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2 aspects of future software with ATLAS
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IntroductionIntroduction

For Run3 and beyond software in ATLAS is evolving 
significantly

Focusing on 2 selected topics related to reconstruction and 
analysis

1)Next configuration system for reconstruction (and analysis!)

2)Columnar based analysis

… trying to find a balance between overview and important 
details
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New configuration for Athena
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Configuration in AthenaConfiguration in Athena

● An Athena job is composed of several C++ components (~C++ classes)
– Algorithm : executed once per event by Athena

● ex: “build EMPFlow jets”

– Tools : piece of code for a specific task. Shared amongst algorithms
● ex: “calculate a jet width” ← used by each jet alg

● Components have properties which are configurable (==can be changed without 
recompiling)

– properties are just members of the c++ class
– can be simple types (int, float, bool, string, vector<int>,…)
– … or pointers to Tool, vector<pointers to Tool>, …

● Configuring an Athena job == putting together all the components, with their 
properties, in the right order
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Configuration in AthenaConfiguration in Athena
● Configuration is written in python
● Each c++ component has an equivalent python class

– generated automatically after compilation

● write python scripts :
– instantiate python Tools & Algs, then add to the global sequence

● Athena executes the scripts, then translate python instances 
to C++ 

from MyPackage.MyPackageConf import MyAlg, CalcToolA

athAlgSeq += MyAlg("AName", Prop1 = 3,
   ToolProp = CalcToolA() )
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Configuration in Run IIConfiguration in Run II
● A main script includes domain specific scripts (a.k.a 

“jobOptions”) according to “configuration flags”
● domain scripts add their algs to the main sequence 

according to flags if rec.doCalo:
    include(“CaloRec_jobOptions.py”)
if rec.doEGamma :
    include(“EGamma_jobOptions.py”)

● Tens of domains, hundreds of flags, thousands of algs & tools !
● Algs depends on each other

– dependencies fulfilled thanks to flags and careful manual ordering

● Not very robust, hard to setup partial reconstruction
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Configuration in Run IIIConfiguration in Run III

New config system aiming at automatically solving 
dependencies at config level. Relying on 
● Multi-Threading Scheduler (C++ side) : automatically 

orders & runs algorithm
– makes use of component properties to understand 

dependencies

● A new ComponentAccumulator object (python side)
– A container of algs which knows how to prevent duplication 

of algorithms
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Components, dependencies & propertiesComponents, dependencies & properties

● In order to organize parallel execution of algs, the 
scheduler must know what the algs
– require as input
– produce as output

● Each component declares this info through properties

ex : requires “ElectronContainer”
       produces decoration “EMFrac” onto “AntiKT4EMPFlowJets”

class myAlg : public AthAlgorithm {
  …
SG::ReadHandleKey<xAOD::JetContainer> m_jetkey= {this, "JetContainer", "AntiKt4LCtopoJets", "doc"};

SG::WriteDecorHandleKey<xAOD::JetContainer> m_decorXYZ={this, "DecoXYZ", "AntiKt4LCtopoJets.DecoXYZ", 
""};
};



21-12-09 P-A Delsart 9

ComponentAccumulatorComponentAccumulator
● Python config object to accumulate algs without duplication

Example : configure an alg working with Electrons AND photons

from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator
from ... import GammaCfg
from ... import ElectronCfg
from MyPackageCong import EGammaCombinerAlg

def EGammaCombinerCfg(flags):
    acc = ComponentAccumulator()

    # Require electrons :
    acc.merge( ElectronCfg(flags) )

    # Require photons :
    acc.merge( GammaCfg(flags) )

# add our own alg : 
    acc.addEventAlgo( EgammaCombinerAlg("egammacomb") )
    return acc

Internally invoke 
CaloClusterCfg
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ComponentAccumulatorComponentAccumulator

Example : configure an alg working with Electrons AND photons

from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator
from ... import GammaCfg
from ... import ElectronCfg
from MyPackageCong import EGammaCombinerAlg

def EGammaCombinerCfg(flags):
    acc = ComponentAccumulator()

    # Require electrons :
    acc.merge( ElectronCfg(flags) )

    # Require photons :
    acc.merge( GammaCfg(flags) )

# add our own alg : 
    acc.addEventAlgo( EgammaCombinerAlg("egammacomb") )
    return acc

Internally invoke 
CaloClusterCfg

clusters are required

clusters are required 
again BUT merge() 
avoids duplication !

Clients need only to invoke :
acc.merge( EGammaCombinerCfg(flags))

● Python config object to accumulate algs without duplication
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RunIII configuration summaryRunIII configuration summary

Deployment status :
● many (all?) domains have CA-based 

config ready
● already possible to invoke RunIII style 

config from RunII jobOptions
● full switch still not there yet

This has a price :
● Higher complexity for package developers

– write thread safe algs & tools
– deal with Read/WriteDecorHandle

● Much higher complexity for core 
developers !

● ComponentAccumulator mechanism allows to build a hierarchy of XYZCfg() function 
calls
– effectively solving all dependencies
– without duplication

● MT scheduler allows to run algs in parallel and correct order

Much simpler and robust configuration !
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Columnar based analysis
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Analysis coding pattern in HEPAnalysis coding pattern in HEP

pick an event
● Read in information

– ex: electrons 4-vector

● Reject event or..
● Calculate quantities and fill 

histograms

repeat with next event

Event loop
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An alternative coding patternAn alternative coding pattern
● Assume we can get analysis quantities in different big arrays (each 1 

array entry per event)
import numpy as np

el1_pt = readFromFile("pt of leading el for each event")
# same for el1_E, el2_pt, el2_E etc…

# select events based on electron pt
validEvents = (el1_pt > 50) and (el2_pt > 30)

# calculate invariant mass of selected events
invM = np.sqrt( 2*el1_E[validEvents]*el2_E[validEvents]*(1-el_cos12[validEvents]) )

# create histogram of invariant mass
h = np.hist( invM, bins=200, range=(0,500) )

● Valid python/numpy code
● Similar to what is used in many other scientifics domain, including preprocessing ML data !
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Why columnar analysis ?Why columnar analysis ?

● Do not write event loop, concentrate on physics code
● Write code in python 

– re-use vast ecosystem, used in ML domain

● Reading columnar data from file is efficient
● Array libraries already optimized

– make use of contiguous memory location

Expect efficient code, easy to read and write 
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Usable with non simplistic analysis ?Usable with non simplistic analysis ?

● Yes ! with proper frameworks
– awkward : like numpy but allowing multi-dim arrays with 

variable length dimensions
● num of el, jets varies from event to event…

– uproot : read/write ROOT file to/from awkward arrays
– coffea : wrap awkward arrays into physics oriented python 

object

● Demo analysis have been performed in CMS and ATLAS

https://awkward-array.org/quickstart.html
https://github.com/scikit-hep/uproot4/
https://coffeateam.github.io/coffea/


21-12-09 P-A Delsart 18

Example with coffea in ATLASExample with coffea in ATLAS

>>> import awkward as ak 
>>> events[ak.num(events.Electrons) >= 1].Electrons.pt[:, 0] 
<Array [7.36e+03, 8.84e+04, ... 3.27e+04] type='20194 * float32'>

>>> electrons = Events.electrons 
>>> jets = Events.jets 
>>> electrons.delta_r(electrons.nearest(jets)) < 0.2 
<Array [[True], [], [], ... True], [], [True]] type='50000 * var * ?bool'>

>>> events.Electrons.trackParticles.z0 
<Array [[[-47]], [], ... ] type='50000 * var * var * float32'>

meta-array representing all 
events

select events with >=1 elec in all remaining event (':'), 
leading electrons ('0')

Automatic cross-reference of 
array of tracks from links 
associated to electrons
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Analysis Demo in ATLASAnalysis Demo in ATLAS

● Reproduce a simple event selection analysis
– including overlap removal logic
– With SUSYTools 
– With coffea (and uproot+awkward)

● Verify object counts are identical (jets, muons, 
electrons)

● Compare perfomances 

Columnar data analysis with ATLAS analysis formats

http://cds.cern.ch/record/2773237?ln=en
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Other case comparison : jet calibrationOther case comparison : jet calibration

Fill 1620 histograms, each in its (E,η) bin, from 12M events
● From a RootDataFrame compiled C++ code

– 22 sec

● uproot+numpy array operations
– 7 sec

Similar conclusions on more complex, although not directly 
comparable analysis
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How far can we go with columnar analysis ?How far can we go with columnar analysis ?

Not clear what the limits of this type of analysis are
● Event loop based analysis have no limitation on complexity of in-

loop operations… Can columnar analysis deal with :
– combinatorial calculations
– MET re-evaluation 
– systematics (?)

● Many arrays x many events : does not fit in memory
– analysis must be split in chunks
– increase code complexity… can it be (partially) automated ?
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Summary, discussionSummary, discussion

● Columnar analysis is a very promising solution to implement simple analysis
– python oriented, close to ML practice
– simple yet very efficient code thanks to optimized libraries

● Frameworks under development 
– pure python : uproot, coffea
– ROOT: development of future TTree : RNtuple 

● designed for columnar analysis, excellent performances

● Limitation of these types of analysis unclear
– no support from ATLAS yet (a.f.a.i.k)

● How do people feel about this approach ?
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