The theoretical prediction for the muon g-2: the important role of hadronic contributions

Antoine Gérardin

Based on the review : Eur.Phys.J.A 57 (2021) 4, 116

1

May 5, 2021

Introduction

- The muon is an elementary particle
- Same charge but 200 heavier than the electron
- Spin 1/2 particle
- The magnetic moment of the muon is proportional to the spin $\vec{\mu} = g\left(\frac{Qe}{2m}\right)\vec{s}$

$$a_{\mu} = \frac{g-2}{2}$$

Why is it interesting :

- 1) can be measured very precisely
- 2) can also be predicted very precisely in the SM
- 3) sensitive to new physics

Introduction

Hadronic vacuum polarization

Introduction

► Corrections to the vertex function : Dirac and Pauli form factors

Assuming Lorentz invariance and P and T symmetries, the vertex function can be decomposed into 2 form factors

$$= -ie\,\overline{u}(p',\sigma')\Gamma_{\mu}(p',p)u(p,\sigma)$$
$$= -ie\,\overline{u}(p',\sigma')\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right]u(p,\sigma)$$

 $F_1(0) = 1$ (charge conservation)

$$F_2(0) = a_\mu = \frac{g-2}{2}$$

▶ Classical result : g = 2 for elementary fermions (Dirac equation)

3

Quantum field theory : $a_{\mu} = \frac{g-2}{2} \neq 0$ \hookrightarrow Generated by quantum effects $a_{\mu}^{(1)} = \frac{\alpha}{2\pi}$ [Schwinger '48]

Standard model contributions : QED

• QED accounts for more than 99.99% of the final result [Aoyama et al. '12 '19]

$$a_{\mu}^{\text{QED}} = \left(\frac{\alpha}{\pi}\right)a_{\mu}^{(1)} + \left(\frac{\alpha}{\pi}\right)^2 a_{\mu}^{(2)} + \left(\frac{\alpha}{\pi}\right)^3 a_{\mu}^{(3)} + \cdots$$

 \rightarrow 5-loop contributions are known !

Order α^4 (7 diagrams)

Order α^6 (72 diagrams)

Order α^8 (891 diagrams) ...

n	$a_{\mu}^{(1)} \times 10^{10}$	n	$a_{\mu}^{(1)} \times 10^{10}$
1	11614097.330(0.008)	4	38.081(0.030)
2	41321.762(0.010)	5	0.448(0.140)
3	3014.190(0.000)		

4

Order α^{10} (12 672 diagrams)

 \rightarrow Uncertainty far below Δa_{μ} . Strong test of QED.

$$\begin{aligned} a_{\mu}^{\text{QED}} &= 116 \ 584 \ 718.931(104) \times 10^{-11} \\ a_{\mu}^{\text{SM}} &= 116 \ 591 \ 810(43) \times 10^{-11} \end{aligned}$$

Standard model contributions

• Electroweak corrections [Czarnecki '02] [Gnendiger '13]

- \rightarrow Two-loop contributions are known : $a_{\mu}^{\rm EW} \times 10^{10} = 15.4(0.1)$
- \rightarrow Contributes to only 1.5 ppm \Rightarrow under control

• QCD corrections

- ightarrow Quarks and gluons do not directly couple to the muon : contribution via loop diagrams
- ightarrow The two relevant contributions (to reduce the error) are

5

Hadronic Vacuum Polarisation (LO-HVP, α^2)

Hadronic Light-by-Light scattering (HLbL, α^3)

• Contribution from unknown particles / interactions (?) $a_{\ell}^{\text{NP}} = C \frac{m_{\ell}^2}{\Lambda^2}$

Hadronic contributions

- NLO HVP and NNLO HVP differ by the QED kernel functions
- Not negligible, but error under control (the required relative precision is smaller)

Model Standard prediction : theory status

The Muon g-2 Theory Initiative :

- website : https ://muon-gm2-theory.illinois.edu/
- Organized 6 workshops between 2017-2020
- White Paper posted 10 June 2020

The anomalous magnetic moment of the muon in the Standard Model [Phys.Rept. 887 (2020) 1-166]

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, 5^{th} order)	$116\ 584\ 718.95 \pm 0.08$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. "13]
- Strong contributions		
HVP (LO)	$6\ 931\pm40$	[DHMZ 19, KNT 20]
HVP (NLO)	-98.3 ± 0.7	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	94 ± 19	[See WP]
Total (theory)	116 591 810 \pm 43	

The E989 experiment at Fermilab : 2001

Magnetic moment $\vec{\mu} = g\left(rac{Qe}{2m}
ight) \vec{s}$

- charged particle : circular motion $\omega_c = \frac{eB}{mc\gamma}$
- Spin 1/2 : spin precession $\omega_s = \frac{geB}{2mc} + (1 \gamma)\frac{eB}{mc\gamma}$
- Experimentally : $\Delta \omega = \frac{g-2}{2} \times \frac{eB}{mc}$
- $a_{\mu} = (116\ 592\ 061 \pm 41) \times 10^{-10}$ < 0.5 ppm !

The E989 experiment at Fermilab : 2001

- Remarkable confirmation of the Brookhaven result (2004)
- Standard Model value does not include lattice QCD calculations for the LO-HVP
- Similar precision for both theory and experiment

- Theory error is dominated by hadronic contributions
 - \rightarrow reduction of the theory error by a factor of 3-4 needed to match upcoming experiments

Hadronic vacuum polarization

Outline of the talk : hadronic contributions

► Hadronic Vacuum Polarisation (HVP, α^2)

- Blobs : all possible intermediate hadronic states (ho, $\pi\pi$, \cdots)
- Precision physics (Goal : precision < 0.3%)

$$\Pi_{\mu\nu}(Q) = \gamma = (Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}) \Pi(Q^{2})$$
$$= \int d^{4}x \, e^{iQ \cdot x} \, \langle V_{\mu}(x)V_{\nu}(0) \rangle$$

► Hadronic Light-by-Light scattering (HLbL, α^3)

Hadronic light-by-light tensor $\Pi_{\mu\nu\lambda\sigma}(p_1, p_2, p_3)$

- Small but contributes to the total uncertainty !
- 4-point correlation function
- More difficult, but need 10% precision

Hadronic vacuum polarization

Standard model prediction of hadronic contributions

- ▶ Perturbative QCD can not be used : we need non-perturbative methods
- ► For both contributions, two rigorous approaches have been considered

The dispersive framework (data-driven)

- \rightarrow based on analyticity, unitarity ...
- \rightarrow ... but relies on experimental data (needs a careful propagation of exp. uncertainties)
- \rightarrow several group have published results for the HVP [Davier et al. '19] [Keshavarzi et al. '20]
- \rightarrow more difficult for the LbL
 - (analytic structure of the 4-point function more difficult, exp. data sometimes missing)

Lattice QCD

ightarrow ab-initio calculations

- \rightarrow but we need to control all sources of error
- \rightarrow many groups are working on this subject : cross-checks possible
- ► It provides two completely independent determinations

Hadronic vacuum polarization

- \rightarrow Many lattice collaborations (with different systematic errors)
- \rightarrow Precision of about 2% for lattice, 0.6% for the data driven approach
- ightarrow Recent lattice calculation below 1% (Budapest-Marseille-Wuppertal collaboration

hadrons

Hadronic vacuum polarization and dispersive theory

• Use analyticity + optical theorem

$$R_{\rm had}(s) = \frac{\sigma^0(e^+e^- \to \gamma^* \to \rm hadrons)}{(4\pi\alpha^2/3s)}$$

• K(s) is a known kernel function

$$a_{\mu}^{\mathrm{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \left\{ \int_{m_{\pi}^{2}}^{E_{\mathrm{cut}}^{2}} \mathrm{d}s \frac{R_{\mathrm{had}}^{\mathrm{data}}(s)\widehat{K}(s)}{s^{2}} + \int_{E_{\mathrm{cut}}^{2}}^{\infty} \mathrm{d}s \frac{R_{\mathrm{had}}^{\mathrm{pQCD}}(s)\widehat{K}(s)}{s^{2}} \right\}$$

 e^{\dagger}

• Compilation of experimental data from many experiments

Hadronic vacuum polarization and dispersive theory

- \bullet Most precise determination so far (< 0.5 ppm)
- Subject to experimental uncertainties : careful propagation of experimental uncertainties
 - \rightarrow Groups with \neq methodologies are in good agreement [Davier et al. '19] [Keshavarzi et al. '20]
 - \rightarrow But local discrepancies (tensions already there in the experimental data)!
 - \rightarrow Problematic for the dominant $\pi\pi$ channel

Difference between Babar and KLOE : $\Delta a_{\mu} = 9.8(3.4) \times 10^{-10}$

Difference pheno / exp for the g-2 : $\Delta a_{\mu}=28(8) \times 10^{-10}$

Lattice QCD approach to the hadronic vacuum polarization (HVP)

$$\Pi_{\mu\nu}(Q) = \bigvee_{\gamma} \qquad = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}\right) \Pi(Q^{2}) = \int \mathrm{d}^{4}x \, e^{iQ \cdot x} \left\langle V_{\mu}(x)V_{\nu}(0)\right\rangle$$

 $\mathsf{EM current}: V_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) - \frac{1}{3}\overline{s}(x)\gamma_{\mu}s(x) + \frac{2}{3}\overline{c}(x)\gamma_{\mu}c(x) + \cdots$

► Integral representation over Euclidean momenta

$$a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^\infty \mathrm{d}Q^2 f(x_0) \left(\Pi(Q^2) - \Pi(0) \right)$$

► Time-momentum representation [Blum '02] [Bernecker, Meyer '11]

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}x_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \langle V_k(x) V_k(0) \rangle$$

► Two sets of Wick contractions

Connected contribution

(quark) disconnected contribution

Lattice QCD approach to the hadronic vacuum polarization (HVP)

$$\Pi_{\mu\nu}(Q) = \bigvee_{\gamma} \qquad = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}\right) \Pi(Q^{2}) = \int \mathrm{d}^{4}x \, e^{iQ \cdot x} \left\langle V_{\mu}(x)V_{\nu}(0) \right\rangle$$

 $\mathsf{EM current}: V_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) - \frac{1}{3}\overline{s}(x)\gamma_{\mu}s(x) + \frac{2}{3}\overline{c}(x)\gamma_{\mu}c(x) + \cdots$

► Integral representation over Euclidean momenta

$$a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^\infty \mathrm{d}Q^2 f(x_0) \left(\Pi(Q^2) - \Pi(0) \right)$$

► Time-momentum representation [Blum '02] [Bernecker, Meyer '11]

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}x_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \langle V_k(x) V_k(0) \rangle$$

► Two sets of Wick contractions

Connected contribution

14

(quark) disconnected contribution

Systematic errors in lattice QCD

Statistical error

• Monte-Carlo algorithm : statistical error $\rightarrow \sim 1/\sqrt{N_{\text{meas}}}$ $\rightarrow \text{noise/signal} \propto \exp((m_V - m_{\pi})t)$

Systematic errors

- ► Finite lattice spacing : a ≠ 0 → need several (small !) lattice spacings
- Finite volume V
 - ightarrow one should take the infinite volume limit
 - $\rightarrow \chi {\rm PT}$ can help in some cases (pion dominates FSE)
- Unphysical quark masses

 \rightarrow All collaborations now have at least one physical pion mass ensemble.

- ► Isospin-breaking corrections
 - \rightarrow Need to be included at this level of precision

15

Lattice actions

- ► Different lattice actions are used : Staggered, Wilson-Clover, Twisted mass, Domain wall
- $\blacktriangleright\,$ They are all equivalent in the continuum limit ($\rightarrow\,$ QCD !)
- \blacktriangleright But they have different features at finite value of the lattice spacing

Light, strange and charm quark contributions at the physical pion mass

Challenges for a high-precision calculation :

- Light contribution dominates
 - \rightarrow noise/signal increases exponentially with t
 - \rightarrow finite-size effects O(3%) at physical point
- Disconnected diagrams of the order of O(2-3%)
- Continuum (and chiral extrapolation / interpolation)
- QED + strong isospin breaking corrections : O(1%)

- Physical pion mass with $a=0.065~{
 m fm}$
- Flavor decomposition :

$$G(t) = G_l(t) + G_s(t) + G_c(t) + G_{\text{disc}}(t)$$

$$a_{\mu}^{\mathrm{HVP},f} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t=0}^{\infty} K(t) \ G_f(t)$$

Determination of the lattice spacing

- The results of a lattice simulations is in lattice units (am_{π}, af_{π})
- The conversion in physical units is challenging ("the value of the lattice spacing")
- But a_{μ} is a dimensionless quantity : so why does it matter?
 - \rightarrow Because the muon mass is an external scale
 - \rightarrow We need to know the muon mass in lattice units!

$$a_{\mu}^{\rm hvp} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty d\left(\frac{t}{a}\right) \left(\frac{1}{am_{\mu}^{\rm phys}}\right)^2 \tilde{K}\left(\frac{t}{a} \cdot am_{\mu}^{\rm phys}\right) a^3 G\left(\frac{t}{a}\right)$$

 \rightarrow Error propagation [DellaMorte '17] $\,$:

17

$$\Delta a_{\mu}^{\text{hvp}} = \left| a \frac{\mathrm{d}a_{\mu}^{\text{hvp}}}{\mathrm{d}a} \right| \cdot \frac{\Delta a}{a} = \left| m_{\mu} \frac{\mathrm{d}a_{\mu}^{\text{hvp}}}{\mathrm{d}m_{\mu}} \right| \cdot \frac{\Delta a}{a} \approx 2 \frac{\Delta a}{a}$$

We want few permil precision : one of the biggest challenge for lattice

 \rightarrow The BMWc uses the Ω Baryon mass to set the scale (mass well known experimentally) : few permil

Introduction

Hadronic vacuum polarization

Solution to the noise problem

The vector correlators admits a spectral decomposition :

$$\langle V(x_0)V(0)\rangle = \sum_n \langle 0|V|n\rangle \frac{1}{2E_n} \langle n|V(0)|0\rangle e^{-E_n x_0}$$

- |n
 angle are the eigenstates in finite volume
- E_n and $\langle 0|V|n\rangle$ can be computed on the lattice using sophisticated spectroscopy methods

[A. Gerardin et al, Phys.Rev. D100 (2019), 014510]

[Plot by A. Meyer (RBC/UKQCD) @ Lattice 2019]

ightarrow Only a few number of states are needed (but more states needed at the physical pion mass)

 \rightarrow Noise now grows linearly with x_0 (not exponentially)

18

[Mainz and RBC/UKQCD Collaborations]

Corrections for finite-size effects

- Chiral perturbation theory : NLO not enough, NNLO corrections are quite large [Aubin et al. '20] [C. Aubin et al, arXiv :1905.09307], [J. Bijnens et al, JHEP 1712 (2017) 114]
- ► Correction based on the time-like pion form factor [H. Meyer, Phys.Rev.Lett. 107 (2011)]

- ► Direct lattice calculation in very large volume : 11 fm [Budapest-Marseille-Wuppertal '21]
 - \rightarrow Finite size effects correction $18.1(2.5)(1.4)\times10^{-10}$ compared to a 6 fm box
 - \rightarrow This correction is now well understood

19

► New Hamiltonian approach in [M. Hansen, A. Patella, arXiv :1904.10010]

Isospin-breaking corrections

• Most lattice simulations are performed with QCD only and in the isospin symmetric limit

$$m_u \neq m_d$$
 : $O(\frac{m_u - m_d}{\Lambda_{\rm QCD}}) \approx 1/100$

 $Q_u \neq Q_d : \mathsf{O}(\alpha_{\mathrm{em}}) \approx 1/100$

Strong isospin breaking

Electromagnetic isospin breaking

- \rightarrow Separation of strong IB and QED effects is prescription dependent
- \rightarrow Furthermore, the definition of the iso-symmetric theory is also scheme dependent.
- \bullet Small effects O(1%) but challenging to compute
- Strategy 1 : expand the path integral in (m_u-m_d) and $lpha_{
 m em}$

[RM123, JHEP 1204 (2012) 124] [RM123, Phys.Rev. D87 (2013), 114505]

 \rightarrow Non-compact QED in finite volume : dynamical variable is the gauge potential $A_{\mu}(x)$

 \rightarrow Finite-size effect : $1/L^2$ absent, $1/L^3$ (might be negligible at our level of precision)

J. Bijnens et al, Phys.Rev. D100 (2019), 014508]
 Strategy 2 : generate gauge configurations for QED+QCD theory (usually electro-quenched)

Isospin-breaking corrections

► Corrections to the connected part :

► Corrections to the disconnected part :

► Three collaborations have published (partial) results so far

		Conn.	Disc.
ETMC	6.0(2.3)	1.1(1.0)	×
RBC-UKQCD	10.6(4.3)	5.9(5.7)	-6.9(2.1)
HPQCD-Fermilab-MILC	9.0(2.3)	×	×

```
(in units of 10^{-10})
```

• Challenging : beyond the electro-quenched approximation (diagrams are $1/N_c$ suppressed)

▶ BMW '21 : first calculation that includes all diagrams. About 1% of the full contribution.

HVP : conclusion

 $a_{\mu}^{\mathrm{hvp}} \times 10^{10}$

- ► First sub-percent lattice calculation by BMWc (competitive with data-driven approach)
- \blacktriangleright If confirmed, would reduce the discrepancy with experiment to $<2\sigma$
- ▶ Need confirmation by other lattice groups (expected within 1 year)
- Other cross-checks are important (windows, running α)
- ► **Goal** : 0.2%
 - average between lattice and dispersive might help ...
 - $\bullet \ \ldots \ but \ only \ if \ they \ agree$
 - \bullet It is probably too soon to quote a "SM estimate of the LO-HVP" with <1% error

Cross-checks : window quantities

$$a_{\mu}^{\text{win}} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t} G(t) K(t) W(t; t_0, t_1)$$

▶ the sum over the 3 windows gives the full contribution

- ▶ flavor decomposition possible (light, strange, charm, ...)
- ▶ each window has different systematic errors

Short-distance	Intermediate-distance	Long-distance
stat. precise	stat. precise	noise problem
discretization effects	small finite volume effect	finite volume corrections

Cross-checks : window quantities

workshop organized in November to discuss those issues [https://indico.cern.ch/event/956699/]

 $\left(a_{\mu}^{\mathrm{hvp}}\right)^{\mathrm{win},l} \times 10^{10}$

 $200\ \ 204\ \ 208$

- \blacktriangleright lattice results systematically above the R-ratio
- ► agreement between lattice calculations not yet satisfactory
- \blacktriangleright not discussed here : the running of electromagnetic coupling α

Hadronic light-by-light scattering contribution

 $O(\alpha^3)$

24

► G	lasgow consensus ('09) –	→ dispersiv	ve framework
		$a_{\mu} \times 10^{11}$	$a_{\mu} \times 10^{11}$
	π^0 , η , η'	114 ± 13	93.8 ± 4
	pion/kaon loops	-19 ± 19	-16.4 ± 0.2
	S-wave $\pi\pi$	1	-8 ± 1
	axial vector	15 ± 10	6 ± 6
	scalar + tensor	-7 ± 7	-1 ± 3
	q-loops / short. dist. cstr	2	15 ± 10
	charm + heavy q		3 ± 1
	total HLbL	105 ± 26	92 ± 19
	LO HVP		6931 ± 40

[J. Prades, E. de Rafael, A. Vainshtein '09] [White paper '20]

Status before 2014 : model calculations

[de Rafael '94]
1) Chiral counting
2) N_c counting

[extracted from A. Nyffeler's slide], units : $a_{\mu} \times 10^{11}$

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114 ± 10	_	114±13	99 \pm 16
axial vectors	$2.5{\pm}1.0$	1.7 ± 1.7	_	22±5	_	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	_	-7±7	-7 ± 2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	_	_	_	-19 ± 19	$-19{\pm}13$
π, K loops +subl. N_C	_	_	_	0±10	_	_	—
quark loops	21±3	$9.7 {\pm} 11.1$	—	—	—	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136±25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

1) Pseudoscalar contributions dominate numerically : transition form factors $\pi, \eta, \eta' \to \gamma^* \gamma^*$ as input

2) Glasgow consensus :
$$a_{\mu}^{\mathrm{HLbL}} = (105 \pm 26) \times 10^{-11}$$

3) Results are in good agreement but errors are difficult to estimate (model calculations)

Hadronic light-by-light : data-driven approach

► HVP : single scalar function

$$\Pi_{\mu\nu}(Q) = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2\right) \Pi(Q^2) = \int \mathrm{d}^4x \, e^{iQ\cdot x} \, \left\langle V_{\mu}(x)V_{\nu}(0)\right\rangle$$

- ► HLbL [Colangelo, Hoferichter, Procura, Stoffer (2015)]
 - \rightarrow complicated analytical structure (4-point instead of 2-point function for the HVP)

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

- \rightarrow 7 independent scalar functions determined using dispersive relations \rightarrow notion of large/small momenta less clear than for HVP (only one virtuality)
- ► Make the following decomposition rigorous :

Hadronic light-by-light : data-driven approach

- ▶ Impressive improvement in the last few years
- ▶ The pseudoscalar-pole contributions are well-defined and dominant

	$a_{\mu} \times 10^{11}$	$a_{\mu} \times 10^{11}$
π^0 , η , η' pion/kaon loops S-wave $\pi\pi$ axial vector scalar + tensor q-loops / short. dist. cstr charm + heavy q	$ \begin{array}{r} 114 \pm 13 \\ -19 \pm 19 \\ 15 \pm 10 \\ -7 \pm 7 \\ 2 \end{array} $	$\begin{array}{c} 93.8 \pm 4 \\ -16.4 \pm 0.2 \\ -8 \pm 1 \\ 6 \pm 6 \\ -1 \pm 3 \\ 15 \pm 10 \\ 3 \pm 1 \end{array}$
total HLbL	105 ± 26	92 ± 19

Lattice inputs for the dispersive framework : the pion-pole contribution

• Pion transition form factor

• Fully model independant

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = (59.9 \pm 3.6) \times 10^{-11}$$

28

 \rightarrow Compatible with the dispersive result $a_{\mu}^{\mathrm{HLbL};\pi^{0}} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$ [Hoferichter et al. '18]

- [A. G et al, Phys.Rev. D100 (2019)]
 - \bullet The ETM collaboration has presented very preliminary results for the η and η'

Direct lattice calculation of the Hadronic light-by-light contribution

- Two collaborations : RBC/UKQCD and Mainz, both using position space approaches
- Mainz approach : [PoS LATTICE2015 (2016) 109] [arXiv :1911.05573]

$$a_{\mu}^{\text{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$
$$i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = -\int d^{4}z \, z_{\rho} \, \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle$$

 $\rightarrow \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is the QED kernel, computed semi-analytically in infinite volume \rightarrow Avoid $1/L^2$ finite-volume effects from the massless photons

• RBC/UKQCD approach : [T. Blum et al, Phys.Rev. D93 (2016)] [arXiv :1911.08123]

- exact photon propagators
 - \rightarrow QED_L : photon in finite volume, power-law volume corrections
 - $\rightarrow \mathsf{QED}_\infty$: photons in infinite volume
- \bullet stochastic evaluation of sum over \boldsymbol{r}

Wick contractions : 5 classes of diagrams

• Fully connected contribution

• Leading 2+2 (quark) disconnected contribution

• Sub-dominant disconnected contributions (3+1, 2+1+1, 1+1+1+1)

- Second set of diagrams vanish in the SU(3) limit (at least one quark loop which couple to a single photon)
 - \rightarrow Smaller contributions, have been shown to be irrelevant at the 10% level [Mainz '21 : 2104.02632]
- 2+2 disconnected diagrams are not negligible !

- \rightarrow Large- N_c prediction : 2+2 disc \approx 50 % \times connected [Bijnens '16]
- \rightarrow Cancellation \Rightarrow more difficult (correlations does not seems to help in practice ...)

Large cancellation between the two leading contributions

• Connected and disconnected contributions from Mainz ($m_{\pi} = 200 \text{ MeV}$)

• Connected and disconnected contribution from RBC/UKQCD at the physical pion mass

• Major difficulties : signal/noise problem, finite-size effects are important

Which errors are relevant

Mainz group [2104.02632]

- Statistical noise at long distances
- Finite-volume effects are large
- Continuum extrapolation

- ightarrow Chiral extrapolation milder than expected (based on π^0 -pole contribution)
- \rightarrow Sub-dominant diagrams smaller than the required precision
- \rightarrow Isospin-breaking corrections are not relevant here

Which errors are relevant

• Similar observation from RBC-UKQCD [Phys. Rev. Lett. 124, 132002 (2020)]

Summary of lattice results

• RBC-UKQCD : first publication in 2017 [Phys.Rev.Lett. 118 (2017)]

$$a_{\mu}^{\mathrm{HLbL}} = (53.5 \pm 13.5) \times 10^{-10}$$

- \rightarrow errror is statistical only
- \rightarrow no continuum extrapolation, no finite-size effect study
- Update that includes a systematic error estimate [Phys.Rev.Lett. 124 (2020)]

$$a_{\mu}^{\text{HLbL}} = 72(40)_{\text{stat}}(17)_{\text{syst}} \times 10^{-10}$$

 \rightarrow QED $_{\rm L}$ (QED in finite volume)

34

- \rightarrow finite-size effects are large
- Mainz : first publication that focus on systematics [Eur.Phys.J.C 80 (2020)] \rightarrow not yet at the physical point ($m_{\pi} \approx 400 \text{ MeV}$) \rightarrow finite-size correction + study of discretization effects
- Mainz : recent update with a first complete calculation [2104.02632]

 $a_{\mu}^{\text{HLbL}} = (107.4 \pm 11.3 \pm 9.2) \times 10^{-10}$

Conclusion HLbL

Status of hadronic light-by-light contribution

- ► First lattice QCD results now published
 - \rightarrow In good agreement with the dispersive framework
 - \rightarrow But systematic errors are sizeable, cross-checks would be welcome
- ► Lattice can also provide input to the dispersive framework
 - \rightarrow pseudoscalar-pole contribution
- Close, but not yet at the target precision (< 10%)