



# The muon magnetic moment: a precision test shaking the Standard Model

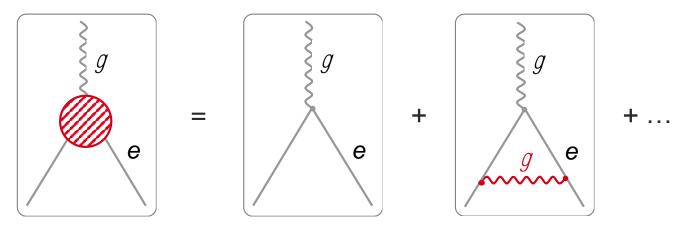
Michel Davier

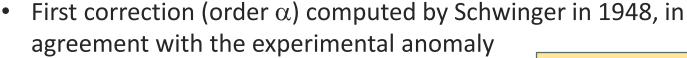
Laboratoire Irène Joliot-Curie (IJCLab) – CNRS/IN2P3 et Université Paris-Saclay

- April 7 2021: announcement of the first result of the Fermilab experiment measuring the muon magnetic anomaly
- Comparison with the theoretical prediction within the Standard Model shows an excess at the level of 4.2  $\sigma$ , larger than the previous 3.7  $\sigma$  with respect to the Brookhaven experiment
- In this talk, after a general introduction and some information on the experiment, I will review
  the status of the hadronic vacuum polarization contribution using a dispersion relation based
  on the measured cross sections for e+ e- → hadrons

## The electron g-2 early history

- Dirac's relativistic theory of the electron (1928) naturally accounted for quantized particle spin, and described elementary spin-1/2 particles (and their anti-particles)
- In the classical limit, one finds the Pauli equation with a magnetic moment:


$$\vec{\mu} = -g_e \frac{e}{2m_e} \vec{S}$$
 with  $|g_e| = 2$  is the gyromagnetic factor


- Dirac's prediction was confirmed to 0.1% by Kinsler & Houston in 1934 through studying the Zeeman effect in neon
- A deviation from  $g_e=2$  was established by Nafe, Nels & Rabi only in 1947 by comparing the hyperfine structure of hydrogen and deuterium spectra
- A first precision measurement of  $g_e=2.00344\pm0.00012$  (wrong: 2.00232...!) was made by Kusch & Foley in 1947 using Rabi's atomic beam magnetic resonance technique
- Why does  $g_e$  deviate from 2 at 10<sup>-3</sup> level ? (new physics?)



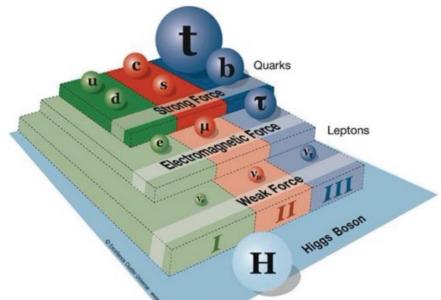
## Quantum field theory

- Development of quantum electrodynamics (Dyson, Feynman, Schwinger, Tomonaga):
   emission/absorption of photons by electrons implies quantum fluctuations (virtual particles), divergences
   are regularized by renormalization. Amplitude for any QED process written as a perturbative expansion in
   the coupling constant e (visualized with Feynman diagrams for any order)
- Dirac's g = 2 corresponds to the lowest order QED graph





$$a_e^{\rm QED} = \frac{\alpha}{2\pi} + \dots = 0.001 \ 161 \ \dots$$


 As precision improved: necessity to include higher-order QED terms, as well as contributions from other known interactions and possibly beyond what we know

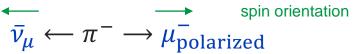




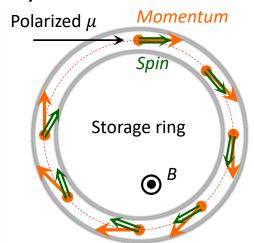
#### Why measure the muon g-2?

- 3 families of fermions (leptons and quarks) with universal coupling strengths to electroweak interactions
- The 3 charged leptons  $I \equiv (e, \mu, \tau)$  differ only by their own leptonic quantum numbers and their masses  $m_e = 0.511 \, \text{MeV}$   $m_u = 105.7 \, \text{MeV}$   $m_\tau = 1776.9 \, \text{MeV}$
- e stable,  $\mu$  and  $\tau$  are unstable and decay through the weak interaction with lifetimes 2.2  $\mu$ s and 390 fs
- sensitivity of  $a_l$  to new physics at energy scale  $\Lambda$  goes like  $m_l^2 / \Lambda^2$
- Muon more sensitive by large factor  $(m_u/m_e)^2 \sim 43000$ , but measurement limited by short lifetime
- Measurement for  $\tau$  lepton not practical at the moment




Particles and Interactions in the Standard Model

Key ingredients for measurement: polarized muons and muon spin analysis through decay electrons, both following from maximum P violation in weak interaction


- Muons produced at accelerators by pion decay are polarized
- Angle of energetic decay electrons are correlated with muon spin

## Principle of muon g-2 measurement (CERN 1960-80)

1. Parity violation polarizes muons in pion decay



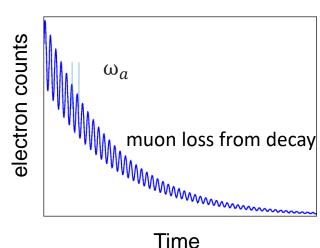
2. Anomalous frequency proportional to  $a_{\mu}$ 



- Very uniform magnetic field
- Focusing with electrostatic quadrupoles

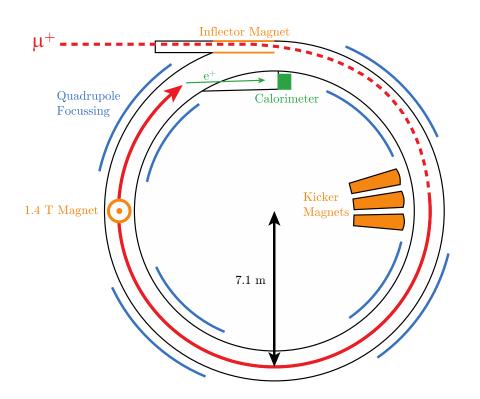
3. Magic  $\gamma$  to cancel  $\beta \times E$  effect:

$$\vec{\omega}_{a} = \frac{e}{m_{\mu}c} \left[ a_{\mu} \vec{B} - \left( a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right] \approx \frac{e}{m_{\mu}c} a_{\mu} \vec{B}$$


 $P_{\mu}$  = 3.09 GeV/c

4. Again parity violation in muon decay

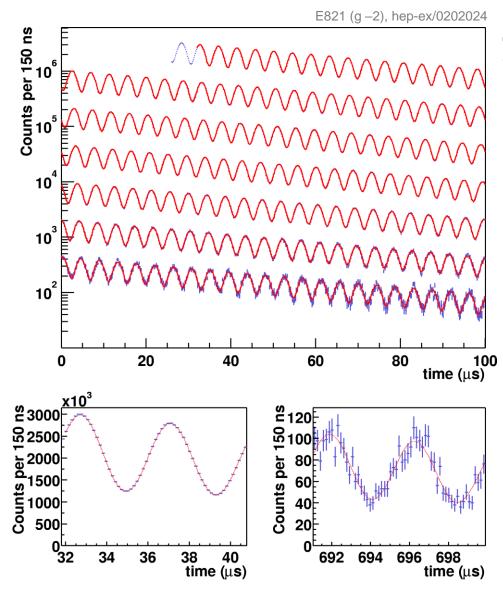
$$\mu_{\text{polarized}}^- \rightarrow e^- + \bar{\nu}_e + \nu_{\mu}$$


fast electron emitted in direction opposite to muon spin


Double miracle by virtue of P violation!



#### Muon g-2 measurement (Brookhaven 1990-2006)


- A 24 GeV proton beam (AGS) incident on a target produces large number of pions that decay to muons
- The 3.1 GeV muon beam (relativistically enhanced lifetime of 64 μs) is injected into a 7.1 m radius ring with 1.4 T vertical magnetic field, which produces cyclotron motion matching the ring radius
- Electrostatic focusing of the beam is provided by a series of quadrupole lenses around the ring.





- Decay electrons (correlated with  $\mu$  spin precession) counted vs. time in calorimeters inside ring ( $\rightarrow \omega_a$ )
- Precise measurement of  $\omega_a$  and B allows to extract  $a_\mu$

#### Muon g-2 measurement (Brookhaven 1990-2006)



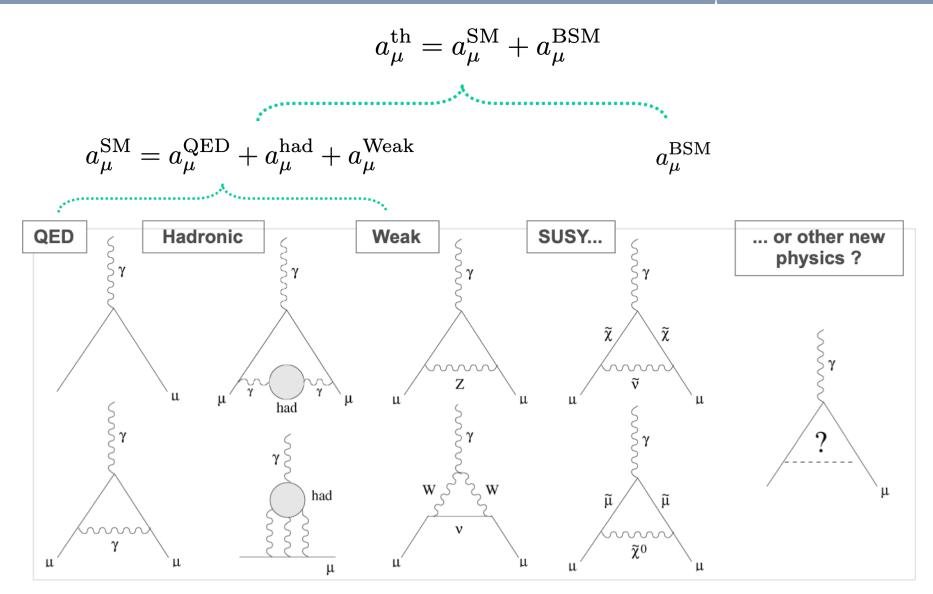
Observed positron rate in successive 100 µs periods ~150 polarisation rotations during measurement period

$$\omega_a \approx \frac{e}{m_\mu c} \frac{a_\mu B}{a_\mu}$$

obtained from time-dependent fit

$$N(t) = N_0 e^{-t/\gamma \tau} [1 - A \cdot \sin(\omega_a t - \phi)]$$

In blue: fit parameters


B field measured with Hall probes with RMN frequency as reference ⇒ a<sub>...</sub> obtained as ratio of 2 frequencies (double blind analysis)

Total systematic uncertainty on  $\omega_a$ : 0.2–0.3 ppm, with largest contributors:

- pileup (~in-time arrival of two low-E electrons)
- muon losses
- coherent betatron oscillation (muon loss and CBO amplitude [frequency: 0.48 MHz, compared to ω<sub>a</sub>: 0.23 MHz] are part of fit)
- calorimeter gain changes

$$a_{\mu} = 11\ 659\ 209.1\ (5.4)(3.3)\ \cdot 10^{-10}$$

# Theoretical prediction for a<sub>u</sub>



## Theoretical prediction for a<sub>u</sub>: QED

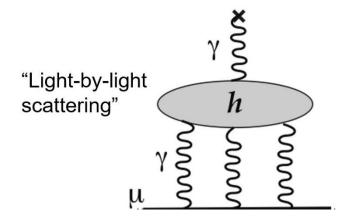
Known to 5 loops, good convergence, diagrams with internal electron loops enhanced:

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + A_2 \left(\frac{\alpha}{\pi}\right)^2 + A_3 \left(\frac{\alpha}{\pi}\right)^3 + A_4 \left(\frac{\alpha}{\pi}\right)^4 + A_5 \left(\frac{\alpha}{\pi}\right)^5$$

 $A_2$   $A_3$  known analytically,  $A_4$   $A_5$  obtained with Monte Carlo techniques, partially checked analytically for  $A_4$  Aoyama, Hayakawa, Kinoshita, Nio (2012-2019)

$$\alpha = 137.035\ 999\ 046\ (27)\ \text{from Cs recoil measurement}\ \text{(Mueller et al.)}$$
 
$$\alpha_{\mu}^{QED} = 116\ 140\ 973.321\ (23) \\ + \ 413\ 217.626\ (7) \\ + \ 30\ 141.902\ (33) \\ + \ 381.004\ (17) \\ + \ 5.078\ (6)$$
 
$$\alpha^{5}$$
 
$$= 116\ 584\ 718.931\ (104)$$
 
$$\alpha^{6} \text{term}$$
 
$$\alpha^{6} \text{term}$$

## Theoretical prediction for $a_{ii}$ : EW, hadronic light-by-light


• EW: one-loop + two-loop involving W, Z bosons (little sensitivity to Higgs boson mass)

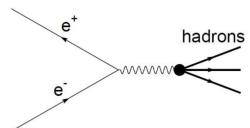
$$a_{\mu}^{EW} = 153.6 (1.0) \times 10^{-11}$$

shows level of sensitivity of  $a_{ii}$  to physics at large mass scales  $\sim$  O(0.1 TeV)

Precision at low energies ⇔ high energy frontier

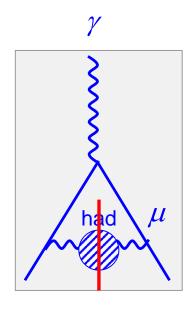
• Hadronic light-by-light:  $\alpha^3$  contribution not computable by analytical QCD; so far only estimated by phenomenological models using intermediate particles; new approach partly using experimental data (2017); also first results from QCD lattice simulations (2019)

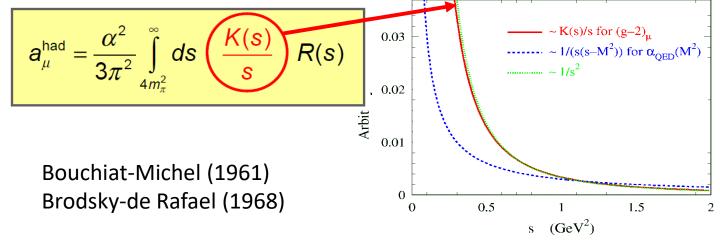



small contribution

$$a_{\mu}^{HLbL} = 94 (19) \times 10^{-11}$$

#### Theoretical prediction for a<sub>..</sub>: Hadronic Vacuum Polarization


Dominant uncertainty for the theoretical prediction from HVP part which cannot be calculated from QCD (low mass scale), but one can use experimental data on  $e^+e^-\rightarrow$  hadrons cross section


Born: 
$$\sigma^{(0)}(s) = \sigma(s)(\alpha/\alpha(s))^2$$



- unitarity
- analyticity

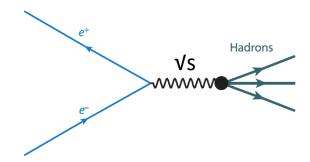
 $\Rightarrow$  dispersion relation

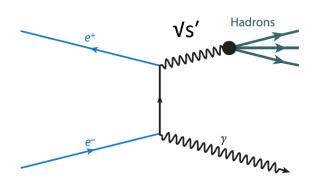




Precise  $\sigma(e^+e^-\rightarrow hadrons)$  measurements at low energy are necessary

## Hadronic Vacuum Polarization (DHMZ group)

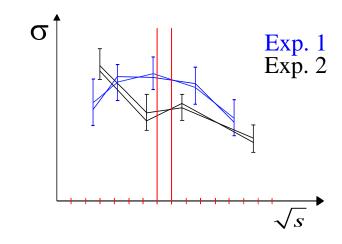

- HVP has been for long and still now the largest contribution to the uncertainty of the  $a_{ii}$  prediction in the SM
- Limited by the accuracy of e+e- experimental data
- DHMZ group (MD, Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang) involved since 1997
- Result used as reference for the Brookhaven experiment: comparison revealed a deficit in the prediction at  $\sim$  2-3  $\sigma$  level, hence our motivation to continue this effort toward a more precise prediction
- Main contributions to data treatment
  - > Compilation of existing data for e+e- annihilation to obtain R as a sum of exclusive processes
  - ➤ Robust combination techniques taking into account all correlated uncertainties as function of energy, between exclusive channels, and between experiments
  - Correct for unmeasured processes using isospin constraints
  - $\triangleright$  Determine energy regions where perturbative QCD calculations are safe (experience with  $\tau$  physics at LEP)
- Launched a dedicated program of e+e- cross section measurements using the BABAR detector (Stanford) to get more precise data (2001-2014) with the new Initial State Radiation (ISR) method. A new phase is still underway.
- Same data and techniques used to study the running of  $\alpha$  (energy) from  $\alpha$ (0) to  $\alpha$ (M<sub>Z</sub>)  $\Rightarrow$  prediction for M<sub>Higgs</sub>
- Double role as phenomenologists and experimenters

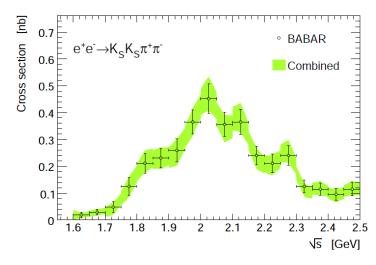

## Measurements of $\sigma(e^+e^- \rightarrow hadrons)$

- 1. The scan method: e.g. CMD-2/3, SND at Novosibirsk
  - ➤ Advantages:
    - > Well defined vs
    - ➤ Good energy resolution ~10<sup>-3</sup>Vs
  - ➤ Disadvantages:
    - ➤ Energy gap between two scans
    - ➤ Low luminosity at low energies
    - ➤ Limited vs range of a given experiment

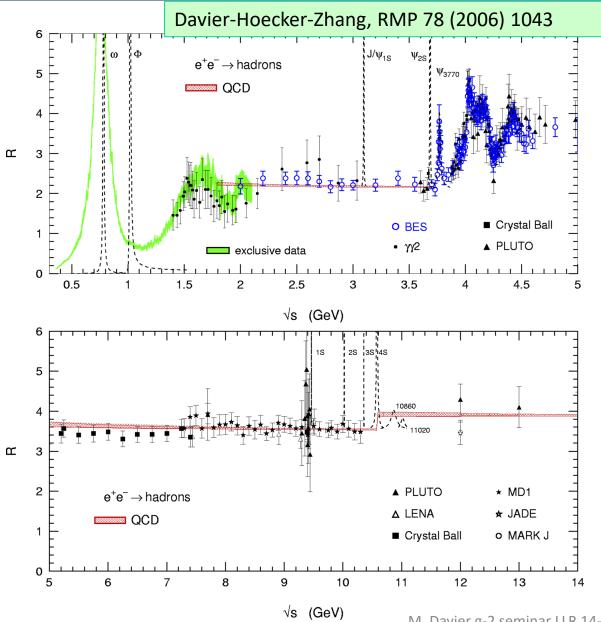


- ➤ Advantages:
  - Continuous cross section measurement over a broad energy range down to threshold
  - ➤ large acceptance for hadrons if ISR detected at large angle
  - $> \sigma(e^+e^- \to hadrons)$  may be measured over  $\sigma(e^+e^- \to \mu^+\mu^-)$  thus reducing some syst uncertainties
- ➤ Disadvantages:
  - ightharpoonup Requires high luminosity to compensate higher order in  $\alpha$



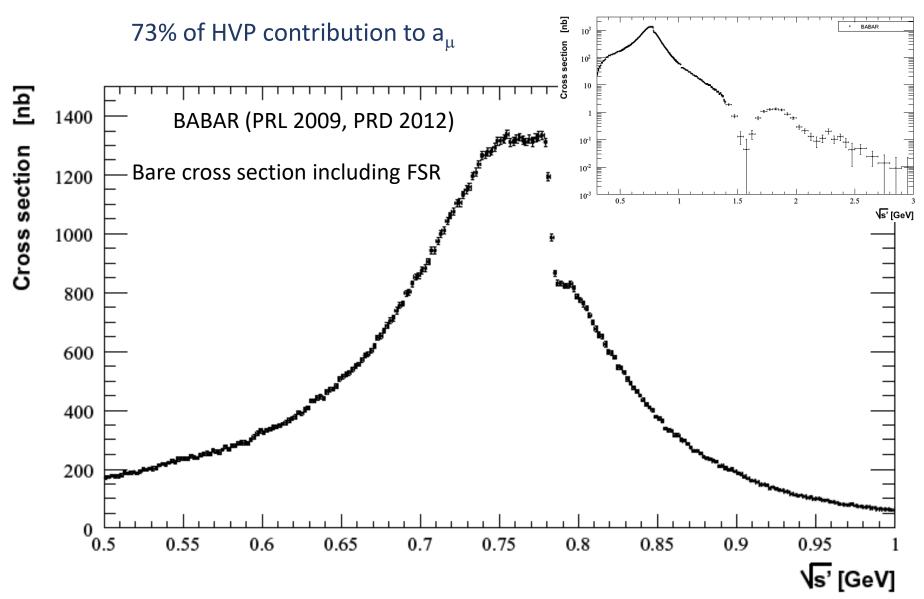




$$s'=(1-x)/s$$
$$x=2E_{\gamma}/\sqrt{s}$$


## Combining cross section data (HVPTools)

- Combine experimental spectra with arbitrary point spacing / binning Properly propagate uncertainties and correlations
- Between measurements (data points/bins) of a given experiment (covariance matrices and/or detailed split of uncertainties)
- Between experiments (common systematic uncertainties, e.g. VP)
- Between different channels, e.g. luminosity, radiative corrections, some efficiencies
- Linear/quadratic splines to interpolate between the points/bins of each experiment
- Fluctuate data points taking into account correlations and re-do the splines for each (pseudo-)experiment
  - each uncertainty fluctuated coherently for all the points/bins that it impacts
  - eigenvector decomposition for (statistical & systematic) covariance matrices
- Integral(s) evaluated for nominal result and for each set of toy pseudoexperiments; uncertainty of integrals from RMS of results for all toys
- Pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections
  - → Integral evaluation

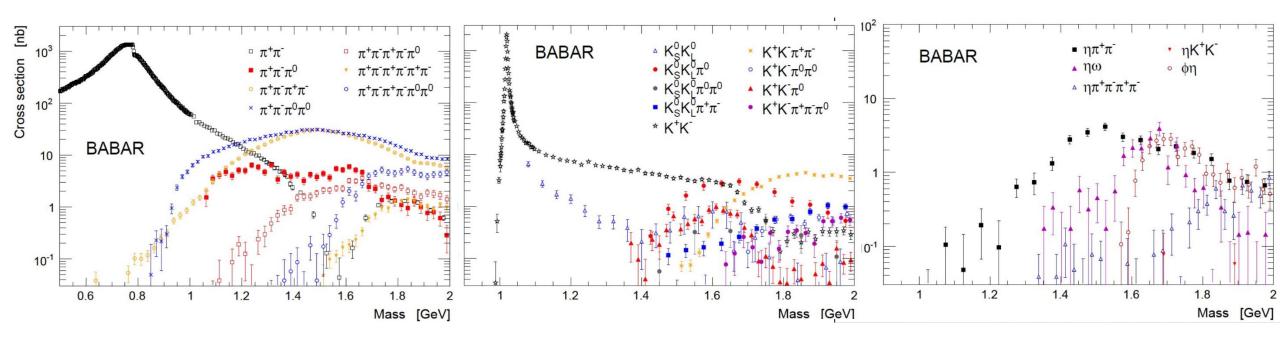




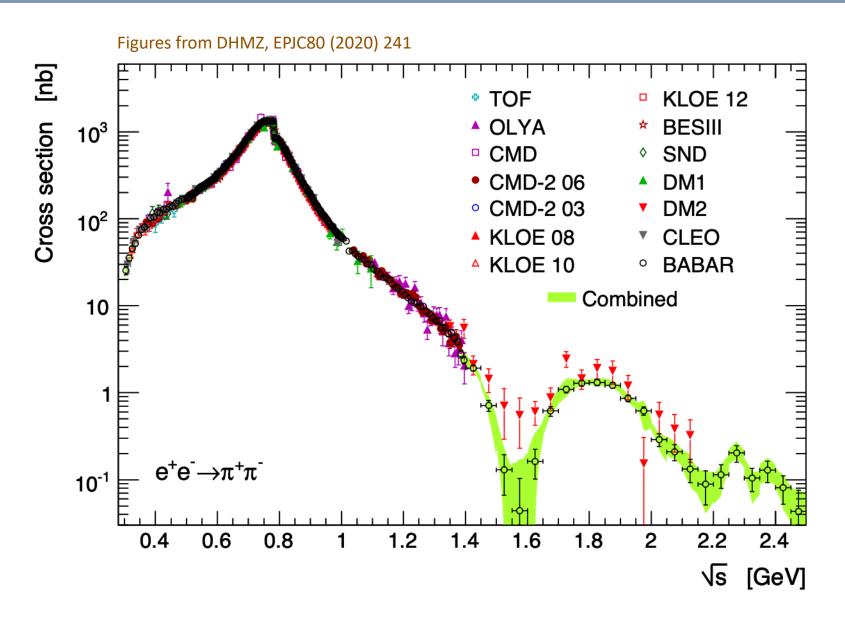

## Different energy regions for R(s)



- [ $\pi^0 \gamma$  threshold-1.8GeV]
- sum about 22→37 exclusive channels
- estimate unmeasured channels using isospin relations (now < 0.1%)</li>
- [1.8-3.7] GeV
  - good agreement between data and pQCD calculation→ use 4-loop pQCD
  - J/ψ, ψ(2s): Breit-Wigner integral
- [3.7-5] GeV use data
- >5GeV use 4-loop pQCD calculation

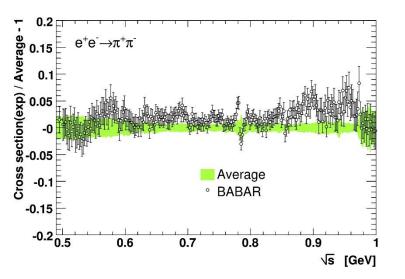

#### The dominant channel: $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$

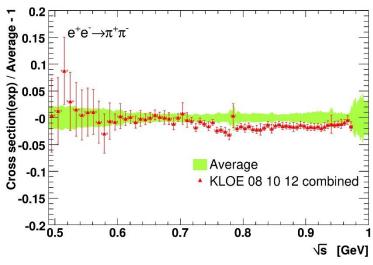


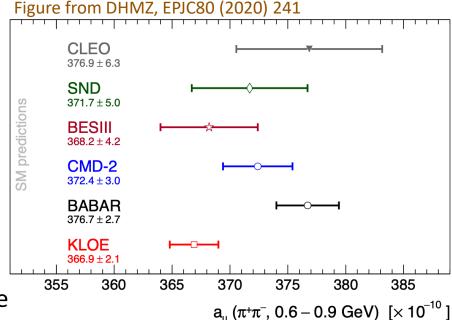

#### BABAR: multi-hadronic channels

Besides our team for the leading  $\pi^+\pi^-$  and K<sup>+</sup>K<sup>-</sup> cross sections, other BABAR groups have taken the lead to measure the rest of exclusive cross sections (altogether ~ 40 processes)

⇒ complete and precise reconstruction of R below 2 GeV



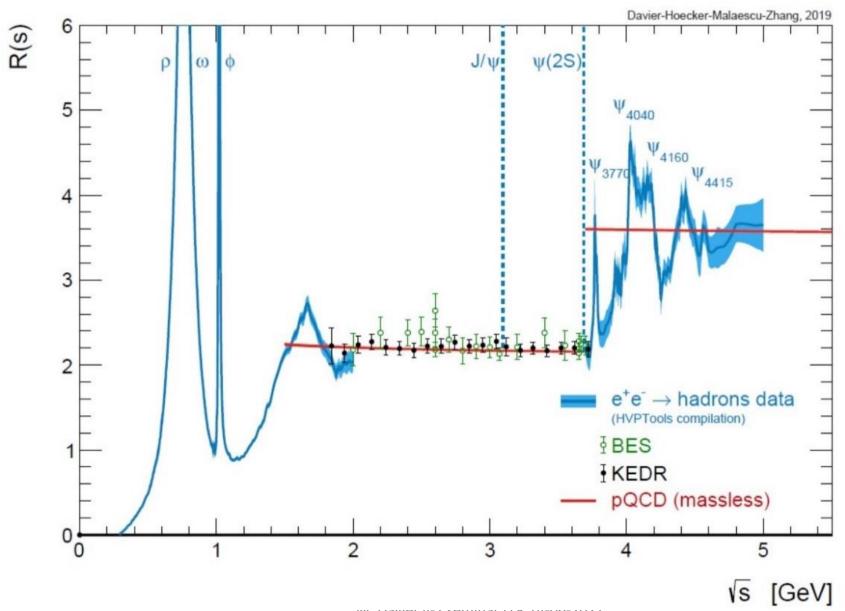


#### Combination : $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$




#### Consistency between experimental data

- Latest dispersive evaluations rely on a rather complete set of measurements of  $e^+e^- \rightarrow$  hadrons up to  $6\pi$ ,  $\eta 4\pi$ , KK2 $\pi$  in all charge configurations, and a few more higher-multiplicity processes
- missing channels in the range [1.5-1.8] GeV are estimated to contribute < 0.1% using isospin symmetry</li>
- discrepancies exist in the  $K^+K^-$  channel on the  $\phi(1020)$  (CMD-3 vs. CMD-2, SND, BABAR), taken into account
- A more significant discrepancy occurs in the  $\pi^+\pi^-$  channel between the 2 most precise results (BABAR and KLOE)
- Taking into account the BABAR/KLOE disagreement in the combination, all experiments are in agreement
  within an enlarged combination uncertainty (0.7%), already a remarkable result given different experimental
  conditions: ISR (10.6 GeV BABAR, ~4 GeV BES CLEOc, 1.02 GeV KLOE), direct scan (CMD-2, SND)








Additional systematic error added because of BABAR-KLOE difference

⇒ degrades uncertainty by 30%

# The current R(s) (DHMZ19)



## All contributions (DHMZ19)

| Channel                                                           | $a_{\mu}^{\mathrm{had, LO}}[10^{-10}]$        | $\Delta\alpha(m_Z^2)[10^{-4}]$                                            |
|-------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|
| $\pi^0\gamma$                                                     | $4.29 \pm 0.06 \pm 0.04 \pm 0.07$             | $0.35 \pm 0.00 \pm 0.00 \pm 0.01$                                         |
| $\eta\gamma$                                                      | $0.65 \pm 0.02 \pm 0.01 \pm 0.01$             | $0.08 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $\pi^+\pi^-$                                                      | $507.80 \pm 0.83 \pm 3.19 \pm 0.60$           | $34.49 \pm 0.06 \pm 0.20 \pm 0.04$                                        |
| $\pi^+\pi^-\pi^0$                                                 | $46.20 \pm 0.40 \pm 1.10 \pm 0.86$            | $4.60 \pm 0.04 \pm 0.11 \pm 0.08$                                         |
| $2\pi^+2\pi^-$                                                    | $13.68 \pm 0.03 \pm 0.27 \pm 0.14$            | $3.58 \pm 0.01 \pm 0.07 \pm 0.03$                                         |
| $\pi^+\pi^-2\pi^0$                                                | $18.03 \pm 0.06 \pm 0.48 \pm 0.26$            | $4.45 \pm 0.02 \pm 0.12 \pm 0.07$                                         |
| $2\pi^{+}2\pi^{-}\pi^{0} \ (\eta \text{ excl.})$                  | $0.69 \pm 0.04 \pm 0.06 \pm 0.03$             | $0.21 \pm 0.01 \pm 0.02 \pm 0.01$                                         |
| $\pi^{+}\pi^{-}3\pi^{0} \ (\eta \text{ excl.})$                   | $0.49 \pm 0.03 \pm 0.09 \pm 0.00$             | $0.15 \pm 0.01 \pm 0.03 \pm 0.00$                                         |
| $3\pi^+3\pi^-$                                                    | $0.11 \pm 0.00 \pm 0.01 \pm 0.00$             | $0.04 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $2\pi^{+}2\pi^{-}2\pi^{0} \ (\eta \text{ excl.})$                 | $0.71 \pm 0.06 \pm 0.07 \pm 0.14$             | $0.25 \pm 0.02 \pm 0.02 \pm 0.05$                                         |
| $\pi^+\pi^-4\pi^0$ ( $\eta$ excl., isospin)                       | $0.08 \pm 0.01 \pm 0.08 \pm 0.00$             | $0.03 \pm 0.00 \pm 0.03 \pm 0.00$                                         |
| $\eta\pi^+\pi^-$                                                  | $1.19 \pm 0.02 \pm 0.04 \pm 0.02$             | $0.35 \pm 0.01 \pm 0.01 \pm 0.01$                                         |
| $\eta\omega$                                                      | $0.35 \pm 0.01 \pm 0.02 \pm 0.01$             | $0.11 \pm 0.00 \pm 0.01 \pm 0.00$                                         |
| $\eta\pi^+\pi^-\pi^0(	ext{non-}\omega,\phi)$                      | $0.34 \pm 0.03 \pm 0.03 \pm 0.04$             | $0.12 \pm 0.01 \pm 0.01 \pm 0.01$                                         |
| $\eta 2\pi^+ 2\pi^-$                                              | $0.02 \pm 0.01 \pm 0.00 \pm 0.00$             | $0.01 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $\omega\eta\pi^0$                                                 | $0.06 \pm 0.01 \pm 0.01 \pm 0.00$             | $0.02 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $\omega\pi^0~(\omega	o\pi^0\gamma)$                               | $0.94 \pm 0.01 \pm 0.03 \pm 0.00$             | $0.20 \pm 0.00 \pm 0.01 \pm 0.00$                                         |
| $\omega(\pi\pi)^0 \ (\omega \to \pi^0\gamma)$                     | $0.07 \pm 0.00 \pm 0.00 \pm 0.00$             | $0.02 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $\omega \; (\text{non-}3\pi,\pi\gamma,\eta\gamma)$                | $0.04 \pm 0.00 \pm 0.00 \pm 0.00$             | $0.00 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $K^+K^-$                                                          | $23.08 \pm 0.20 \pm 0.33 \pm 0.21$            | $3.35 \pm 0.03 \pm 0.05 \pm 0.03$                                         |
| $K_SK_L$                                                          | $12.82 \pm 0.06 \pm 0.18 \pm 0.15$            | $1.74 \pm 0.01 \pm 0.03 \pm 0.02$                                         |
| $\phi \; (\text{non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$ | $0.05 \pm 0.00 \pm 0.00 \pm 0.00$             | $0.01 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $K\overline{K}\pi$                                                | $2.45 \pm 0.05 \pm 0.10 \pm 0.06$             | $0.78 \pm 0.02 \pm 0.03 \pm 0.02$                                         |
| $K\overline{K}2\pi$                                               | $0.85 \pm 0.02 \pm 0.05 \pm 0.01$             | $0.30 \pm 0.01 \pm 0.02 \pm 0.00$                                         |
| $K\overline{K}3\pi$ (estimate)                                    | $-0.02 \pm 0.01 \pm 0.01 \pm 0.00$            | $-0.01 \pm 0.00 \pm 0.00 \pm 0.00$                                        |
| $\eta\phi$                                                        | $0.33 \pm 0.01 \pm 0.01 \pm 0.00$             | $0.11 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $\eta K \overline{K} $ (non- $\phi$ )                             | $0.01 \pm 0.01 \pm 0.01 \pm 0.00$             | $0.00 \pm 0.00 \pm 0.01 \pm 0.00$                                         |
| $\omega K \overline{K} \ (\omega \to \pi^0 \gamma)$               | $0.01 \pm 0.00 \pm 0.00 \pm 0.00$             | $0.00 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $\omega 3\pi \ (\omega \to \pi^0 \gamma)$                         | $0.06 \pm 0.01 \pm 0.01 \pm 0.01$             | $0.02 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $7\pi (3\pi^+ 3\pi^- \pi^0)$ + estimate)                          | $0.02 \pm 0.00 \pm 0.01 \pm 0.00$             | $0.01 \pm 0.00 \pm 0.00 \pm 0.00$                                         |
| $J/\psi$ (BW integral)                                            | $6.28 \pm 0.07$                               | $7.09 \pm 0.08$                                                           |
| $\psi(2S)$ (BW integral)                                          | $1.57 \pm 0.03$                               | $2.50 \pm 0.04$                                                           |
| $R \operatorname{data} [3.7 - 5.0] \text{ GeV}$                   | $7.29 \pm 0.05 \pm 0.30 \pm 0.00$             | $15.79 \pm 0.12 \pm 0.66 \pm 0.00$                                        |
| $R_{\text{QCD}} [1.8 - 3.7 \text{ GeV}]_{uds}$                    | $33.45 \pm 0.28 \pm 0.65_{\mathrm{dual}}$     | $24.27 \pm 0.18 \pm 0.28_{ m dual}$                                       |
| $R_{\rm QCD} [5.0 - 9.3 \text{ GeV}]_{udsc}$                      | $6.86 \pm 0.04$                               | $34.89 \pm 0.17$                                                          |
| $R_{\rm QCD} [9.3 - 12.0 \text{ GeV}]_{udscb}$                    | $1.21 \pm 0.01$                               | $15.56\pm0.04$                                                            |
| $R_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udscb}$                   | $1.64\pm0.00$                                 | $77.94 \pm 0.12$                                                          |
| $R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$                        | $0.16 \pm 0.00$                               | $42.70\pm0.06$                                                            |
| $R_{\rm QCD} \left[ > 40.0 \text{ GeV} \right]_t$                 | $0.00 \pm 0.00$                               | $-0.72\pm0.01$                                                            |
| Sum                                                               | $693.9 \pm 1.0 \pm 3.4 \pm 1.6 \pm 0.7$ QCD s | $275.42 \pm 0.15 \pm 0.72 \pm 0.23 \pm 0.09_{\psi} \pm 0.55_{\text{QCD}}$ |

40 exclusive channels (<1.8 GeV) evaluated

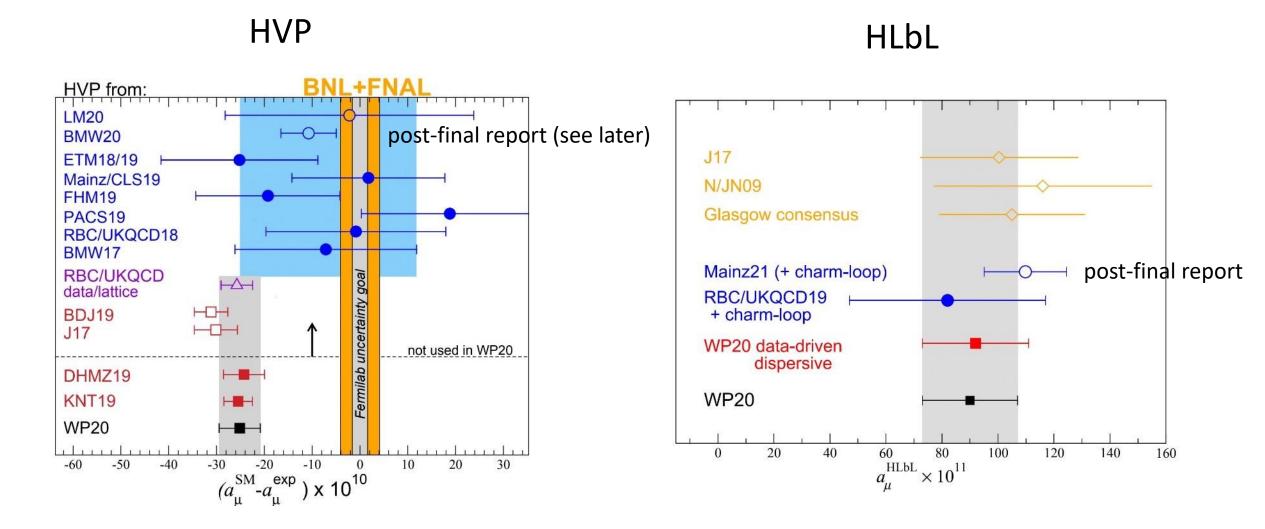

Estimation for missing modes based on isospin constraints becomes negligible (0.016%)

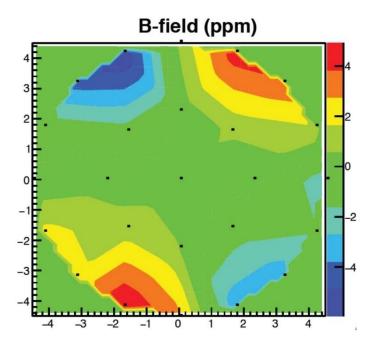
Table taken from DHMZ, EPJC80 (2020) 241

## The g-2 theory initiative (2017-2020)

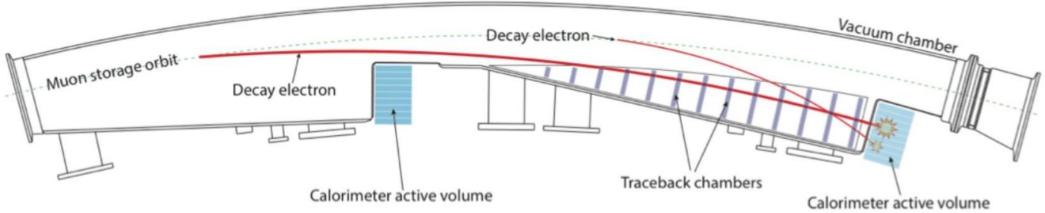
- By 2012, prediction using more precise e+e- data confirmed the discrepancy with the Brookhaven measurement, reaching  $^{\sim}$  3.5  $\sigma$
- In view of forthcoming results from the new g-2 direct experiment at Fermilab, a concerted effort was organized to try to produce the most reliable prediction ahead of time (blind to the new result)
- Organized 6 workshops followed by ~ 130 physicists (many lattice QCD theorists)
- Progress in hadronic LbL calculations with phenomenological and lattice methods, uncertainty reduced
- For HVP
  - > lattice groups very active, but could not produce a reliable and competitive result
  - ➤ the dispersive approach based on data was adopted: results of 2 groups used (DHMZ and KNT) with the DHMZ conservative approach of estimating uncertainties prevailing
- Comprehensive report (166 pages) ready early 2020 and published in Physics Reports, well before the Fermilab release

## The g-2 theory initiative prediction (WP2020)




## The muon g-2 Fermilab experiment

- Brookhaven experiment limited by statistics, systematic effects well understood, could be improved with more intense (x 20) and pure muon beam at Fermilab
- Goal: reduce final uncertainty by a factor of 4 (over several years)
- Enlarged collaboration
- Experiment completely redesigned (beam instrumentation, detectors, electronics), only superconducting magnet kept and shipped






#### The muon g-2 Fermilab experiment: a few features

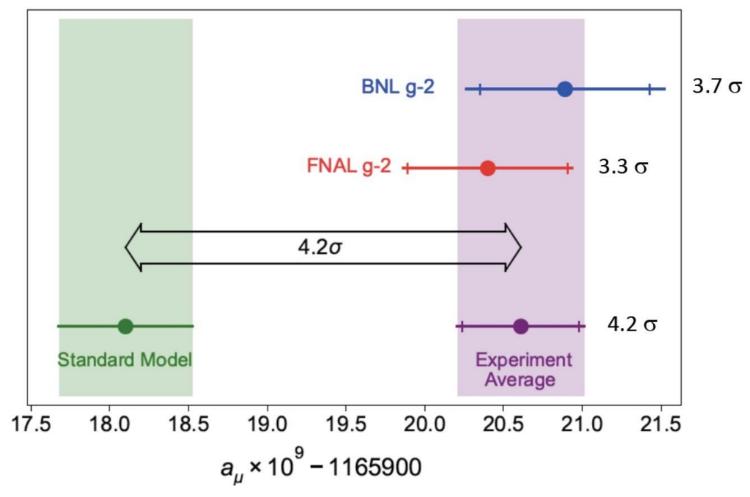


- B-field uniformity after careful magnet shimming
- Checked every 3 days with special trolley with probes
- Large number of fixed probes to interpolate shifts
- Real-time reconstruction of muon beam position/shape to obtain B-field as seen by the muons
- Possible using tracking system of electron detectors
- Calorimeters with PbF2 crystals read-out by SiPM's (reduce pile-up)



## The muon g-2 Fermilab experiment: correcting systematic effects

- Large number of systematic studies to establish corrections and to estimate uncertainties
- Beam distortions/oscillations
- Muon losses
- E-field residual effect
- Different methods for  $\omega_a$  determination
- B-field  $(\omega_p)$
- Several groups for each topics
- Double unblinding for  $\omega_a$  and  $\omega_p$  with secret offsets for clock frequencies
- precision dominated by statistics
- Guarantees progress for future analyses (so far only 6% of total data)

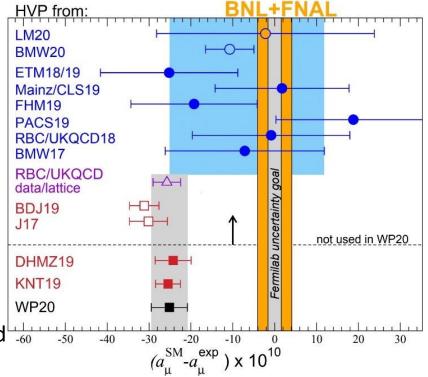

| Quantity                                                       | Correction Terms | Uncertainty |
|----------------------------------------------------------------|------------------|-------------|
|                                                                | (ppb)            | (ppb)       |
| $\omega_a$ (statistical)                                       | _                | 434         |
| $\omega_a$ (systematic)                                        | -                | - 56        |
| $C_e$                                                          | 489              | 53          |
| $C_p$                                                          | 180              | 13          |
| $C_{ml}$                                                       | -11              | . 5         |
| $C_{pa}$                                                       | -158             | 75          |
| $f_{calib}\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\rangle$ | -                | - 56        |
| $B_q$                                                          | -17              | 92          |
| $B_k$                                                          | -27              | 37          |
| $\mu_p'(34.7^{\circ})/\mu_e$                                   | _                | - 10        |
| $m_{\mu}/m_e$                                                  | -                | - 22        |
| $g_e/2$                                                        | -                | - 0         |
| Total                                                          | -                | 462         |

434 ppb stat ⊕ 157 ppb syst error

## The muon g-2 Fermilab experiment: the result

$$a_{ii}$$
(Fermilab) = 116 592 040 (54) × 10<sup>-11</sup>

- Agreement with Brookhaven value
- Precision comparable
- Excess / SM prediction increased to 4.2σ
- Caution about significance:
  - > statistics-dominated measurement
  - prediction uncertainty limited by systematic effects (not Gaussian)
- Nevertheless, large discrepancy (the largest so far between measurement and SM anywhere)




# 60 years of muon g-2 measurements and theory predictions

| Experiment          | Beam                         | Measurement           | $\delta a_\mu/a_\mu$ | Required th. terms                |
|---------------------|------------------------------|-----------------------|----------------------|-----------------------------------|
| Columbia-Nevis (57) | $\mu^+$                      | g=2.00±0.10           |                      | g=2                               |
| Columbia-Nevis (59) | $\mu^+$                      | 0.001 13(+16)(-12)    | 12.4%                | $\alpha/\pi$                      |
| CERN 1 (61)         | $\mu^+$                      | 0.001 145(22)         | 1.9%                 | $\alpha/\pi$                      |
| CERN 1 (62)         | $\mu^+$                      | 0.001 162(5)          | 0.43%                | $(\alpha/\pi)^2$                  |
| CERN 2 (68)         | $\mu^+$                      | 0.001 166 16(31)      | 265 ppm              | $(\alpha/\pi)^3$                  |
| CERN 3 (75)         | $\mu^{\pm}$                  | 0.001 165 895(27)     | 23 ppm               | $(\alpha/\pi)^3$ + had            |
| CERN 3 (79)         | $\mu^{\pm}$                  | 0.001 165 911(11)     | 7.3 ppm              | $(\alpha/\pi)^3$ + had            |
| BNL E821 (00)       | $\mu^+$                      | 0.001 165 919 1(59)   | 5 ppm                | $(\alpha/\pi)^3$ + had            |
| BNL E821 (01)       | $\mu^+$                      | 0.001 165 920 2(16)   | 1.3 ppm              | $(\alpha/\pi)^4$ + had + weak     |
| BNL E821 (02)       | $\mu^+$                      | 0.001 165 920 3(8)    | 0.7 ppm              | $(\alpha/\pi)^4$ + had + weak + ? |
| BNL E821 (04)       | $\mu^-$                      | 0.001 165 921 4(8)(3) | 0.7 ppm              | $(\alpha/\pi)^4$ + had + weak + ? |
| FNAL Run1 (21)      | $\mu^{\scriptscriptstyle +}$ | 0.001 165 920 40(54)  | 0.46 ppm             | $(\alpha/\pi)^4$ + had + weak + ? |

#### Une controverse sur HVP?

- BMW lattice collaboration preprint posted on arxiv early in 2020
- Statistics x10 compared to other groups (huge computing power)
- Claimed systematic uncertainty (dominant) also much smaller
- Central value much closer to the g-2 measurement
- Result scrutinized during one year (special workshop organized)
- Criticism expressed (precision), but no fundamental flaw discovered so far
- Small changes made in 2<sup>nd</sup> and 3<sup>rd</sup> versions
- · Paper finally published in Nature with aggressive publicity
- New method at this level of precision; lack of maturity/dispersive approach
  - ➤ Complex non-transparent analysis: QCD solved numerically on a discretized space-time of finite volume (up to 11 fm³) and small spacing
  - > Extrapolation to the continuum is one of the issues concerning systematic biases and error estimate
- Needs confirmation by other lattice collaborations (4 groups); may take some time
- Clear discrepancy between cross section for e+e- → hadrons and BMW result
- DHMZ is collaborating with BMW to localize the energy region where the differences with data-driven results occur
- Other consequences of BMW result are being investigated (impact on the EW fit)



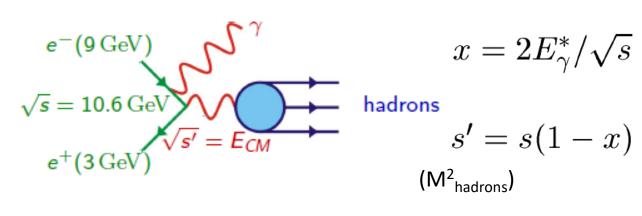
#### What new physics could produce this excess?

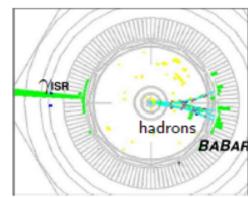
- Presently the confrontation theory/experiment indicates a missing contribution in the Standard Model at more than 4  $\sigma$
- The excess,  $\Delta a_{\mu}$  = 251 (59) × 10<sup>-11</sup>, is comparable to the electroweak contribution of W and Z bosons (mass ~100 GeV)  $\Delta a_{\mu}^{EW}$  = 153.6 (1.0) × 10<sup>-11</sup>
- Depending on possible enhancements due to the specific new interaction, masses for the new particles could be in the 0.1-1 TeV range
- Exactly what was expected for minimal supersymmetry (SUSY), enhancement given here by a  $tan \beta$  factor
- This simple scenario is almost ruled out by negative searches of SUSY-particles at LHC
- Another possibility is a relatively low mass scalar boson or a dark photon interacting weakly, but this is also largely ruled out by direct searches
- Other, more contrived, models are considered.... BSM theorists are active...

#### Summary and perspectives

- New measurement of the muon magnetic anomaly released at Fermilab
- Result in agreement with previous Brookhaven experiment
- A large effort was devoted to produce a reliable and conservative theoretical prediction within the Standard Model
- The Hadronic Vacuum Polarization contribution plays a very important role in the value and accuracy of the prediction
- The DHMZ group at Orsay has more than 20 years of experience using the mature dispersive approach based on experimental data on e+e- cross sections measured with innovative methods
- Presently the confrontation theory/experiment indicates a missing contribution in the Standard Model at more than 4  $\sigma$
- This conclusion is challenged by an alternative approach using QCD on a lattice which needs confirmation by other groups before concluding. For the moment one should stay with the well-tested standard approach
- Prospects for improving the direct measurement at Fermilab look good (reduction of uncertainty by a factor of 4 over the next 4 years)
- A new experiment is under preparation at JPARC in Japan using a completely different approach, thus
  allowing to crosscheck the traditional method

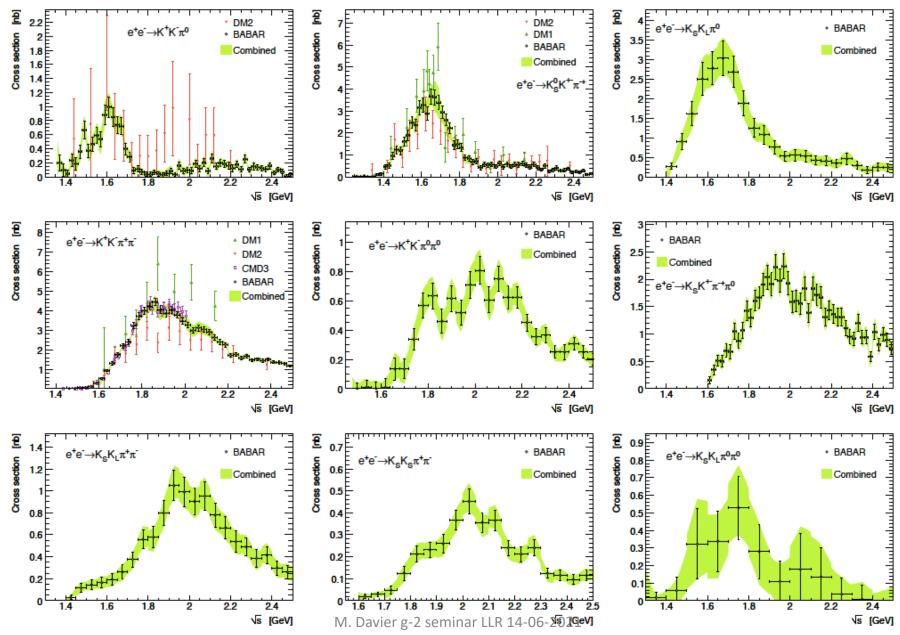
# Backup slides


#### List of DHMZ publications

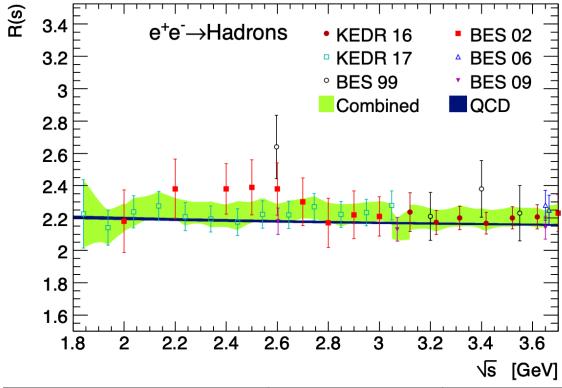

- 1. ADH 1998, Eur.Phys.J.C 2 (1998) 123 [330 citations\*]
- 2. DH 1998, Phys.Lett.B 419 (1998) 419 [219 citations]
- 3. DH 1998, Phys.Lett.B 435 (1998) 427 [292 citations]
- 4. DEHZ 2003, Eur.Phys.J.C 27 (2003) 497 [394 citations]
- 5. DEHZ 2003, Eur.Phys.J.C 31 (2003) 503 [430 citations]
- 6. DHMZ+ 2010, Eur.Phys.J.C 66 (2010) 127 [157 citations]
- 7. DHMYZ 2010, Eur.Phys.J.C 66 (2010) 1 [209 citations]
- 8. DHMZ 2011, Eur.Phys.J.C 71 (2011) 1515 [866 citations]
- 9. DHMZ 2017, <u>Eur.Phys.J.C 77 (2017) 827</u> [259 citations]
- 10. DHMZ 2019, Eur.Phys.J.C 80 (2020) 241 [169 citations]
- 11. Theory initiative WP 2020, Phys.Rept. 887 (2020) 1 [171 citations]
  - → Total number of citations: ~3500

<sup>\*</sup> Status of April 9, 2021

#### The ISR method at BABAR


BABAR, operating on the high-luminosity asymmetric PEP II e+e- collider, was designed to study CP violation in the B-antiB system and led to the validation of the Cabibbo-Kobayashi-Maskawa matrix. The ISR program was a powerful by-product



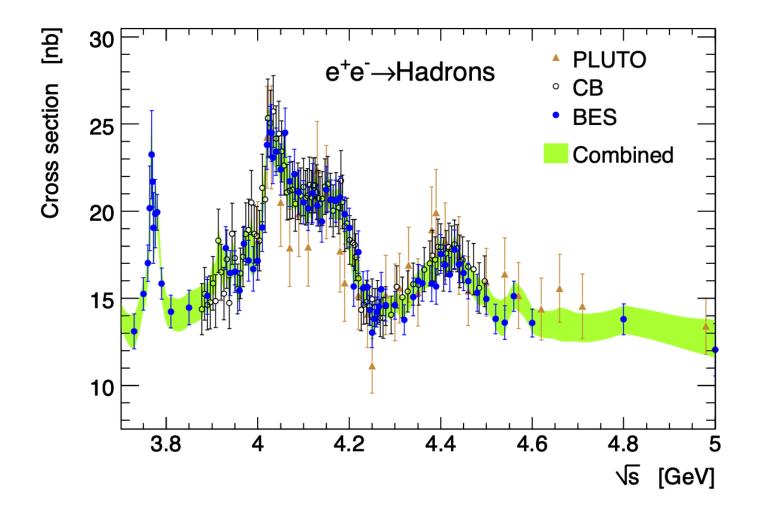



- High energy ( $E^*_{\gamma}$  >3 GeV) detected at large angle
- Event topology: ISR photon back-to-back to hadrons → high acceptance
- Final state can be hadronic or leptonic (QED)
  - $\rightarrow \mu^+\mu^-\gamma(\gamma)$  to get ISR luminosity
- Continuous measurement from threshold to 3-5 GeV
  - →reduces systematic uncertainties compared to multiple data sets with different colliders and detectors

#### KKbar+ $\pi$ 's Channels



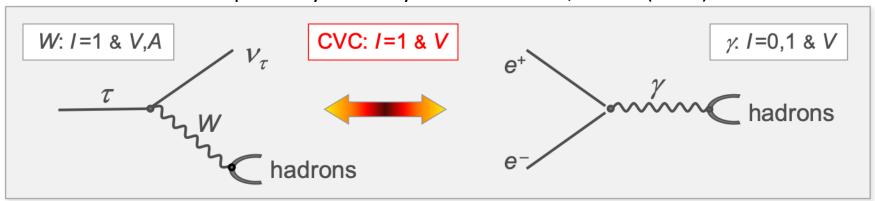
#### Contributions in the Region 1.8-3.7 GeV




| Energy range [GeV] | 1.8 - 2.0       | 2.0 - 3.7    |
|--------------------|-----------------|--------------|
| Data               | $7.71 \pm 0.32$ | 25.82 ± 0.61 |
| pQCD               | $8.30 \pm 0.09$ | 25.15 ± 0.19 |
| Difference         | 0.59 → dual     | agree < 1σ   |

pQCD evaluated from 4 loops +  $O(\alpha_s^2)$  quark mass corrections Uncertainties:  $\alpha_s$ , truncation, FOPT/CIPT,  $m_q$ 

M. Davier g-2 seminar LLR 14-06-2021


#### Contributions from Charm Resonance Region



$$7.29 \pm 0.05 \pm 0.30 \pm 0.00 \Rightarrow 1.05\% \text{ of } a_{\mu}{}^{had, LO}$$
 stat sys cor

#### An Alternative Way Used to Evaluate HVP

Proposed by Alemany-Davier-Hoecker, EPJC 2 (1998) 123



Hadronic physics factorises in Spectral Functions:

Isospin symmetry connects I=1  $e^+e^-$  cross section to vector  $\tau$  spectral functions relating

$$\sigma^{(l=1)} \left[ e^+ e^- \to \pi^+ \pi^- \right] = \frac{4\pi\alpha^2}{s} \upsilon \left[ \tau^- \to \pi^- \pi^0 v_\tau \right]$$

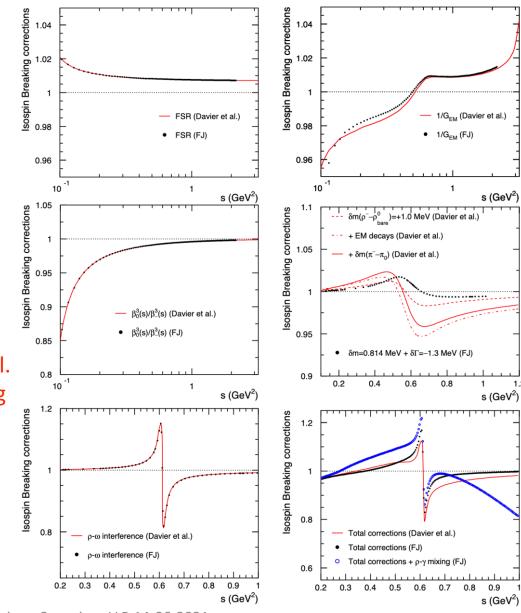
long distance (resonances) to short distance description (QCD)

**Fundamental** 

$$\upsilon \left[\tau^{-} \to \pi^{-} \pi^{0} v_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \to \pi^{-} \pi^{0} v_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \to e^{-} \overline{v}_{e} v_{\tau}\right]} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1 - s/m_{\tau}^{2}\right)^{2} \left(1 + s/m_{\tau}^{2}\right)}$$

Branching fractions Mass spectrum Kinematic factors (PS)
M. Davier g-2 seminar LLR 14-06-2021

#### Known Isospin Breaking Corrections


Davier et al., EPJC66 (2010) 127

$$v_{1,X^{-}}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{X^{-}}}{\mathcal{B}_{e}} \frac{1}{N_{X}} \frac{dN_{X}}{ds} \times \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-2} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{R_{\text{IB}}(s)}{S_{\text{EW}}},$$

$$R_{\rm IB}(s) = \frac{\text{FSR}(s)}{G_{\rm EM}(s)} \frac{\beta_0^3(s)}{\beta_-^3(s)} \left| \frac{F_0(s)}{F_-(s)} \right|^2$$

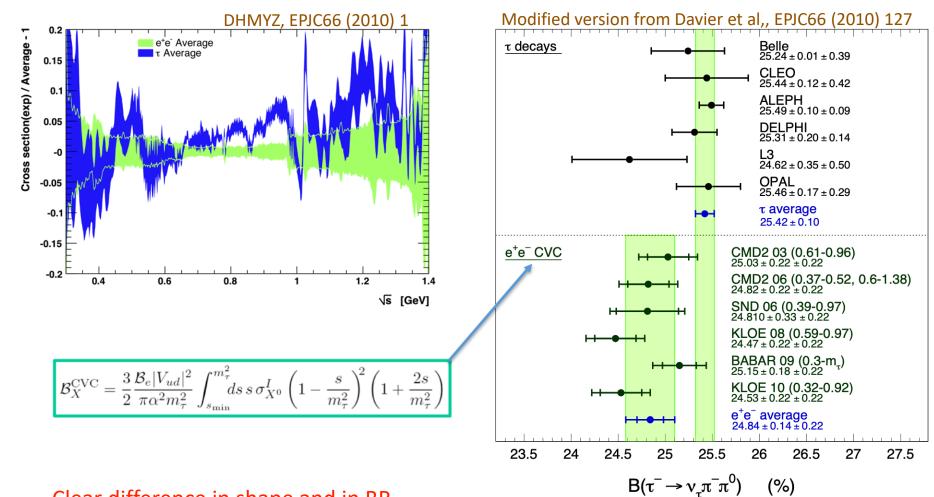
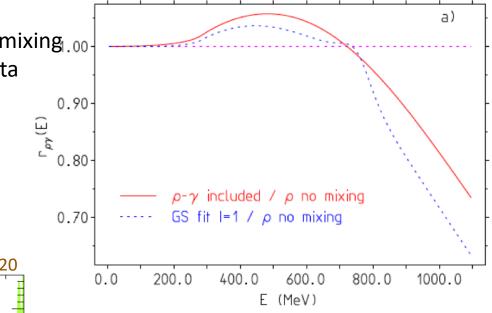

Good agreement between Davier et al. and FJ for most of the isospin breaking components

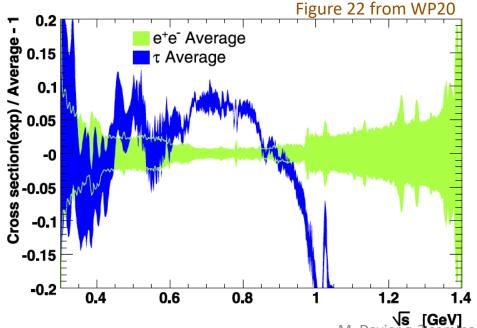
Figure 19 from WP20 Studies in DHMZ et al., EPJC66 (2010) 127



#### Open Issue in the $2\pi$ Channel


Take into account all known isospin breaking corrections except for the  $\rho$ - $\gamma$  mixing correction

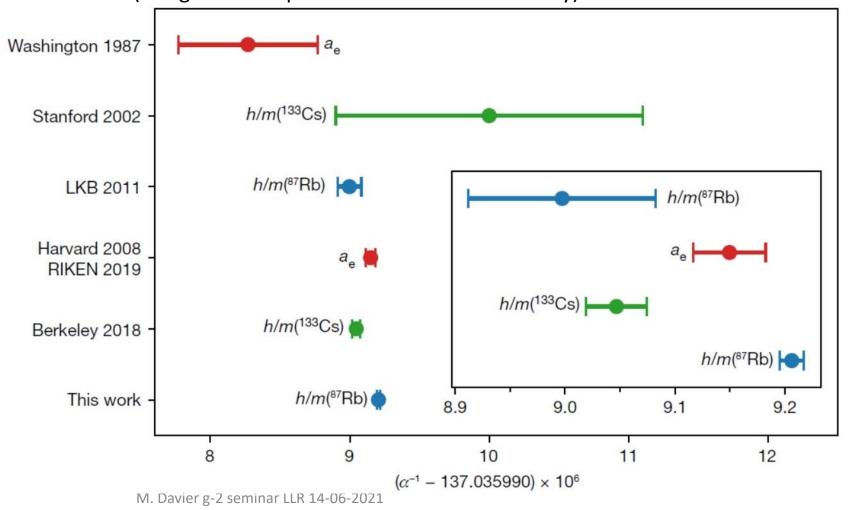



Clear difference in shape and in BR between  $e^+e^-$  and  $\tau$  average

#### Additional EFT Based $\rho$ – $\gamma$ Mixing Correction

Jegerlehner and Szafron argue for a  $\rho$ – $\gamma$  mixing<sub>1.00</sub> contribution in e+e- data, missing in  $\tau$  data (problematic)




JS, EPJC71 (2011) 1632



Applying the  $\rho$ - $\gamma$  mixing correction makes the e<sup>+</sup>e<sup>-</sup> and  $\tau$  difference worse in some of the mass range

#### Status on electron anomalous magnetic moment

- a<sub>e</sub> completely dominated by QED
- Very precise measurements from Gabrielse's group at Harvard
- situation confused
- LKB latest  $\alpha$  determination (disagrees with previous result from Berkeley)

