (software): K⁺ ID, photon veto, track reconstruction

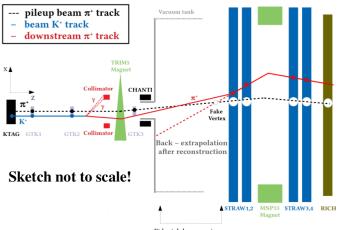
Minimum bias trigger stream

 Presence of charged particle (L0 only)


$$m_{miss}^2 = (P_K - P_\pi)^2$$

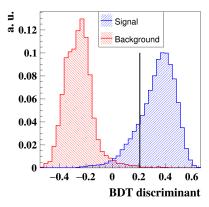


$K^+ - \pi^+$ matching


- Time and space matching discriminant based on ΔT (RICH,KTAG,GTK) and CDA (closest distance of approach)
- $|\Delta T| < 0.5$ ns, CDA < 4 mm
- Reconstructed decay vertex inside the fiducial volume: $Z \in [105; 170]$ m

data - $K^+ \to \pi^+ \pi^+ \pi^-$ control sample

Upstream event

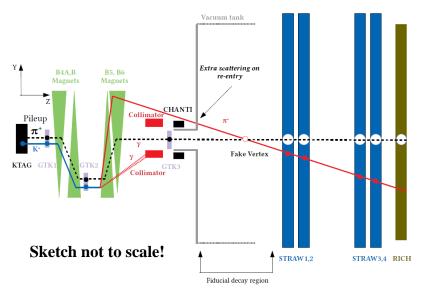

Fiducial decay region

- a kaon decays upstream the fiducial decay region
- lacktriangledown only a π^+ enters the fiducial decay region
- there is an in-time pileup beam particle (in GTK)
- lacktriangle the upstream π^+ is scattered in the first STRAW chamber.

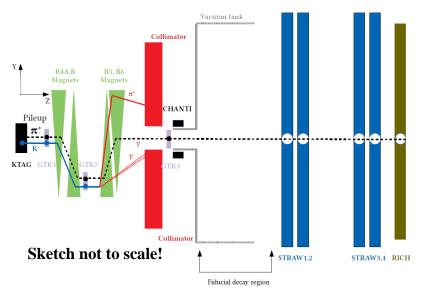
Upstream events rejection

- $K^+ \pi^+$ matching conditions + geometrical variables: $(X,Y)_{Collimator}, (X,Y,Z)_{vtx}, track$ slope
- BDT or cut-based approach applied on geometrical variables
- BDT approach possible only after the installation of a new final collimator in June 2018
- BDT signal training sample: MC simulation
- BDT background training sample: out of time data ($|\Delta T| > 0.5$ ns)

BDT discriminant for Signal and Background

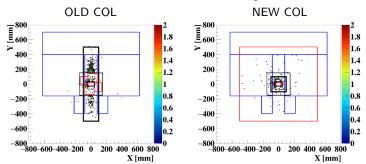

Both samples normalized to 1 $\epsilon(sig) \sim 83\%$ @ $\epsilon(bkg) \sim 0.5\%$

The new collimator


Replacement of the final collimator against upstream events (June 2018)

A particular upstream event in the OLD COL configuration

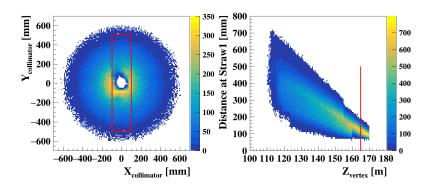
The same upstream event in the NEW COL configuration



Effect of the new collimator

2018 data samples split into two sub-samples:

- 2018-OLDCOL (S1): before the collimator replacement (\sim 30% of N_K in full 2018)
- 2018-NEWCOL (S2): after the collimator replacement ($\sim 70\%$ of N_K in full 2018)

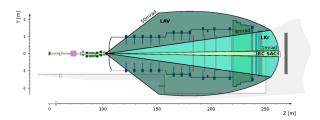

Track extrapolation at collimator in enriched sample of upstream events (data). Red boxes: collimator coverage.

Two different selections for the two sub-samples!

BDT against upstream events: improvement in signal efficiency

MC $K^+ \to \pi^+ \nu \bar{\nu}$ after cut on BDT discriminant

Main BDT variables: $(X, Y)_{collimator}$, Z_{vertex} , Distance at Straw1

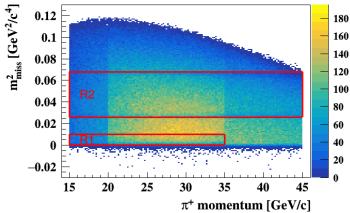

Red lines: cut-based selection (2018-OLDCOL sample)

Fiducial decay region extended from $Z \in [105-165]$ m to $Z \in [105-170]$ m

PID and photon rejection

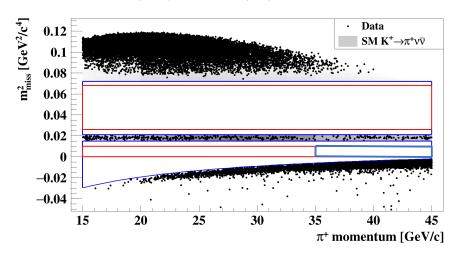
PID conditions optimized in bins of π^+ momentum:

- RICH: $\epsilon(\mu) \sim 3 \cdot 10^{-3}$ at $\epsilon(\pi) \sim 0.85$
- Calorimeters (with BDT approach) and MUV3: $\epsilon(\mu) \sim 10^{-5}$ at $\epsilon(\pi) \sim 0.82$



Photon rejection optimized taking into account correlations with Z_{vtx} and π^+ momentum:

• π^0 rejection inefficiency (average): $\sim 2 \cdot 10^{-8}$


Kinematic selection

MC $K^+ \to \pi^+ \nu \bar{\nu}$ after the full selection. Red boxes represent the final kinematic cuts (signal regions).

Region at higher m_{miss}^2 (R2) extended up to 45 GeV/c momentum. Discontinuities due to selection optimization in bins of momentum.

Control (blue) and signal (red) regions blinded

Number of Kaon decays and Single Event Sensitivity

Normalization channel: $K^+ \to \pi^+ \pi^0 \ (\pi^0 \to \gamma \gamma)$

Same criteria of the signal selection, except for: minimum bias trigger, photon and multiplicity rejection not applied, different kinematic region.

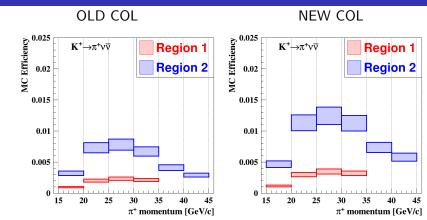
Number of kaon decays

$$N_K = \frac{N_{\pi\pi} \cdot D}{A_{\pi\pi} \cdot Br_{\pi\pi}}$$

- $N_{\pi\pi}$: number of $K^+ \to \pi^+\pi^0$
- *D* : Down-scaling factor applied to the minimum bias trigger
- $A_{\pi\pi}$: normalization selection acceptance (from MC)
- $Br_{\pi\pi}$: normalization decay Branching Ratio

 N_K is an effective number of K^+ decays

N_K in 2018 data

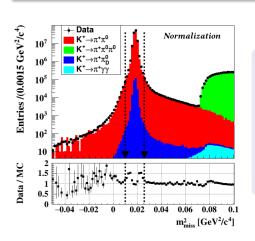

$$N_K(2018) \simeq \ (0.8_{OLDCOL} + 1.9_{NEWCOL}) \cdot 10^{12} \simeq 2.7 \cdot 10^{12}$$

Single Event Sensitivity

$$\textit{SES} = \frac{1}{\textit{N}_{\textit{K}} \cdot \sum_{j} (\textit{A}_{\pi\nu\nu}^{j} \cdot \epsilon_{trig}^{j} \cdot \epsilon_{RV}^{j})}$$

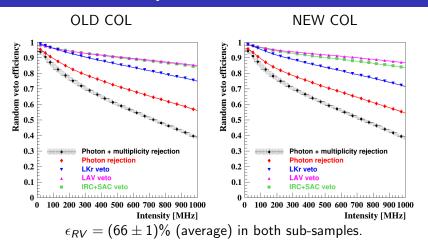
- N_K : number of K^+ decays
- $A_{\pi\nu\nu}$: signal selection acceptance (from MC)

- ϵ_{trig} : trigger efficiency
- \bullet ϵ_{RV} : random veto efficiency
- j: bins of π^+ momentum



$$A_{\pi
u
u}(OLDCOL) \simeq 4.0\%$$
 , $A_{\pi
u
u}(NEWCOL) \simeq 6.4\%$

- Sizeable improvement in the NEWCOL sample
- Region 20-35 GeV/c the most sensitive in both samples


Uncertainty of MC acceptance

Systematic uncertainty of 3.5% assigned to the SES due to Data/MC discrepancy

Cancellation of systematic effects in the *normalization process*:

- \bullet π^+ ID and reconstruction
- detectors efficiencies
- K⁺ ID and reconstruction
- beam-related acceptance loss

- Measured in $K^+ o \mu^+ \nu$ control sample (minimum bias data)
- Systematic uncertainty due to radiative correction, computed with MC
- Slightly improved treatment of STRAW and LAV with respect to 2017

Trigger efficiency

- Measured in minimum bias data, exploiting $K^+ \to \mu^+ \nu$ and $K^+ \to \pi^+ \pi^0$ control samples.
- $\epsilon_{trig} = (89 \pm 5)\%$ (average) in both the sub-samples.

Systematic uncertainty of $\epsilon_{\textit{trig}}$

- Counting number of events in $K^+ \to \mu^+ \nu$ region:
 - after signal-like selection
 - ullet in the $\pi
 u
 u$ trigger data sample
- Comparing with expected events:
 - after the same selection
 - in the minimum bias trigger data sample
- Disagreement assigned as systematic uncertainty

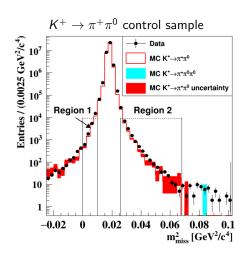
Single Event Sensitivity and number of expected events

Single Event Sensitivity

$$SES = (0.111 \pm 0.007_{syst}) \cdot 10^{-10}$$

SES error budget:

0_0 cc. baages.			
Relative uncertainty			
5%			
3.5%			
2%			
0.7%			
0.7%			
6.5%			

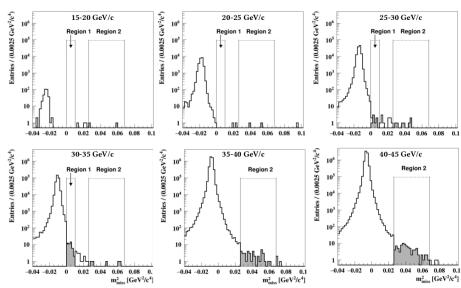

Number of expected SM events

$$N_{\pi\nu\nu}^{exp}(SM) = \frac{Br_{\pi\nu\nu}(SM)}{SES} = 7.58 \pm 0.40_{syst} \pm 0.75_{ext}$$

External error: theoretical uncertainty of the SM prediction:

$$Br_{\pi\nu\nu}(SM) = (0.84 \pm 0.10) \cdot 10^{-10}$$
 [Buras et al., JHEP11(2015)033]

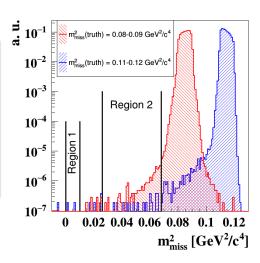
Background from standard K^+ decays: $K^+ \to \pi^+ \pi^0$


$$N_{\pi\pi}^{exp}(region) = N(\pi^+\pi^0) \cdot f^{kin}(region)$$

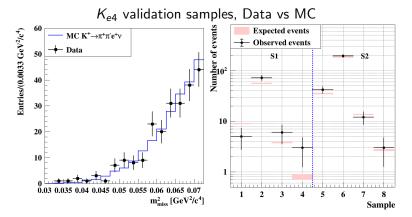
- Data-driven estimation
- $N_{\pi\pi}^{\rm exp}(region)$: expected $\pi^+\pi^0$ events in $\pi\nu\nu$ region after $\pi\nu\nu$ selection
- $N(\pi^+\pi^0)$: events in $\pi^+\pi^0$ region after $\pi\nu\nu$ selection
- $f^{kin}(region)$: fraction of $\pi^+\pi^0$ in signal region measured in minimum bias sample (orthogonal to the signal)
- Control regions for validation

Francesco Brizioli $K^+ o \pi^+
u ar{
u}$ at NA62 June 7, 2021 29 / 48

Background from standard K^+ decays: $K^+ \to \mu^+ \nu$


Data-driven estimation; π^+ momentum range (15-45 GeV/c) split in bins

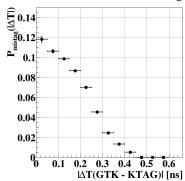
Background from standard K^+ decays: $K^+ \to \pi^+ \pi^+ \pi^-$


$$K^+ o \pi^+ \pi^+ \pi^-$$
 MC sample after $K^+ - \pi^+$ matching

- Resolution of m_{miss}^2 depends on m_{miss}^2
- m^2_{miss} resolution measured in MC $K^+ \to \pi^+ \pi^+ \pi^-$, after $K^+ \pi^+$ matching applied only
- MC resolution model applied to data in $K^+ \to \pi^+ \pi^+ \pi^-$ region after full $K^+ \to \pi^+ \nu \bar{\nu}$ selection

June 7, 2021

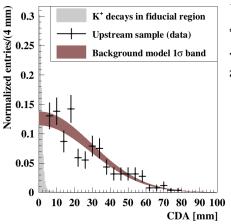
Background from standard K^+ decays: $K^+ o \pi^+\pi^-e^+ u$



- Impossible to define background and control regions
- Number of expected events estimated as for the signal (MC)
- K_{e4} validation samples obtained inverting at least one of the $K^+ \to \pi^+ \nu \bar{\nu}$ criteria (e.g. multiplicity rejection)

Upstream background estimation

- Data-driven estimation
- $N_{evts}^{upstream}$ measured in an enriched upstream events sample: $K^+ \to \pi^+ \nu \bar{\nu}$ selection with inverted CDA condition


Mistagging probability P_{mistag}


- $\bullet \ \ \textit{N}^{\textit{upstream}}_{\textit{bkg}} = \textit{N}^{\textit{upstream}}_{\textit{evts}} \cdot \textit{P}_{\textit{mistag}}$
- P_{mistag} given by the $K^+ \pi^+$ matching algorithm (ΔT and CDA)
- P_{mistag} measured in data as a function of $|\Delta T(GTK KTAG)|$

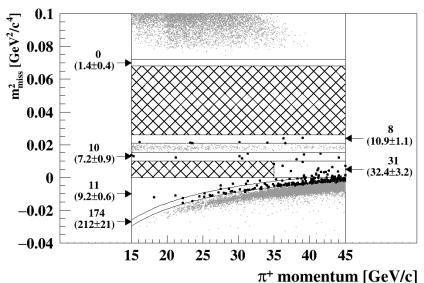
Upstream background estimation and validation

Upstream validation samples

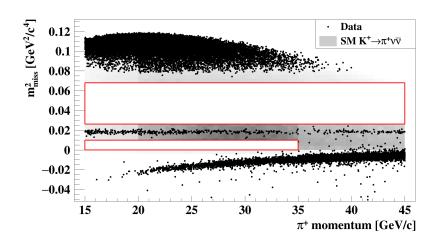
Validation samples defined by inverting signal selection criteria

Summary of expected signal and background

Process	Expected events in $\pi \nu \nu$ signal regions
$K^+ \to \pi^+ \nu \bar{\nu} \text{ (SM)}$	$7.58 \pm 0.40_{syst} \pm 0.75_{ext}$
$K^+ o \pi^+ \pi^0(\gamma)$	0.75 ± 0.04
$K^+ o \mu^+ \nu(\gamma)$	0.49 ± 0.05
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	0.50 ± 0.11
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.24 ± 0.08
$K^+ \to \pi^+ \gamma \gamma$	< 0.01
$K^+ o I^+ \pi^0 u_I$	< 0.001
Upstream background	$3.30^{+0.98}_{-0.73}$
Total background	$5.28^{+0.99}_{-0.74}$

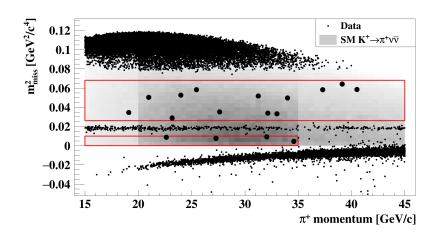

Improvements of signal efficiency

	2017	2018-OLDCOL	2018-NEWCOL
N_K	$(1.5 \pm 0.2) \cdot 10^{12}$	$(0.8 \pm 0.1) \cdot 10^{12}$	$(1.9 \pm 0.2) \cdot 10^{12}$
$A_{\pi u u}$	$(3.0 \pm 0.3)\%$	$(3.95 \pm 0.40)\%$	$(6.37 \pm 0.64)\%$
ϵ_{RV}	0.64 ± 0.01	0.66 ± 0.01	0.66 ± 0.01
$\epsilon_{ extit{trig}}$	0.87 ± 0.03	0.89 ± 0.05	0.89 ± 0.05
$N_{\pi u u(SM)}^{exp}$	2.16 ± 0.29	1.56 ± 0.21	6.02 ± 0.82
B/S	~ 0.7	~ 0.7	~ 0.7

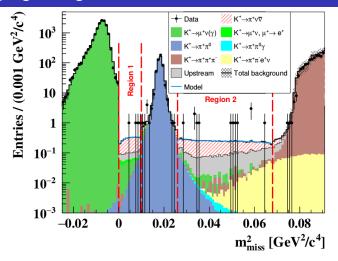

Sizeable improvements in 2018 data analysis (hardware and software): increase of signal efficiency with the same B/S ratio!

Opening control regions

Observed (expected) events in control regions. Signal regions blinded

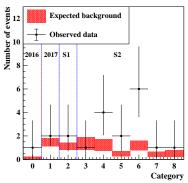


Ready to open the signal regions

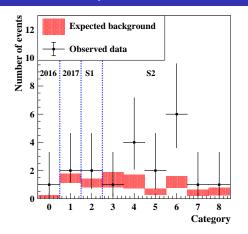

Expected SM signal events: $7.58 \pm 0.40_{syst} \pm 0.75_{ext}$ Expected background events: $5.28^{+0.99}_{-0.74}$

Opening signal regions

Expected SM signal events: $7.58 \pm 0.40_{syst} \pm 0.75_{ext}$ Expected background events: 5.28^{+0.99}_{-0.74} Observed events: 17

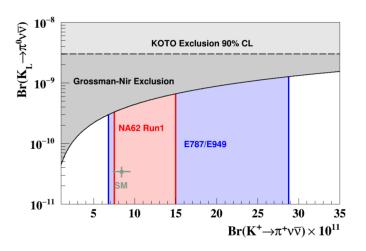

Opening signal regions

Expected SM signal events: $7.58 \pm 0.40_{\textit{syst}} \pm 0.75_{\textit{ext}}$ Expected background events: 5.28^{+0.99}_{-0.74} Observed events: 17


Combined result 2016+2017+2018 data

	2016 data	2017 data	2018 data	
SES	$(3.15 \pm 0.24) \cdot 10^{-10}$	$(0.39 \pm 0.02) \cdot 10^{-10}$	$(0.111 \pm 0.007) \cdot 10^{-10}$	
Expected SM signal	0.27 ± 0.04	2.16 ± 0.29	7.58 ± 0.85	
Expected background	0.15 ± 0.09	1.50 ± 0.31	$5.28^{+0.99}_{-0.74}$	
Observed events	1	2	17	

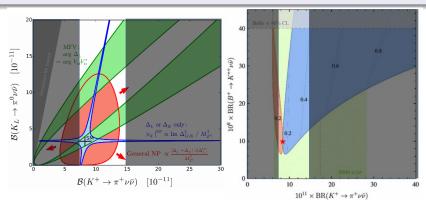
- Maximum likelihood fit $(Br(\pi\nu\nu))$ as fit parameter) using signal and background expectation in each category
- S2 (2018-NEWCOL) sample split in 6 categories, corresponding to the 5 GeV/c size π^+ momentum bins
- O S1 (2018-OLDCOL), 2017 and 2016 samples: one single category for each sample


Result from NA62 Run 1 (2016+2017+2018 data)

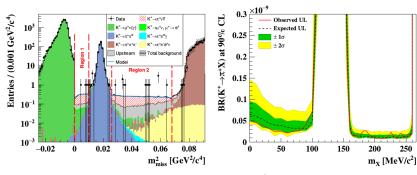
[arXiv 2103.15389] accepted for publication by JHEP

$$Br_{16+17+18}^{NA62}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.06^{+0.40}_{-0.34stat} \pm 0.09_{syst}) \cdot 10^{-10}$$

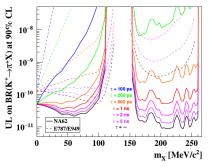
3.4 σ significance, $P(only\ bkg) = 3.4 \cdot 10^{-4}$

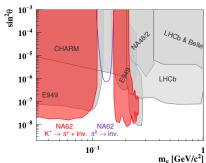

Status of $Br(K \to \pi \nu \bar{\nu})$ measurement

- $Br^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$, $Br^{SM}(K_L \to \pi^0 \nu \bar{\nu}) = (0.34 \pm 0.06) \cdot 10^{-10}$ [Buras et al., JHEP11(2015)033]
- Grossman-Nir limit: $Br(K_L \to \pi^0 \nu \bar{\nu}) < 4.4 \cdot Br(K^+ \to \pi^+ \nu \bar{\nu})$ [Phys. Lett. B 398, 163 (1997)]

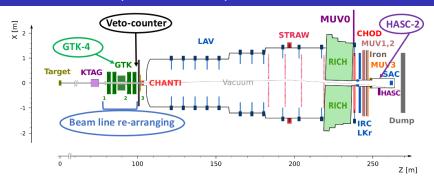

New $Br(K^+ \to \pi^+ \nu \bar{\nu})$ measurement from NA62 and BSM scenarios

$$Br_{16+17+18}^{NA62}(K^+ o \pi^+
u \bar{
u}) = (1.06^{+0.40}_{-0.34 stat} \pm 0.09_{syst}) \cdot 10^{-10}$$


Large $Br(K^+ \to \pi^+ \nu \bar{\nu})$ values with respect to SM expectation start to be improbable: high precision measurement needed!

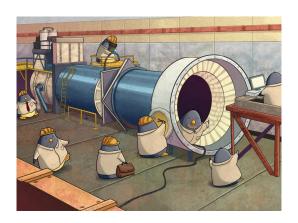

Search for $K^+ \to \pi^+ X$, where X is a new feebly interacting scalar or pseudo-scalar particle

- Search for a peak in the reconstructed m_{miss}^2 distribution, centred at the squared value of the X mass, m_X^2
- Resolution of m_{miss}^2 : from 0.0012 GeV^2/c^4 at $m_X=0$ to 0.0007 GeV^2/c^4 at $m_X=260~MeV/c^2$
- $A_{\pi\nu\nu}$ replaced with $A_{\pi X}$ from MC simulation
- ullet SM $K^+ o \pi^+
 u ar{
 u}$ is the main background


Results of search for $K^+ \to \pi^+ X$ in NA62 Run 1 [arXiv 2103.15389] accepted for publication by JHEP

- ullet Limits set simulating different X lifetimes, assuming X decaying into SM particles that are always detected if in acceptance
- Limits interpreted also within BC4 model [J. Phys. G 47, 010501 (2020)] where X is a dark scalar, in terms of the parameter of mixing with the Higgs boson (θ) . Constraints also from NA62 search for $\pi^0 \rightarrow invisible$ decays [JHEP 02, 201 (2021)]

Prospects for $Br(K^+ \to \pi^+ \nu \bar{\nu})$ measurement



Data taking between CERN LS2 and LS3 (will resume in July!)

- Upstream background suppression: beam line re-arranging to swipe away upstream π^+ , adding a fourth Gigatracker station (GTK-4), new veto-counter system to detect upstream decays products
- additional off-axis calorimeter (HASC-2) to further suppress $K^+ \to \pi^+ \pi^0$ background
- goal: $Br(K^+ \to \pi^+ \nu \bar{\nu})$ measurement with O(10%) statistical precision

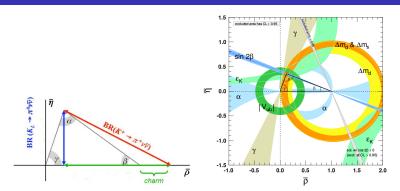
- New result from NA62 Run 1: $Br_{16+17+18}^{NA62}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.06^{+0.40}_{-0.34stat} \pm 0.09_{syst}) \cdot 10^{-10}$
- Most precise measurement ever performed for the $K^+ \to \pi^+ \nu \bar{\nu}$ golden channel
- First statistically significant observation of this ultra-rare process (3.4 σ significance)
- ullet Sizable improvement on upper limit of $Br(K^+ o \pi^+ X$
- Large $Br(K^+ \to \pi^+ \nu \bar{\nu})$ values with respect to SM expectation start to be improbable: high precision measurement needed
- Important hardware improvements ongoing for the next data-taking: strong suppression of the main background sources
- ullet Plan to achieve O(10%) precision with data collected between CERN LS2 and LS3

SPARES

CKM matrix:

- quark mixing in weak interactions
- unitarity (triangle): univesality of weak interactions
- 3 real parameters + 1 complex phase: CP violation
- Important test for the Standard Model

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{weak} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \times \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{flavor} \begin{vmatrix} V_{ud}V_{ub}^* \\ V_{cd}V_{cb}^* \end{vmatrix} \begin{pmatrix} V_{td}V_{tb}^* \\ V_{cd}V_{cb}^* \end{pmatrix}$$


$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$(0,0)$$

$$(1,0)$$

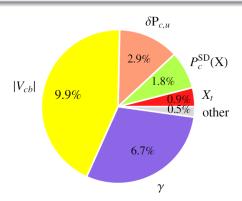
 $|\mathcal{K}^{+}\rangle=|u,\bar{s}\rangle$, lightest meson after π , decays via weak interaction. Good experimental laboratory for the flavor physics sector.

$K \to \pi \nu \bar{\nu}$ and unitarity triangle

Standard Model calculation [Buras et al., JHEP11(2015)033]

$$\begin{split} Br(K^+ \to \pi^+ \nu \bar{\nu}) &= \kappa_+ (1 + \Delta_{EM}) \cdot \left[\left(\frac{\Im(\lambda_t)}{\lambda^5} X(x_t) \right)^2 + \left(\frac{\Re(\lambda_c)}{\lambda} P_c(X) + \frac{\Re(\lambda_t)}{\lambda^5} X(x_t) \right)^2 \right] \\ Br(K_L \to \pi^0 \nu \bar{\nu}) &= \kappa_L \cdot \left(\frac{\Im(\lambda_t)}{\lambda^5} X(x_t) \right)^2 \end{split}$$

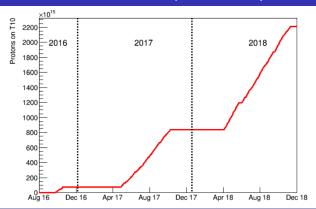
Francesco Brizioli $K^+ o \pi^+
u ar{
u}$ at NA62 June 7, 2021


$Br(K^+ \to \pi^+ \nu \bar{\nu})$ in the SM

Standard Model prediction [Buras et al., JHEP11(2015)033]

$$Br^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

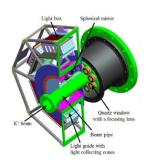
main uncertainty due to CKM elements knowledge:

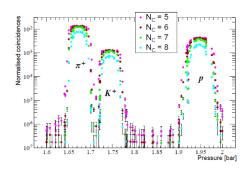

$$Br^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.839 \pm 0.030) \cdot 10^{-10} \cdot \left(\frac{|V_{cb}|}{40.7 \cdot 10^{-3}}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74}$$

Francesco Brizioli $K^+ o \pi^+
u ar{
u}$ at NA62 June 7, 2021

- MFV and Simplified Z, Z' models: [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- LFU violation models: [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Custodial Randall-Sundrum: [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM analyses: [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27], [Isidori et al. JHEP 0608 (2006) 064]
- Littlest Higgs with T-parity:
 [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- Leptoquarks models:
 [S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

NA62 luminosity during Run 1 (2016-2018)

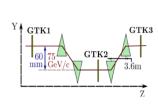

Protons on Target

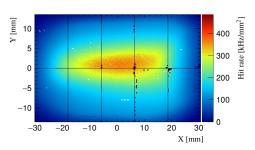

- $N^{POT}(2016) \simeq 0.1 \cdot 10^{18}$
- $N^{POT}(2017) \simeq 0.8 \cdot 10^{18}$
- $N^{POT}(2018) \simeq 1.3 \cdot 10^{18} \simeq (0.4_{OLDCOL} + 0.9_{NEWCOL}) \cdot 10^{18}$
- $N^{POT}(Run\ I) \simeq 2.2 \cdot 10^{18}$

Beam particle tagging: KTAG

KTAG: a Cherenkov threshold counter.

- Filled with nitrogen (N_2) at 1.75 bar at room temperature.
- Geometrically aligned with the beam.
- Time resolution: \simeq 70 ps
- Kaon tagging efficiency: > 95%

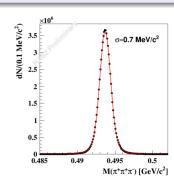




Beam particle tracking: GTK

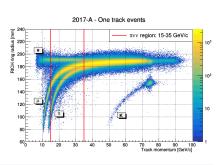
GTK: a silicon pixels tracker.

- 3 stations
- In each station: 18.000 pixels of 300 \times 300 μ m² (< 0.5 X_0)
- Read out by application-specific integrated circuits (ASIC) arranged in two rows of five chips
- Time resolution: < 150 ps per station
- RICH and KTAG used as time reference



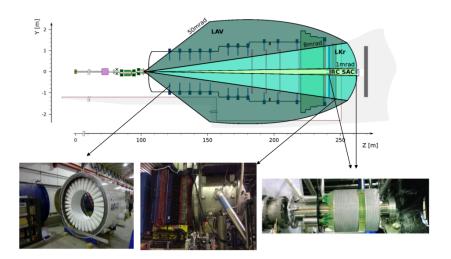
Pion tracking: STRAW Spectrometer

- ullet 4 straw chambers and a large aperture dipole magnet ($\simeq 1.8~X_0$)
- Each straw chamber is composed of two modules providing 4 different views.
- Gas inside the straws: 70% Ar and 30% CO₂
- Each chamber contains 1792 straws of 9.82 mm diameter and 2160 mm length, made by 36 μm thick polyethylene terephthalate (PET)
- > 95% reconstruction efficiency



Charged Particle Identification: RICH

- Ring Imaging CHerenkov counter, filled with neon gas
- Muon suppression factor > 100
- Time resolution $\simeq 80 ps$

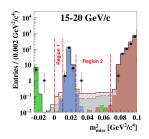


$$\cos \theta_C = \frac{1}{n \cdot \beta} \rightarrow m^2 = m^2(p, R) = p^2 \cdot \left(\frac{F^2 \cdot n^2}{F^2 + R^2} - 1 \right)$$

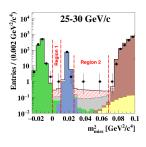
Photon rejection: LKr, LAV, IRC, SAC

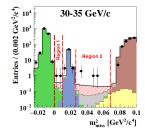
Hermeticity against photons emitted in standard kaon decays up to 50 mrad

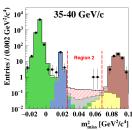
Improvements of signal efficiency

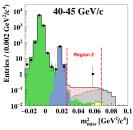

	2017	2018-OLDCOL	2018-NEWCOL	
N_K	$(1.5 \pm 0.2) \cdot 10^{12}$	$(0.8 \pm 0.1) \cdot 10^{12}$	$(1.9 \pm 0.2) \cdot 10^{12}$	
$A_{\pi u u}$	$(3.0 \pm 0.3)\%$	$(3.95 \pm 0.40)\%$	$(6.37 \pm 0.64)\%$	
ϵ_{RV}	0.64 ± 0.01	0.66 ± 0.01	0.66 ± 0.01	
ϵ_{trig}	0.87 ± 0.03	0.89 ± 0.05	0.89 ± 0.05	
$N_{\pi\nu\nu(SM)}^{exp}$	2.16 ± 0.29	1.56 ± 0.21	6.02 ± 0.82	
B/S	~ 0.7	~ 0.7	~ 0.7	

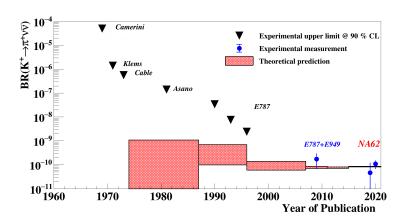
Single improvements of signal efficiency between 2017 and 2018-NEWCOL samples:


- selection optimized in bins of π^+ momentum (5 GeV/c size)
- ullet cuts against upstream bkg, also with a multi-variate approach: +50% in $A_{\pi
 u
 u}$
- definition of kinematic signal regions: +30% in $A_{\pi\nu\nu}$
- π^+ identification (RICH and calorimeters): +10% in $A_{\pi\nu\nu}$
- definition of decay Fiducial Volume: +6% in N_K
- random veto (STRAW and LAV treatment): +3% in ϵ_{RV}

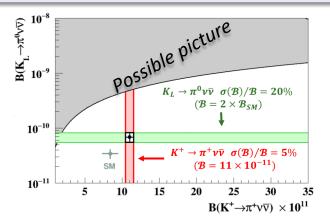

Opening signal regions


 π^+ momentum range (15-45 GeV/c) split in six bins (5 GeV/c size)





Status of $Br(K^+ \to \pi^+ \nu \bar{\nu})$ measurement



- $Br_{16+17+18}^{NA62}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.06^{+0.40}_{-0.34stat} \pm 0.09_{syst}) \cdot 10^{-10}$
- $Br^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$ [Buras et al., JHEP11(2015)033]

Francesco Brizioli $K^+ o \pi^+
u ar{
u}$ at NA62 June 7, 2021

A possible picture for the future (after CERN LS3)

By G. Ruggiero @ ICHEP 2020 https://indico.cern.ch/event/868940/contributions/3905707/

Large values with respect to SM expectation start to be excluded: high precision measurement needed!

$K_L \to \pi^0 \nu \bar{\nu}$ at J-PARC KOTO experiment

2016-2018 data result [PRL 126, 121801 (2021)]

- expected SM signal events: $\simeq 0.05$
- ullet expected background events: 1.22 ± 0.26
- observed events: $N_{obs} = 3$
- $Br(K_L \to \pi^0 \nu \bar{\nu}) < 49 \cdot 10^{-10} @ 90\% CL$

Speculation based on 2016-2018 KOTO data: $Br(K_L \to \pi^0 \nu \bar{\nu}) = 21^{+20}_{-11} \cdot 10^{-10}$ [PRL 124, 071801 (2020)]

Previous limit by KOTO (2015 data): $Br(K_L \to \pi^0 \nu \bar{\nu}) < 30 \cdot 10^{-10}$ @ 90% *CL [PRL 122, 021802 (2019)]*

New (preliminary) theoretical prediction for $Br(K \to \pi \nu \bar{\nu})$

By M. Gorbahn @ KAON 2019 Conference https://indico.cern.ch/event/769729/contributions/3512037/

Uncertainty Analysis using UTfit values

$\mathcal{B}_+ \cdot$ 10 11	Central:	8.510	$\mathcal{B}_L \cdot 10^{11}$	Central:	2.858
Error:	-0.543	0.555	Error:	-0.256	0.264
Α	-0.34	0.352	Α	-0.162	0.17
$\delta P_{c,u}$	-0.246	0.250	η	-0.162	0.167
X_t	-0.236	0.240	X_t	-0.113	0.115
ρ	-0.161	0.162	κ_l	-0.017	0.002
P _c	-0.185	0.187	λ	-0.001	0.00
κ_+	-0.041	0.041			
η	-0.037	0.039			
λ	-0.003	0.003			

Precise theory prediction, suppression in standard model and current measurement at NA62 → classify new physics contributions

CKM input: $A=0.826(12), \bar{\rho}=0.148(13), \bar{\eta}=0.348(10)$