
21-12-09 P-A Delsart 1

2 aspects of future software with ATLAS

21-12-09 P-A Delsart 2

IntroductionIntroduction

For Run3 and beyond software in ATLAS is evolving
significantly

Focusing on 2 selected topics related to reconstruction and
analysis

1)Next configuration system for reconstruction (and analysis!)

2)Columnar based analysis

… trying to find a balance between overview and important
details

21-12-09 P-A Delsart 3

New configuration for Athena

21-12-09 P-A Delsart 4

Configuration in AthenaConfiguration in Athena

● An Athena job is composed of several C++ components (~C++ classes)
– Algorithm : executed once per event by Athena

● ex: “build EMPFlow jets”

– Tools : piece of code for a specific task. Shared amongst algorithms
● ex: “calculate a jet width” ← used by each jet alg

● Components have properties which are configurable (==can be changed without
recompiling)

– properties are just members of the c++ class
– can be simple types (int, float, bool, string, vector<int>,…)
– … or pointers to Tool, vector<pointers to Tool>, …

● Configuring an Athena job == putting together all the components, with their
properties, in the right order

21-12-09 P-A Delsart 5

Configuration in AthenaConfiguration in Athena
● Configuration is written in python
● Each c++ component has an equivalent python class

– generated automatically after compilation

● write python scripts :
– instantiate python Tools & Algs, then add to the global sequence

● Athena executes the scripts, then translate python instances
to C++

from MyPackage.MyPackageConf import MyAlg, CalcToolA

athAlgSeq += MyAlg("AName", Prop1 = 3,
 ToolProp = CalcToolA())

21-12-09 P-A Delsart 6

Configuration in Run IIConfiguration in Run II
● A main script includes domain specific scripts (a.k.a

“jobOptions”) according to “configuration flags”
● domain scripts add their algs to the main sequence

according to flags if rec.doCalo:
 include(“CaloRec_jobOptions.py”)
if rec.doEGamma :
 include(“EGamma_jobOptions.py”)

● Tens of domains, hundreds of flags, thousands of algs & tools !
● Algs depends on each other

– dependencies fulfilled thanks to flags and careful manual ordering

● Not very robust, hard to setup partial reconstruction

21-12-09 P-A Delsart 7

Configuration in Run IIIConfiguration in Run III

New config system aiming at automatically solving
dependencies at config level. Relying on
● Multi-Threading Scheduler (C++ side) : automatically

orders & runs algorithm
– makes use of component properties to understand

dependencies

● A new ComponentAccumulator object (python side)
– A container of algs which knows how to prevent duplication

of algorithms

21-12-09 P-A Delsart 8

Components, dependencies & propertiesComponents, dependencies & properties

● In order to organize parallel execution of algs, the
scheduler must know what the algs
– require as input
– produce as output

● Each component declares this info through properties

ex : requires “ElectronContainer”
 produces decoration “EMFrac” onto “AntiKT4EMPFlowJets”

class myAlg : public AthAlgorithm {
 …
SG::ReadHandleKey<xAOD::JetContainer> m_jetkey= {this, "JetContainer", "AntiKt4LCtopoJets", "doc"};

SG::WriteDecorHandleKey<xAOD::JetContainer> m_decorXYZ={this, "DecoXYZ", "AntiKt4LCtopoJets.DecoXYZ",
""};
};

21-12-09 P-A Delsart 9

ComponentAccumulatorComponentAccumulator
● Python config object to accumulate algs without duplication

Example : configure an alg working with Electrons AND photons

from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator
from ... import GammaCfg
from ... import ElectronCfg
from MyPackageCong import EGammaCombinerAlg

def EGammaCombinerCfg(flags):
 acc = ComponentAccumulator()

 # Require electrons :
 acc.merge(ElectronCfg(flags))

 # Require photons :
 acc.merge(GammaCfg(flags))

add our own alg :
 acc.addEventAlgo(EgammaCombinerAlg("egammacomb"))
 return acc

Internally invoke
CaloClusterCfg

21-12-09 P-A Delsart 10

ComponentAccumulatorComponentAccumulator

Example : configure an alg working with Electrons AND photons

from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator
from ... import GammaCfg
from ... import ElectronCfg
from MyPackageCong import EGammaCombinerAlg

def EGammaCombinerCfg(flags):
 acc = ComponentAccumulator()

 # Require electrons :
 acc.merge(ElectronCfg(flags))

 # Require photons :
 acc.merge(GammaCfg(flags))

add our own alg :
 acc.addEventAlgo(EgammaCombinerAlg("egammacomb"))
 return acc

Internally invoke
CaloClusterCfg

clusters are required

clusters are required
again BUT merge()
avoids duplication !

Clients need only to invoke :
acc.merge(EGammaCombinerCfg(flags))

● Python config object to accumulate algs without duplication

21-12-09 P-A Delsart 11

RunIII configuration summaryRunIII configuration summary

Deployment status :
● many (all?) domains have CA-based

config ready
● already possible to invoke RunIII style

config from RunII jobOptions
● full switch still not there yet

This has a price :
● Higher complexity for package developers

– write thread safe algs & tools
– deal with Read/WriteDecorHandle

● Much higher complexity for core
developers !

● ComponentAccumulator mechanism allows to build a hierarchy of XYZCfg() function
calls
– effectively solving all dependencies
– without duplication

● MT scheduler allows to run algs in parallel and correct order

Much simpler and robust configuration !

21-12-09 P-A Delsart 12

Columnar based analysis

21-12-09 P-A Delsart 13

Analysis coding pattern in HEPAnalysis coding pattern in HEP

pick an event
● Read in information

– ex: electrons 4-vector

● Reject event or..
● Calculate quantities and fill

histograms

repeat with next event

Event loop

21-12-09 P-A Delsart 14

An alternative coding patternAn alternative coding pattern
● Assume we can get analysis quantities in different big arrays (each 1

array entry per event)
import numpy as np

el1_pt = readFromFile("pt of leading el for each event")
same for el1_E, el2_pt, el2_E etc…

select events based on electron pt
validEvents = (el1_pt > 50) and (el2_pt > 30)

calculate invariant mass of selected events
invM = np.sqrt(2*el1_E[validEvents]*el2_E[validEvents]*(1-el_cos12[validEvents]))

create histogram of invariant mass
h = np.hist(invM, bins=200, range=(0,500))

● Valid python/numpy code
● Similar to what is used in many other scientifics domain, including preprocessing ML data !

21-12-09 P-A Delsart 15

21-12-09 P-A Delsart 16

Why columnar analysis ?Why columnar analysis ?

● Do not write event loop, concentrate on physics code
● Write code in python

– re-use vast ecosystem, used in ML domain

● Reading columnar data from file is efficient
● Array libraries already optimized

– make use of contiguous memory location

Expect efficient code, easy to read and write

21-12-09 P-A Delsart 17

Usable with non simplistic analysis ?Usable with non simplistic analysis ?

● Yes ! with proper frameworks
– awkward : like numpy but allowing multi-dim arrays with

variable length dimensions
● num of el, jets varies from event to event…

– uproot : read/write ROOT file to/from awkward arrays
– coffea : wrap awkward arrays into physics oriented python

object

● Demo analysis have been performed in CMS and ATLAS

https://awkward-array.org/quickstart.html
https://github.com/scikit-hep/uproot4/
https://coffeateam.github.io/coffea/

21-12-09 P-A Delsart 18

Example with coffea in ATLASExample with coffea in ATLAS

>>> import awkward as ak
>>> events[ak.num(events.Electrons) >= 1].Electrons.pt[:, 0]
<Array [7.36e+03, 8.84e+04, ... 3.27e+04] type='20194 * float32'>

>>> electrons = Events.electrons
>>> jets = Events.jets
>>> electrons.delta_r(electrons.nearest(jets)) < 0.2
<Array [[True], [], [], ... True], [], [True]] type='50000 * var * ?bool'>

>>> events.Electrons.trackParticles.z0
<Array [[[-47]], [], ...] type='50000 * var * var * float32'>

meta-array representing all
events

select events with >=1 elec in all remaining event (':'),
leading electrons ('0')

Automatic cross-reference of
array of tracks from links
associated to electrons

21-12-09 P-A Delsart 19

Analysis Demo in ATLASAnalysis Demo in ATLAS

● Reproduce a simple event selection analysis
– including overlap removal logic
– With SUSYTools
– With coffea (and uproot+awkward)

● Verify object counts are identical (jets, muons,
electrons)

● Compare perfomances

Columnar data analysis with ATLAS analysis formats

http://cds.cern.ch/record/2773237?ln=en

21-12-09 P-A Delsart 20

Other case comparison : jet calibrationOther case comparison : jet calibration

Fill 1620 histograms, each in its (E,η) bin, from 12M events
● From a RootDataFrame compiled C++ code

– 22 sec

● uproot+numpy array operations
– 7 sec

Similar conclusions on more complex, although not directly
comparable analysis

21-12-09 P-A Delsart 21

How far can we go with columnar analysis ?How far can we go with columnar analysis ?

Not clear what the limits of this type of analysis are
● Event loop based analysis have no limitation on complexity of in-

loop operations… Can columnar analysis deal with :
– combinatorial calculations
– MET re-evaluation
– systematics (?)

● Many arrays x many events : does not fit in memory
– analysis must be split in chunks
– increase code complexity… can it be (partially) automated ?

21-12-09 P-A Delsart 22

Summary, discussionSummary, discussion

● Columnar analysis is a very promising solution to implement simple analysis
– python oriented, close to ML practice
– simple yet very efficient code thanks to optimized libraries

● Frameworks under development
– pure python : uproot, coffea
– ROOT: development of future TTree : RNtuple

● designed for columnar analysis, excellent performances

● Limitation of these types of analysis unclear
– no support from ATLAS yet (a.f.a.i.k)

● How do people feel about this approach ?

21-12-09 P-A Delsart 23

21-12-09 P-A Delsart 24

21-12-09 P-A Delsart 25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

