Leading hadronic contribution to the muon magnetic moment from lattice QCD

Laurent Lellouch

CPT & IPhU Marseille CNRS & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration [BMWc]

Borsanyi, Fodor, Guenther, Hoelbling, Katz, LL, Lippert, Miura, Szabo, Parato, Stokes, Toth, Torok, Varnhorst

Nature, 7 April 2021 \rightarrow BMWc '20 PRL 121 (2018) (Editors' Selection) & Aoyama et al., Phys. Rept. (2020) 887, 1-166 \rightarrow WP '20

Laurent Lellouch

IPhU Colloquium, 23 April 2021

The Standard Model on a page

Describes all known elementary particles and three of the four fundamental interactions

- muon (μ) ~ electron (e): same interactions w/ gauge bosons, not with the Higgs
- But: $m_\mu \simeq$ 207 imes m_e & $au_\mu \simeq$ 2 imes 10⁻⁶ sec

 μ^+

 $\overline{\nu}_{\mu}$

 W^+

 ν_{ρ}

 e^+

Lepton magnetic moments and BSM physics

Interaction with an external EM field: QM

Dirac eq. w/ minimal coupling (1928):

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\vec{\alpha}\cdot\left(c\frac{\hbar}{i}\vec{\nabla}-e_{\ell}\vec{A}\right)+\beta c^{2}m_{\ell}+e_{\ell}A_{0}\right]\psi$$

nonrelativistic limit \downarrow (Pauli eq.)

with

$$\vec{\mu}_{\ell} = \mathbf{g}_{\ell} \left(\frac{\mathbf{e}_{\ell}}{2m_{\ell}} \right) \vec{S}, \qquad \vec{S} = \hbar \frac{\vec{\sigma}}{2}$$

and

 $g_\ell|_{\mathsf{Dirac}}=2$

"That was really an unexpected bonus for me, completely unexpected." (P.A.M. Dirac)

Interaction with an external EM field: QFT

Assuming Poincaré invariance and current conservation ($q^{\mu}J_{\mu} = 0$ with $q \equiv p' - p$):

$$egin{aligned} &\langle \ell(p') | J_{\mu}(0) | \ell(p)
angle &= ar{u}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + rac{i}{2m_{\ell}} \sigma_{\mu\nu} q^{
u} F_{2}(q^{2}) - \gamma_{5} \sigma_{\mu\nu} q^{
u} F_{3}(q^{2})
ight. \ &+ \gamma_{5}(q^{2} \gamma_{\mu} - 2m_{\ell} q_{\mu}) F_{4}(q^{2})
ight] u(p) \end{aligned}$$

$$F_{1}(q^{2}) \rightarrow \text{Dirac form factor: } F_{1}(0) = 1$$

$$F_{2}(q^{2}) \rightarrow \text{Pauli form factor, magnetic dipole moment: } F_{2}(0) = a_{\ell} = \frac{g_{\ell} - 2}{2}$$

$$F_{3}(q^{2}) \rightarrow P, T, \text{ electric dipole moment: } F_{3}(0) = d_{\ell}/e_{\ell}$$

$$F_{4}(q^{2}) \rightarrow P, \text{ anapole moment: } \vec{\sigma} \cdot (\vec{\nabla} \times \vec{B})$$

• $F_2(q^2) \& F_{3,4}(q^2)$ come from loops but UV finite once theory's couplings are renormalized (in a renormalizable theory)

- all dimensionless
 - \Rightarrow corrections including only ℓ and γ are mass independent, i.e. universal
 - \rightarrow contributions from particles w/ $M \gg m_{\ell}$ are $\propto (m_{\ell}/M)^{2p} \times \ln^q (m_{\ell}^2/M^2)$
 - \rightarrow contributions from particles w/ $m \ll m_{\ell}$ are e.g. $\propto \ln^2(m_{\ell}^2/m^2)$

Why are a_{ℓ} special?

- Loop induced \Rightarrow sensitive to new dofs
- CP and flavor conserving, chirality flipping ⇒ complementary to: EDMs, *s* and *b* decays, LHC direct searches, ...
- Chirality flipping $\Rightarrow a_{\ell}$ related to mass generation (Czarnecki et al '01) ($M \gg m_{\ell}$)

$$a_{\ell}^{\mathsf{M}} = O(1) \left(rac{\Delta m_{\ell}}{m_{\ell}}
ight) \left(rac{m_{\ell}}{M}
ight)^2$$

• In EW theory, $M = M_W$ and

$$rac{\Delta m_\ell}{m_\ell} \sim rac{lpha}{4\pi}$$

• BSM can be very different, e.g. SUSY $M = M_{SUSY}$ and $(\Delta m_{\ell}/m_{\ell}) \sim (\alpha/4\pi) \times \operatorname{sign} \mu \tan \beta$

Why is a_{μ} special?

 $m_e: m_\mu: m_ au = 0.0005: 0.106: 1.777 \, {
m GeV}$

$$\tau_e: \tau_\mu: \tau_\tau = \infty$$
 : 2..10⁻⁶ : 3..10⁻¹⁵ s

- a_{μ} is $(m_{\mu}/m_e)^2 \sim 4. \times 10^4$ times more sensitive to new Φ than a_e
- a_τ is even more sensitive to new Φ, but is too shortly lived

Big > 0 effect \rightarrow sign μ = 1, $M_{N\phi} \sim$ 100 \div 500 GeV, tan $\beta \sim$ 3 \div 40

$$a_{\mu}^{\mathsf{exp}} = a_{\mu}^{\mathsf{SM}}$$
?

If not, what is the new Φ and can it be seen elswhere?

Experimental measurement of a_{μ}

Measurement principle for a_{μ}

Precession determined by

$$ec{\mu}_{\mu}=2(1+ extbf{a}_{\mu})rac{Qe}{2m_{\mu}}ec{S}$$

$$ec{d}_{\mu}=\eta_{\mu}rac{Qe}{2m_{\mu}c}ec{S}$$

$$\vec{\omega}_{a\eta} = \vec{\omega}_a + \vec{\omega}_\eta = -\frac{Qe}{m_\mu} \left[\frac{a_\mu \vec{B} + \left(\frac{a_\mu}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] - \eta_\mu \frac{Qe}{2m_\mu} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right]$$

• Experiment measures very precisely \vec{B} with $|\vec{B}| \gg |\vec{E}|/c$ &

$$\Delta\omega\equiv\omega_{S}-\omega_{C}\simeq\sqrt{\omega_{a}^{2}+\omega_{\eta}^{2}}\simeq\omega_{a}$$

since $d_{\mu}=0.1(9) imes10^{-19}e\cdot$ CM (Benett et al '09)

• Consider either magic $\gamma = 29.3$ (CERN/BNL/Fermilab) or $\vec{E} = 0$ (J-PARC)

$$ightarrow \Delta \omega \simeq - a_{\mu} B rac{Qe}{m_{\mu}}$$

Fermilab E989 @ magic γ : measurement (simplified)

Esra Barlas-Yucel I FPCP 2020

06/10/2020

g-2 updated experimental history (8 April 2021)

History of muon anomaly measurements and predictions

 $a_{\mu}(\text{AVG}) = 116\,592\,061(41) \times 10^{-11}$

G. Venanzoni, CERN Seminar, 8 April 2021

Based on only 6% of expected FNAL data!

Laurent Lellouch

IPhU Colloquium, 23 April 2021

71

 $(0.35\,\text{ppm}).$

Standard model calculation of a_{μ}

At needed precision: all three interactions and most SM particles

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{EW}}$$

= $O\left(\frac{\alpha}{2\pi}\right) + O\left(\left(\frac{\alpha}{\pi}\right)^{2} \left(\frac{m_{\mu}}{M_{\rho}}\right)^{2}\right) + O\left(\left(\frac{e}{4\pi\sin\theta_{W}}\right)^{2} \left(\frac{m_{\mu}}{M_{W}}\right)^{2}\right)$
= $O\left(10^{-3}\right) + O\left(10^{-7}\right) + O\left(10^{-9}\right)$

QED contributions to a_{ℓ}

Loops with only photons and leptons

$$\boldsymbol{a}^{\mathsf{QED}}_{\ell} = \boldsymbol{C}^{(2)}_{\ell} \left(\frac{\alpha}{\pi}\right) + \boldsymbol{C}^{(4)}_{\ell} \left(\frac{\alpha}{\pi}\right)^2 + \boldsymbol{C}^{(6)}_{\ell} \left(\frac{\alpha}{\pi}\right)^3 + \boldsymbol{C}^{(8)}_{\ell} \left(\frac{\alpha}{\pi}\right)^4 + \boldsymbol{C}^{(10)}_{\ell} \left(\frac{\alpha}{\pi}\right)^5 + \cdots$$

 $C_{\ell}^{(2n)} = A_1^{(2n)} + A_2^{(2n)}(m_{\ell}/m_{\ell'}) + A_3^{(2n)}(m_{\ell}/m_{\ell'}, m_{\ell}/m_{\ell''})$

• $A_1^{(2)}, A_1^{(4)}, A_1^{(6)}, A_2^{(4)}, A_2^{(6)}, A_3^{(6)}$ known analytically (Schwinger '48; Sommerfield '57, '58; Petermann '57;...)

• $O((\alpha/\pi)^3)$: 72 diagrams (Laporta et al '91, '93, '95, '96; Kinoshita '95)

• $O((\alpha/\pi)^4; (\alpha/\pi)^5)$: 891;12,672 diagrams (Laporta '95; Aguilar et al '08; Aoyama, Kinoshita, Nio '96-'18)

- Automated generation of diagrams
- Numerical evaluation of loop integrals
- Only some diagrams are known analytically
- Not all contributions are fully, independently checked

5-loop QED diagrams

tion and the top the top the top top had (∞) (ക്കി കക്കി കക്കി (m) (\square) 6 tom ക്തി 6 (RAM) (MAR) ക്ക Land (60) B المحماء المحمه المحماء المحمه المحمه ((RAM) hand the the the 6 600 ക്ര (10) ((\square) ക്രി <u>666</u> <u>ka</u> ക്ക tran ക്രി *i* (RM) an (man) And the the too d a (Marcha) B B <u>6</u> 6 $(\bigcirc$ 6 too . the second *f* 1000 (man) (m) (The second 6 (ADD) 6.0 ക്കി (ACD) (ADD) (TAD) (a)6 6 (\square) (Co (m)6.) ക്കി (CO) ക്ക ക്ര (Tom) (\bigcirc) ക്ക 6 6 6 (MM)) (m)(and (A)A) ഹ്തം ഹ്തി had and and and and 1000 (m) (@) (And (m) Com () B (The second (m) (ADD) (\bigcirc) (TAD) Com (TAM) ത്തി

(Aoyama et al '15)

QED contribution to a_{μ}

(Aoyama et al '12, '18, '19)

$$egin{aligned} a^{ ext{exp}}_{\mu} &= & 734.2(4.1) imes 10^{-10} \ &\stackrel{?}{=} & a^{ ext{EW}}_{\mu} + a^{ ext{had}}_{\mu} \end{aligned}$$

Electroweak contributions to a_{μ} : Z, W, H, etc. loops

(Gnendiger et al '15 and refs therein)

$$a_{\mu}^{\sf EW} = 15.36(10) imes 10^{-10}$$

Hadronic contributions to a_{μ} : quark and gluon loops

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{QED}} - a_{\mu}^{\mathsf{EW}} = 718.9(4.1) imes 10^{-10} \stackrel{?}{=} a_{\mu}^{\mathsf{had}}$$

Clearly right order of magnitude:

$$\boldsymbol{a}_{\mu}^{\text{had}} = \boldsymbol{O}\left(\left(\frac{\alpha}{\pi}\right)^{2}\left(\frac{\boldsymbol{m}_{\mu}}{\boldsymbol{M}_{\rho}}\right)^{2}\right) = \boldsymbol{O}\left(10^{-7}\right)$$

(already Gourdin & de Rafael '69 found $a_{\mu}^{had} = 650(50) \times 10^{-10}$)

Write

$$\pmb{a}_{\mu}^{\mathsf{had}} = \pmb{a}_{\mu}^{\mathsf{LO}\mathsf{-}\mathsf{HVP}} + \pmb{a}_{\mu}^{\mathsf{HO}\mathsf{-}\mathsf{HVP}} + \pmb{a}_{\mu}^{\mathsf{HLbyL}} + \mathcal{O}\left(\left(rac{lpha}{\pi}
ight)^{4}
ight)$$

Hadronic contributions to a_{μ} : diagrams

Hadronic light-by-light

- HLbL much more complicated than HVP, but ultimate precision needed is $\simeq 10\%$ instead of $\simeq 0.2\%$
- For many years, only accessible to models of QCD w/ difficult to estimate systematics (Prades et al '09): $a_{\mu}^{\text{HLbL}} = 10.5(2.6) \times 10^{-10}$
- Also, lattice QCD calculations were exploratory and incomplete
- Tremendous progress in past 5 years:
 - → Phenomenology: rigorous data driven approach [Colangelo, Hoferichter, Kubis, Procura, Stoffer,...'15-'20]
 - → Lattice: first two solid lattice calculations
- All agree w/ older model results but error estimate much solid and will improve
- Agreed upon average w/ NLO HLbL and conservative error estimates [wP '20]

[Colangelo '21]

Hadronic vacuum polarization (HVP)

•
$$\Pi_{\mu\nu}(q) = \gamma \mathcal{N}(q) = (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(q^2)$$

• For $a_{\mu}^{\text{LO-HVP}}$ need $\hat{\Pi}(q^2) \equiv \Pi(q^2) - \Pi(0)$ for spacelike $q^2 = -Q^2$ and $Q^2 \in [0, \infty[$

• $\hat{\Pi}(q^2)$ is real and analytic except for cut along real, positive q^2 axis

• Can get $\hat{\Pi}(q^2)$ for spacelike q^2 from contour integral \rightarrow dispersion relation

HVP from $e^+e^- \rightarrow$ had (or $\tau \rightarrow \nu_{\tau}$ + had)

Use (Bouchiat et al 61) optical theorem (unitarity)

Im[
$$\sim$$
] \sim | \sim hadrons |²

Im
$$\Pi(s) = -\frac{R(s)}{12\pi}, \quad R(s) \equiv \frac{\sigma(e^+e^- \to had)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

and a once subtracted dispersion relation (analyticity)

$$\hat{H}(Q^2) = \int_0^\infty ds \, \frac{Q^2}{s(s+Q^2)} \frac{1}{\pi} \, \mathrm{Im}\Pi(s)$$
$$= \frac{Q^2}{12\pi^2} \int_0^\infty ds \, \frac{1}{s(s+Q^2)} R(s)$$

 $\Rightarrow \hat{\Pi}(Q^2) \& a_{\mu}^{\text{LO-HVP}} \text{ from data: sum of exclusive} \\ \pi^+\pi^- \text{ etc. channels from CMD-2&3, SND, BES,} \\ \text{KLOE '08,'10&'12, BABAR '09, etc.}$

Can also use $I(J^{PC}) = 1(1^{--})$ part of $\tau \rightarrow \nu_{\tau}$ + had and isospin symmetry + corrections

Standard model prediction and comparison to experiment

SM prediction vs experiment on April 7, 2021 (v1)

SM contribution	$a_{\mu}^{\text{contrib.}} \times 10^{10}$	Ref.
HVP LO (R-ratio)	692.8 ± 2.4	[KNT '19]
	693.9 ± 4.0	[DHMZ '19]
	692.3 ± 3.3	[CHHKS '19]
	693.1 ± 4.0	[WP '20]
HVP LO (lattice<2021)	711.6 ± 18.4	[WP '20]
HVP NLO	-9.83 ± 0.07	
	[Kurz et al '	14, Jegerlehner '16, WP '20]
HVP NNLO	1.24 ± 0.01	[Kurz '14, Jeger. '16]
HLbyL LO (pheno)	9.2 ± 1.9	[WP '20]
HLbyL LO (lattice<2021)	$7.8 \pm 3.1 \pm 1.8$	[RBC '19]
HLbyL LO (avg)	9.0 ± 1.7	[WP '20]
HLbyL NLO (pheno)	0.2 ± 0.1	[WP '20]
QED [5 loops]	11658471.8931 ± 0.0104	[Aoyama '19, WP '20]
EW [2 loops]	15.36 ± 0.10	[Gnendiger '15, WP '20]
HVP Tot. (R-ratio)	684.5 ± 4.0	[WP '20]
HLbL Tot.	9.2 ± 1.8	[WP '20]
SM [0.37 ppm]	11659181.0 ± 4.3	[WP '20]
Exp [0.35 ppm]	11659206.1 ± 4.1	[BNL '06 + FNAL '21]
Exp – SM	25.1 ± 5.9 [4.2 σ]	

$$a_\mu^{\mathsf{exp}} - a_\mu^{\mathsf{QED}} - a_\mu^{\mathsf{EW}} - a_\mu^{\mathsf{HLbL}} - a_\mu^{\mathsf{HVP}\,\mathsf{NLO}+\mathsf{NNLO}} = 718.2(4.5) imes10^{-10} \stackrel{?}{=} a_\mu^{\mathsf{HVP}\,\mathsf{LC}}$$

SM prediction vs experiment on April 7, 2021 (v2)

SM contribution	$a_{\mu}^{\text{contrib.}} \times 10^{10}$	Ref.
HVP LO (R-ratio)	692.8 ± 2.4	[KNT '19]
	693.9 ± 4.0	[DHMZ '19]
	692.3 ± 3.3	[CHHKS '19]
	693.1 ± 4.0	[WP '20]
HVP LO (lattice)	707.5 ± 5.5	[BMWc '20]
HVP NLO	-9.83 ± 0.07	
	[Kurz et al '	14, Jegerlehner '16, WP '20]
HVP NNLO	1.24 ± 0.01	[Kurz '14, Jeger. '16]
HLbyL LO (pheno)	9.2 ± 1.9	[WP '20]
HLbyL LO (lattice<2021)	$7.8 \pm 3.1 \pm 1.8$	[RBC '19]
HLbyL LO (avg)	9.0 ± 1.7	[WP '20]
HLbyL NLO (pheno)	0.2 ± 0.1	[WP '20]
QED [5 loops]	11658471.8931 ± 0.0104	[Aoyama '19, WP '20]
EW [2 loops]	15.36 ± 0.10	[Gnendiger '15, WP '20]
HVP Tot. (lat. + R-ratio)	698.9 ± 5.5	[WP '20, BMWc '20]
HLbL Tot.	9.2 ± 1.8	[WP '20]
SM [0.49 ppm]	11659195.4 ± 5.7	[WP '20 + BMWc '20]
Exp [0.35 ppm]	11659206.1 ± 4.1	[BNL '06 + FNAL '21]
Exp – SM	10.7 ± 7.0 [1.5 σ]	

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{QED}} - a_{\mu}^{\mathsf{EW}} - a_{\mu}^{\mathsf{HLbL}} - a_{\mu}^{\mathsf{HVP}\,\mathsf{NLO}+\mathsf{NNLO}} = 718.2(4.5) imes10^{-10} \stackrel{?}{=} a_{\mu}^{\mathsf{HVP}\,\mathsf{LC}}$$

A brief introduction to lattice QCD

What is lattice QCD (LQCD)?

To describe matter w/ sub-% precision, QCD requires ≥ 104 numbers at every spacetime point

- $ightarrow\infty$ number of numbers in our continuous spacetime
- \rightarrow must temporarily "simplify" the theory to be able to calculate (regularization)
- \Rightarrow Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:
 - UV (& IR) cutoff → well defined path integral in Euclidean spacetime:

$$\langle \boldsymbol{O} \rangle = \int \mathcal{D} \boldsymbol{U} \mathcal{D} \bar{\boldsymbol{\psi}} \mathcal{D} \boldsymbol{\psi} \, \boldsymbol{e}^{-S_G - \int \bar{\boldsymbol{\psi}} D[\boldsymbol{M}] \boldsymbol{\psi}} \, \boldsymbol{O}[\boldsymbol{U}, \boldsymbol{\psi}, \bar{\boldsymbol{\psi}}]$$

$$= \int \mathcal{D} \boldsymbol{U} \, \boldsymbol{e}^{-S_G} \, \det(\boldsymbol{D}[\boldsymbol{M}]) \, \boldsymbol{O}[\boldsymbol{U}]_{\text{Wick}}$$

DUe^{-S_G} det(*D*[*M*]) ≥ 0 & finite # of dofs
 → evaluate numerically using stochastic methods

LQCD is QCD when $m_q \to m_q^{\text{ph}}$, $a \to 0$ (after renormalization), $L \to \infty$ (and stats $\to \infty$) HUGE conceptual and numerical ($O(10^9)$ dofs) challenge

Our "accelerators"

Such computations require some of the world's most powerful supercomputers

1 year on supercomputer ~ 100 000 years on laptop

In Germany, those of the Forschungszentrum Jülich, the Leibniz Supercomputing Centre (Murich), and the High Performance Computing Center (Stuttgart); in France, Turing and Jean Zay at the Institute for Development and Resources in Intensive Scientific Computing (IDRIS) of the CNRS, and Joliot-Curie at the Very Large Computing Centre (TGCC) of the CEA, by way of the French Large-scale Computing Infrastructure (GENCI).

· copyright Photothique CNRS/Cyril Frésillo

Lattice QCD calculation of a_{μ}^{HVP}

HVP from LQCD: introduction

Consider in Euclidean spacetime, i.e. spacelike $q^2 = -Q^2 \leq 0$ (Blum '02)

$$\mathbf{w}/J_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c + \cdots$$

Then (Lautrup et al '69, Blum '02)

$$\begin{split} a_{\ell}^{\text{LO-HVP}} &= \alpha^2 \int_0^\infty \frac{dQ^2}{m_{\ell}^2} \, k(Q^2/m_{\ell}^2) \hat{\Pi}(Q^2) \\ \text{w/} \, \hat{\Pi}(Q^2) &\equiv \left[\Pi(Q^2) - \Pi(0) \right] \text{ and} \end{split}$$

$$k(r) = \left[r+2 - \sqrt{r(r+4)}\right]^2 / \sqrt{r(r+4)}$$

Integrand peaked for $Q \sim (m_\ell/2) \sim 50$ MeV for μ

However, $Q_{\min} \equiv \frac{2\pi}{T} \sim 135$ MeV for lattice w/ $T = \frac{3}{2}L \sim 9$ fm

Low- Q^2 challenges in finite volume (FV)

- A. Must subtract $\Pi_{\mu\nu}(Q = 0) \neq 0$ in FV that contaminates $\Pi(Q^2) \sim \Pi_{\mu\nu}(Q)/Q^2$ for $Q^2 \to 0$ w/ very large FV effects
- B. On-shell renormalization requires $\Pi(0)$ which is problematic (see above)
- C. Need $\hat{\Pi}(Q^2)$ interpolation due to $Q_{\min} = 2\pi/T \sim 135 \text{ MeV} > \frac{m_{\mu}}{2} \sim 50 \text{ MeV}$ for $T \sim 9 \text{ fm}$

↓

• Compute on $T \times L^3$ lattice in $N_f = 2 + 1 + 1$ QCD

$$\mathcal{C}_{TL}^{\mathrm{iso}}(t) = rac{a^3}{3}\sum_{i=1}^3\sum_{ec{x}}\,\left< J_i(x)J_i(0) \right>$$

• Decompose $(C_{TL}^{l=1} = \frac{9}{10}C_{TL}^{ud})$ $C_{TL}^{iso}(t) = C_{TL}^{ud}(t) + C_{TL}^{s}(t) + C_{TL}^{c}(t) + C_{TL}^{disc}(t) = C_{TL}^{l=1}(t) + C_{TL}^{l=0}(t)$

• Define $\forall Q_0 \in \mathbb{R}$ (Bernecker et al '11, BMWc '13, Feng et al '13, Lehner '14, ...) (ad A, B, C) (see also Charles et al '17)

$$\hat{\Pi}_{TL}^{t}(Q^{2}) \equiv \Pi_{TL}^{t}(Q^{2}) - \Pi_{TL}^{t}(0) = \frac{1}{3} \sum_{i=1}^{3} \frac{\Pi_{ii,TL}^{t}(0) - \Pi_{ii,TL}^{t}(Q)}{Q^{2}} - \Pi_{TL}^{t}(0) = a \sum_{t=0}^{T-a} \operatorname{Re}\left[\frac{e^{iQt} - 1}{Q^{2}} + \frac{t^{2}}{2}\right] \operatorname{Re}C_{TL}^{t}(t)$$

Our lattice definition of $a_{\ell,f}^{\text{LO-HVP}}$

Combining everything, get $a_{\ell,f}^{\text{LO-HVP}}$ from $C_{TL}^{f}(t)$:

$$a_{\ell,f}^{\text{LO-HVP}}(Q^2 \le Q_{\max}^2) = \lim_{a \to 0, \ L \to \infty, T \to \infty} \alpha^2 \left(\frac{a}{m_\ell^2}\right) \sum_{t=0}^{T/2} K(tm_\ell, Q_{\max}^2/m_\ell^2) \operatorname{Re}C_{TL}^t(t)$$

where

$$\mathcal{K}(\tau, r_{\max}) = \int_0^{r_{\max}} dr \, k(r) \left(\tau^2 - \frac{4}{r} \sin^2 \frac{\tau \sqrt{r}}{2}\right)$$

Simulation challenges

- D. $\pi\pi$ contribution very important
- ightarrow have physically light π

E. Two types of contributions

where qd contributions are SU(3)f and Zweig suppressed but very challenging

- F. $\langle J_{\mu}^{ud}(x) J_{\nu}^{ud}(0) \rangle_{qc}$ & disc. have very poor signal at large $\sqrt{x^2}$ + need high-precision results
- \rightarrow many algorithmic improvements + very high statistics + rigorous bounds
 - G. Must control $\langle J_{\mu}(x)J_{\nu}(0)\rangle$ at $\sqrt{x^2} \gtrsim 2/m_{\mu} \rightarrow L = 6.1 \div 6.6 \text{ fm}, T = 8.6 \div 11.3 \text{ fm}$
 - H. Need controlled continuum limit \rightarrow have 6 a's: 0.134 \rightarrow 0.064 fm
 - → improve approach to continuum limit w/ phenomenological models (SRHO, SMLLGS) w/ 2-loop SU(2) S χ PT for systematic error

Simulation details: ad D - H

27 high-statistics simulations w/ $N_f = 2 + 1 + 1$ flavors of 4-stout staggered quarks:

- Bracketing physical m_{ud}, m_s, m_c
- 6 *a*'s: $0.134 \rightarrow 0.064 \text{ fm}$
- $L = 6.1 \div 6.6 \, \text{fm}, T = 8.6 \div 11.3 \, \text{fm}$
- Conserved EM current

β	a [fm]	$T \times L$	#conf
3.7000	0.1315	64×48	904
3.7500	0.1191	96×56	2072
3.7753	0.1116	84×56	1907
3.8400	0.0952	96×64	3139
3.9200	0.0787	128×80	4296
4.0126	0.0640	144×96	6980

For sea-quark QED corrections

β	a [fm]	$T \times L$	#conf
3.7000	0.1315	24×48	716
		48×64	300
3.7753	0.1116	28×56	887
3.8400	0.0952	32×64	4253

- State-of-the-art techniques:
 - EigCG
 - Low mode averaging [Neff et al '01, Giusti et al '04,...]
 - All mode averaging [Blum et al '13]
 - Solver truncation [Bali et al '09]
- ⇒ Nearly 20,000 gauge configurations
- ⇒ 10's of millions of measurements

Noise reduction: ad F-G

N/S in $C_L^{ud}(t)$ grows like $e^{(M_{\rho}-M_{\pi})t}$

- LMA: use exact (all-to-all) quark propagators in IR and stochastic in UV [Glusti et al '04]
- Decrease noise by replacing $C_L^{ud}(t)$ by average of rigorous upper/lower bounds above $t_c = 4 \text{ fm}$ [Lehner '16, BMWc '17]

$$0 \leq C_L^{ud}(t) \leq C_L^{ud}(t_c) \, e^{-E_{2\pi}(t-t_c)}$$

 $\Rightarrow \times 5$ in precision: few pemil accuracy on each ensemble

More challenges

I. Need $\hat{\Pi}(Q^2)$ for $Q^2 \in [0, +\infty[$, but $\frac{\pi}{a} \sim 9.7 \,\text{GeV}$ for $a \sim 0.064 \,\text{fm}$

 \rightarrow match onto perturbation theory

 $a^{\text{LO-HVP}}_{\ell,f} = a^{\text{LO-HVP}}_{\ell,f}(Q \le Q_{\text{max}}) + \gamma_{\ell}(Q_{\text{max}}) \ \hat{\Pi}^{f}(Q^{2}_{\text{max}}) + \Delta^{\text{pert}}a^{\text{LO-HVP}}_{\ell,f}(Q > Q_{\text{max}})$

using $O(\alpha_s^4)$ results from rhad package [Harlander et al '03]

- J. Include c quark for higher precision and good matching onto perturbation theory \rightarrow done
- K. Even in our large volumes w/ $L \ge 6.1$ fm & $T \ge 8.7$ fm, finite-volume (FV) effects can be significant
 - \rightarrow 1-loop SU(2) χ PT [Aubin et al '16] suggests 2% even in our large volumes
 - \rightarrow perform dedicated FV study w/ even larger volumes (\sim 11 fm)⁴
 - → check and supplement w/ 2-loop χPT [Bijnens et al '99, BMWc '20], ρ-π-γ EFT (RHO) [Sakurai '60, Jegerlehner et al '11, Chakraborty et al '17], Gounaris-Sakurai inspired model (MLLGS) [GS '68, Lellouch & Lüscher '01, Meyer '11, Francis et al '13], Hansen-Patella (HP) [Hansen et al '19, '29]
- L. Our $N_f = 2 + 1 + 1$ calculation has $m_u = m_d$ and $\alpha = 0$
 - ⇒ missing effects compared to HVP from dispersion relations that are relevant at permil-level precision
 - \rightarrow perform lattice calculation of ALL $O(\alpha)$ and $O(\delta m = m_d m_u)$ effects

Yet more challenges

- M. Need permil determination of QCD scale in our simulations
 - \Rightarrow 2‰ calculation of Ω^- baryon mass
 - ⇒ Calculate and use Wilson-flow scale [Lüscher '10, BMWc '12] w₀ = 0.17236(29)(66) for defining isospin limit
- N. Need thorough and robust determination of statistical and systematic errors
 - Stat. err.: resampling methods
 - Syst. err.: extended frequentist approach [BMWc '08, '14]
 - Hundreds of thousands of different analyses of correlation functions
 - Each one is weighted by AIC weight

$$\mathsf{AIC} \sim \exp\left[-\frac{1}{2}(\chi^2 + 2n_{\mathsf{par}} - n_{\mathsf{data}})\right]$$

- Simplify w/ importance sampling
- Use median of distribution for central values
- Use 16 ÷ 84% confidence interval to get total error

(Nature paper has 95 pp. Supplementary information detailing methods)

Finite-volume corrections: ad K

Early estimate of these $e^{-LM_{\pi}}$ effects [Aubin et al [16]: 2% on $a_{\mu}^{\text{LO-HVP}}$ in our L = 6 simulations

- \rightarrow Perform dedicated lattice study
 - 4 very-high statistics $N_f = 2 + 1$, super-smeared (4HEX) simulations
 - Tuned so that staggered M_{π}^{HMS} brackets physical M_{π}
 - *L* up to 11 fm $(a \simeq 0.112 \text{ fm})!$

- \rightarrow Check w/ EFTs and models: dominated by long-distance $\pi\pi$ effects
 - NNLO (2-loop) χPT [Bijnens '99, Aubin et al '19, BMWc '20]
 - Lellouch-Lüscher formalism w/ Gounaris-Sakurai model (LLGS) [Lellouch & Lüscher '01,Meyer '11, Francis '13, Giusti et al '18, BMWc '20]
 - QFT relation to Compton scattering (HP) [Hansen et al '19-'20]
 - ρ-π-γ EFT (RHO) [Sakurai '60, Jegerlehner & Szafron '11, HPQCD '17]

[×10 ⁻¹⁰]	lattice	NLO	NNLO	MLLGS	HP	RHO
$a_{\mu}^{ ext{LO-HVP}}(ext{big}) - a_{\mu}^{ ext{LO-HVP}}(ext{ref})$	18.1(2.0)(1.4)	11.6	15.7	17.8	16.7	15.2

Model validation $\Rightarrow a_{\mu}^{\text{LO-HVP}}(\infty) - a_{\mu}^{\text{LO-HVP}}(\text{big}) = 0.6(3) \times 10^{-10}$ from NLO & NNLO χ PT

 $a_{\mu}^{\text{LO-HVP}}(\infty) - a_{\mu}^{\text{LO-HVP}}(\text{ref}) = 18.7(2.0)_{\text{stat}}(1.4)_{\text{cont}}(0.3)_{\text{big}}(0.6)_{l=0}(0.1)_{\text{qed}}[2.5]$

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 17]

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's \rightarrow full control over continuum limit

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 17]

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's \rightarrow full control over continuum limit

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 17]

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's \rightarrow full control over continuum limit

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 17]

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's \rightarrow full control over continuum limit

1						
1						

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 17]

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's \rightarrow full control over continuum limit

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 117]

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's \rightarrow full control over continuum limit

- Allow different improvements in different time windows
- $\bullet~$ Improves approach to continuum limit $\Rightarrow~$ reduced uncertainties
- Does NOT modify this limit ⇒ NO model dependence of result
- Systematics: cuts on *a*; SRHO vs SLLGS + NNLO SχPT; • different window boundaries

Including isospin breaking on the lattice: ad I

$$S_{
m QCD+QED} = S_{
m QCD}^{
m iso} + rac{1}{2} \delta m \int (\bar{d}d - \bar{u}u) + ie \int A_{\mu} j_{\mu}, \qquad j_{\mu} = \bar{q}Q\gamma_{\mu}q, \qquad \delta m = m_d - m_u$$

- Separation into isospin limit results and corrections requires an unambiguous definition of this limit (scheme and scale)
- Must be included not only in calculation of (*jµj_ν*) correlator BUT ALSO of all quantities used to fix quark masses and QCD scale

(1) operator insertion method [RM123 '12, '13, ...]

$$\begin{split} \langle \mathcal{O} \rangle_{\text{QCD+QED}} &= \langle \mathcal{O}_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} - \frac{\delta m}{2} \langle [\mathcal{O} \int (\bar{d}d - \bar{u}u)]_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} - \frac{e^{2}}{2} \langle [\mathcal{O} \int_{xy} j_{\mu}(x) D_{\mu\nu}(x - y) j_{\nu}(y)]_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} \\ &+ e^{2} \langle \langle \left[\mathcal{O} \partial_{e} \frac{\det D[G_{\mu}, eA_{\mu}]}{\det D[G_{\mu}, 0]} |_{e=0} \int_{x} j_{\mu}(x) A_{\mu}(x) - \frac{1}{2} \mathcal{O} \partial_{e}^{2} \frac{\det D[G_{\mu}, eA_{\mu}]}{\det D[G_{\mu}, 0]} |_{e=0} \right]_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} \end{split}$$

(2) direct method [Eichten et al '97, BMWc '14, ...]

Include $m_u \neq m_d$ and QED directly in calculation of observables and generation of gauge configurations

(3) combinations of (1) & (2) [BMWc '20]

We include ALL $O(e^2)$ and $O(\delta m)$ effects

For valence e^2 effects use easier (2), and for δm and e^2 sea effects, (1)

Summary of contributions to $a_{\mu}^{\text{LO-HVP}}$

Comparison and outlook

Comparison

- Consistent with other lattice results
- Total uncertainty is $\sim \div 3 \dots$
- ... and comparable to R-ratio and experiment
- Consistent w/ experiment @ 1.5σ ("no new physics" scenario) !
- 2.1σ larger than R-ratio average value [WP '20]

Fermilab plot, April 7 2021, v1

Fermilab plot, April 7 2021, v2

What next?

- FNAL E989 to reduce error by factor of 2.5 in coming years
- HLbL error must be reduced by factor of 2
- Must reduce ours by factor of 4 !
- Will experiment still agree with our prediction ?
- Must be confirmed by other lattice groups
- If confirmed, must understand why lattice doesn't agree with R-ratio
- If disagreement can be fixed, combine LQCD and phenomenology to improve overall uncertainty [RBC/UKQCD '18]
- Important to pursue e⁺e[−] → hadrons measurements [CMD-3, Belle III, ...]
- μe → μe experiment MUonE very important for experimental crosscheck and complementarity w/ LQCD
- Important to build J-PARC g_{μ} 2 and pursue a_e experiments

Laurent Lellouch

IPhU Colloquium, 23 April 2021

In the media (1)

- France Inter, "La méthode scientifique," interview of Sacha Davidson & LL, 4 May 2021
- Frank Wilczek, "The Miraculous Measurement of the Muon," Wall Street Journal, 13 April 2021, https://www.wsj.com/articles/the-miraculous-measurement-of-the-muon-11618329886
- Mike Wall, "Black holes, string theory and more: Q & A with physicist Brian Greene," https: //www.space.com/black-holes-string-theory-brian-greene-interview
- Carlo Rovelli, "Is the 'new muon' really a great scientific discovery? For now, I'm cautious", The Guardian, 19 April 2021,

https://www.theguardian.com/commentisfree/2021/apr/19/new-muonscientific-discovery-physicists-headline-announcements

 David Larousserie, "Les rotations du muon électrisent la communauté des physiciens," Le Monde, 7 April 2021,

https://www.lemonde.fr/sciences/article/2021/04/07/la-physiquepolarisee-par-les-rotations-d-une-particule_6075889_1650684.html

• Tristan Vey, "Physique: existe-t-il une 5ème force fondamentale inconnue ?" Le Figaro, 13 April 2021, https://www.lefigaro.fr/sciences/physique-existe-t-il-une-5e-force-fondamentale-inconnue-20210412

In the media (2)

- Margot Brunet, interview of LL, "Une possible révolution complète : le muon mènera-t-il à une nouvelle physique des particules ?" Marianne, 21 April 2021, https: //www.marianne.net/societe/sciences-et-bioethique/une-possiblerevolution-le-muon-va-t-il-casser-la-physique-des-particules
- Corentin Paillassard, interview of Michel Davier & LL, "Les muons font-ils trembler le modèle standard de la physique des particules ?" La Recherche, 13 April 2021, https: //www.larecherche.fr/physique-mod%C3%A8le-standard/les-muons-fontils-trembler-le-mod%C3%A8le-standard-de-la-physique-des

 Davide Castelvecchi, "Long-awaited muon physics experiment nears moment of truth," Nature, 30 March 2021,

https://www.nature.com/articles/d41586-021-00833-2

 Davide Castelvecchi, "Is the standard model broken? Physicists cheer major muon result," Nature, 7 April 2021 https://www.nature.com/articles/d41586-021-00898-z

 Adrien Cho, "Fresh calculation of obscure particle's magnetism could dim hopes for new physics," Science, 14 April 2021, https://www.sciencemag.org/news/2021/04/fresh-calculation-obscureparticles-magnetism-could-dim-hopes-new-physics

In the media (3)

 Jean-Baptiste Veyreiras, "La physique des particules est-elle à l'aube d'une révolution ?" La Marseillaise, 17 April 2021,

https://www.lamarseillaise.fr/societe/la-physique-des-particulesest-elle-a-l-aube-d-une-revolution-YA7288562

 Antoine Beau, "Le muon, particule révolutionnaire qui agite le monde de la physique," Huffpost, 8 April 2021, https: //www.huffingtonpost.fr/entry/le-muon-particule-de-revolution-quiagite-le-monde-de-la-physique_fr_606ef135c5b6865cd29998ac

 Laurent Sacco, "De possibles signes d'une nouvelle physique avec le moment magnétique du muon," Futura Sciences, 10 April 2021, https: //www.futura-sciences.com/sciences/actualites/physique-particulespossibles-signes-nouvelle-physique-moment-magnetique-muon-70123/

- Thomas Burgel, "Le muon, la particule qui chamboule les lois de l'univers," Korii/Slate, 8 April 2021, https://korii.slate.fr/et-caetera/science-muon-particulechamboule-lois-univers-physique-quantique-modele-standard-fermilab
- Alert presse CNRS, "Particle physics: will muons uncover new fundamental physics?", 7 April 2021, https://www.cnrs.fr/en/particle-physics-will-muonsuncover-new-fundamental-physics

BACKUP

Do our results imply NP @ EW scale?

- Passera et al '08: first exploration of connection $a_{\mu}^{\text{LO-HVP}} \leftrightarrow \Delta_{\text{had}}^{(5)} \alpha(M_Z^2)$
- Crivellin et al '20, most aggressive scenario (see also Keshavarzi et al '20): our results suggest a 4.2σ overshoot in Δ⁽⁵⁾_{had}α(M²_Z) compared to result of fit to EWPO
- Assume same 2.8% relative deviation in R-ratio as we found in a^{LO-HVP}_µ
- Hypothesis is not consistent w/ BMWc '17 nor new result

