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Motivation

oWhat	if	there	is	new	physics	contributing	to	SNS	in	COHERENT
in	Pion	and	Muon	decays?

oWhat	if	new	CP-phases	are	included	in	the	flavor	changing	NSI
parameters	at	the	detection	in	COHERENT?

o How	the	above	two	aspects	can	help	to	resolve	some	of	the	issues	
in	neutrino	oscillation	experiments?
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Here GF is the Fermi constant, ↵,� denote the neutrino flavors (e, µ, ⌧), and �↵� is the Kronecker delta. For example,

in the presence of CC NSI the two body decay (⇡+ ! µ+⌫µ) is modified to ⇡+ ! µ+⌫↵ (↵ = e, µ, ⌧), where ↵ = µ

corresponds to a flavor-conserving NSI and ↵ = e, ⌧ correspond to flavor-changing NSI. In these three cases the

parameters that control the fluxes are "udLµµ , "udLµe and "udLµ⌧ , respectively. Likewise, in the three-body leptonic decay

of muons, the ⌫̄µ flux is controlled by the parameters "µeLµµ , "µeLeµ and "µeL⌧µ , while the ⌫e fluxes are controlled by

"µeLµe , "µeLee and "µeL⌧e .

For the detection via NC reactions, non-standard interactions can modify it as well. At quark level, the NC NSI

can be conveniently written as
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i
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Here q are first generation up/down quarks and gL/R↵� are SM NC couplings with left/right-handed target quarks.

Indices ↵ = � correspond to SM interactions plus flavor-conserving NSI while ↵ 6= � corresponds to pure beyond-the-

standard-model flavor-changing interactions. Summation over the flavor indices is implied in eqs. (5) - (7).

All " parameters are complex in the charged current interactions in eqs. (5) and (6). On the other hand, because

of the hermiticity of the neutral current Lagrangian in eq. (7), all flavor-diagonal parameters are real while the flavor

changing parameters are complex. Under the hermiticity condition, the latter interchange the flavor indices and the

sign of the phases also changes, that is, particularly in eq. (7), ("qL/R
↵� )⇤ = "qL/R

�↵ for ↵ 6= �.

Often one rewrites the left- and right-handed " in vector and axial vector form. The e↵ective interactions terms in

eqs. (5) and (7) can be written as
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where

gV/A
↵� �↵� = gL↵��↵� ± gR↵��↵� , (10)

and the vector and axial vector parameters are

"qV/A
↵� = "qL↵� ± "qR↵� . (11)

We do not consider any right-handed currents in the pion decays, so the only remaining contribution is the left-handed

one as given in eq. (5). On top of this, since the pion is a pseudoscalar particle, only the axial vector part of the

hadronic matrix element contributes in eq. (8), and we also consider only the axial vector NSI. Likewise, for all

practical purposes, the axial vector contribution in CE⌫NS is negligibly small (see e.g. [16]) and thus we will consider

only the vector terms in eq. (9). That is, we will consider for the CC NSI the parameters "udAµ� and "µeL↵� for pion and

muon decays at the neutrino production, while the NC NSI parameters are "qV↵� at the detection.

C. Fluxes with CC NSI, Cross Section with NC NSI and the Expected Energy Spectrum

To estimate the e↵ects of CC NSI at neutrino production, we have to include them in the charged current decays

which will in turn modify the three fluxes in terms of the CC NSI parameters. There occur two types of parameters

Formalism

• At	Source	(CC	NSI)

𝜋# → 	𝜇# +	𝜈)			 𝜈*, 𝜈), 𝜈,

																										𝜇#	→ 𝑒# 	+		𝜈*			 𝜈*, 𝜈), 𝜈, +			�̅�)		 �̅�*, �̅�), �̅�,
LNU	&	LFV

• At	Detection	(NC	NSI)

NSI
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SM NSI

𝜐0 �̅�0 + 𝑁(𝑝, 𝑛) → 𝑁 𝑝, 𝑛 	 + 	𝜐6 �̅�6
𝛼 = 𝛽
𝛼 ≠ 𝛽

(SM & LNU)
(LFV)

SM SM NSI
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SM SM NSINSI

(𝑞< ≪ 𝑀<)

(𝑞< ≪ 𝑀<)

The	relevant	effective	four	fermion	operators	(dim-6):	 LNV	possible,	but	not	here!!



Formalism

• CC	NSI

• NC	NSI

(𝑞< ≪ 𝑀<)

(𝑞< ≪ 𝑀<)

✔✘

(𝐴𝑥𝑖𝑎𝑙	𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≈ 0, 𝑓𝑜𝑟	ℎ𝑒𝑎𝑣𝑦	𝑛𝑢𝑐𝑙𝑒𝑖	
𝑔𝐴
𝑔𝑉

≈
1

𝑍 + 𝑁
)
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where

gV/A
↵� �↵� = gL↵��↵� ± gR↵��↵� , (10)

and the vector and axial vector parameters are

"qV/A
↵� = "qL↵� ± "qR↵� . (11)

We do not consider any right-handed currents in the pion decays, so the only remaining contribution is the left-handed

one as given in eq. (5). On top of this, since the pion is a pseudoscalar particle, only the axial vector part of the

hadronic matrix element contributes in eq. (8), and we also consider only the axial vector NSI. Likewise, for all

practical purposes, the axial vector contribution in CE⌫NS is negligibly small (see e.g. [16]) and thus we will consider

only the vector terms in eq. (9). That is, we will consider for the CC NSI the parameters "udAµ� and "µeL↵� for pion and

muon decays at the neutrino production, while the NC NSI parameters are "qV↵� at the detection.

C. Fluxes with CC NSI, Cross Section with NC NSI and the Expected Energy Spectrum

To estimate the e↵ects of CC NSI at neutrino production, we have to include them in the charged current decays

which will in turn modify the three fluxes in terms of the CC NSI parameters. There occur two types of parameters

SM NSI

𝜋# being	pseudo-scalar	in	the	SM,	only	axial	couplings	are	allowed!

All	NSI	parameters	relevant	for	COHERENT:
CC	NSI:	𝜀)0

TUV,	𝜀60
)*W (All	complex	in	general)

NC	NSI:	𝜀60
XY (Real	flavor	diagonal	&	complex	flavor	off-diagonal	due	to	hermiticity)
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where the standard fluxes for COHERENT read
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with, again, Npot = 5.71 ⇥ 1020 being the number of protons per day, L = 19.3 m is the baseline and r = 0.08

is the number of neutrinos per flavor per proton on target. In eq. (??), for each flux there are only two types of

parameters: twice the real part of the flavor diagonal NSI and the three modulus squared parameters which include

one flavor diagonal and two flavor changing ". Now we discuss the e↵ect of NC NSI on the cross section of CE⌫NS.

The di↵erential cross section of CE⌫NS, with respect to the nuclear recoil energy T , for neutrinos with flavor � and

energy E⌫ scattered o↵ a target nucleus (A,Z), can be written for T ⌧ M as [? ? ? ? ? ]

d��

dT
(E⌫ , T ) '
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FM

⇡
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✓
1� MT

2E2
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◆
F 2(q2) . (14)

Here M is mass of the target nucleus with Q2
W� its weak nuclear charge, and F (q2) is the nuclear form factor as a

function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form

factor F (q2) from ref. [? ], given by

F (q2) =
4⇡⇢0
Aq3

[sin(qRA)� qRA cos(qRA)]


1

1 + a2q2

�
. (15)

Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.

The weak charge Q2
W� is expressed in terms of the proton number (Z), neutron number (N), standard vector

coupling constants gVp = 1/2� 2 sin2 ✓W 2, gVn = �1/2 and the NC NSI parameters "uV↵� and "dV↵� , as

Q2
W� =

⇥
Z(gVp + 2"uV�� + "dV�� ) +N(gVn + 2"dV�� + "uV�� )

⇤2
+
X

↵ 6=�

��Z(2"uV↵� + "dV↵� ) +N(2"dV↵� + "uV↵� )
��2 . (16)

2 We use the low energy value sin2 ✓W = 0.2387 [? ] for the analysis.
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with, again, Npot = 5.71 ⇥ 1020 being the number of protons per day, L = 19.3 m is the baseline and r = 0.08

is the number of neutrinos per flavor per proton on target. In eq. (??), for each flux there are only two types of

parameters: twice the real part of the flavor diagonal NSI and the three modulus squared parameters which include

one flavor diagonal and two flavor changing ". Now we discuss the e↵ect of NC NSI on the cross section of CE⌫NS.

The di↵erential cross section of CE⌫NS, with respect to the nuclear recoil energy T , for neutrinos with flavor � and

energy E⌫ scattered o↵ a target nucleus (A,Z), can be written for T ⌧ M as [? ? ? ? ? ]
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Here M is mass of the target nucleus with Q2
W� its weak nuclear charge, and F (q2) is the nuclear form factor as a

function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form

factor F (q2) from ref. [? ], given by

F (q2) =
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Aq3

[sin(qRA)� qRA cos(qRA)]
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Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.

The weak charge Q2
W� is expressed in terms of the proton number (Z), neutron number (N), standard vector

coupling constants gVp = 1/2� 2 sin2 ✓W 2, gVn = �1/2 and the NC NSI parameters "uV↵� and "dV↵� , as
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2 We use the low energy value sin2 ✓W = 0.2387 [? ] for the analysis.

(𝜈))

(�̅�))

(𝜈*)

𝑁Z[\ = 5.71×10<a
𝐿 = 19.3	𝑚	

𝑟 = 0.08	/𝑓/𝑝𝑜𝑡

Source	NSI	parameters	(6):			(𝑅𝑒(𝜀))TUV),	 𝜀)6TUV ), (𝑅𝑒(𝜀))
)*W),	 𝜀)6

)*W ), (𝑅𝑒(𝜀**
)*V),	 𝜀*6

)*W )



5

C. Fluxes with CC NSI, Cross Section with NC NSI and the Expected Energy Spectrum

To estimate the e↵ects of CC NSI at neutrino production, we have to include them in the charged current decays

which will in turn modify the three fluxes in terms of the CC NSI parameters. There occur two types of parameters

in each decay. One is a flavor diagonal interaction which interferes with the standard model process, and the others

are two flavor changing parameters for each decay. The contribution of the latter adds incoherently to the SM. After

adding both types of CC NSI e↵ects in each decay, the total di↵erential flux expression will change accordingly as


d�⌫µ(E⌫)

dE⌫

�

NSI

=


d�⌫µ(E⌫)

dE⌫

�

SM

"⇣��1 + "udAµµ

��2 +
��"udAµe

��2 +
��"udAµ⌧

��2
⌘
⌘ 1 + 2Re("udAµµ ) +

X

↵=e,µ,⌧

|"udAµ↵ |2
#
,


d�⌫µ(E⌫)

dE⌫

�

NSI

=


d�⌫µ(E⌫)

dE⌫

�

SM

"⇣��1 + "µeLµµ

��2 +
��"µeLµe

��2 +
��"µeLµ⌧

��2
⌘
⌘ 1 + 2Re("µeLµµ ) +

X

↵=e,µ,⌧

|"µeLµ↵ |2
#
, (12)


d�⌫e(E⌫)

dE⌫

�

NSI

=


d�⌫e(E⌫)

dE⌫

�

SM

"⇣��1 + "µeLee

��2 +
��"µeLeµ

��2 +
��"µeLe⌧

��2
⌘
⌘ 1 + 2Re("µeLee ) +

X

↵=e,µ,⌧

|"µeLe↵ |2
#
,

where the standard fluxes for COHERENT read


d�⌫µ(E⌫)

dE⌫

�

SM

=
rNpot

4⇡L2
�

 
E⌫ �

m2
⇡ �m2

µ

2m⇡

!
,


d�⌫µ(E⌫)

dE⌫

�

SM

=
rNpot

4⇡L2

64E2
⌫

m3
µ

✓
3

4
� E⌫

mµ

◆
, (13)


d�⌫e(E⌫)

dE⌫

�

SM

=
rNpot

4⇡L2

192E2
⌫

m3
µ

✓
1

2
� E⌫

mµ

◆
,

with, again, Npot = 5.71 ⇥ 1020 being the number of protons per day, L = 19.3 m is the baseline and r = 0.08

is the number of neutrinos per flavor per proton on target. In eq. (??), for each flux there are only two types of

parameters: twice the real part of the flavor diagonal NSI and the three modulus squared parameters which include

one flavor diagonal and two flavor changing ". Now we discuss the e↵ect of NC NSI on the cross section of CE⌫NS.

The di↵erential cross section of CE⌫NS, with respect to the nuclear recoil energy T , for neutrinos with flavor � and

energy E⌫ scattered o↵ a target nucleus (A,Z), can be written for T ⌧ M as [? ? ? ? ? ]
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Here M is mass of the target nucleus with Q2
W� its weak nuclear charge, and F (q2) is the nuclear form factor as a

function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form

factor F (q2) from ref. [? ], given by

F (q2) =
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Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.

The weak charge Q2
W� is expressed in terms of the proton number (Z), neutron number (N), standard vector

coupling constants gVp = 1/2� 2 sin2 ✓W 2, gVn = �1/2 and the NC NSI parameters "uV↵� and "dV↵� , as
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2 We use the low energy value sin2 ✓W = 0.2387 [? ] for the analysis.
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with, again, Npot = 5.71 ⇥ 1020 being the number of protons per day, L = 19.3 m is the baseline and r = 0.08

is the number of neutrinos per flavor per proton on target. In eq. (??), for each flux there are only two types of

parameters: twice the real part of the flavor diagonal NSI and the three modulus squared parameters which include

one flavor diagonal and two flavor changing ". Now we discuss the e↵ect of NC NSI on the cross section of CE⌫NS.

The di↵erential cross section of CE⌫NS, with respect to the nuclear recoil energy T , for neutrinos with flavor � and

energy E⌫ scattered o↵ a target nucleus (A,Z), can be written for T ⌧ M as [? ? ? ? ? ]
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Here M is mass of the target nucleus with Q2
W� its weak nuclear charge, and F (q2) is the nuclear form factor as a

function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form

factor F (q2) from ref. [? ], given by
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Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.

The weak charge Q2
W� is expressed in terms of the proton number (Z), neutron number (N), standard vector
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2 We use the low energy value sin2 ✓W = 0.2387 [? ] for the analysis.
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with, again, Npot = 5.71 ⇥ 1020 being the number of protons per day, L = 19.3 m is the baseline and r = 0.08

is the number of neutrinos per flavor per proton on target. In eq. (??), for each flux there are only two types of

parameters: twice the real part of the flavor diagonal NSI and the three modulus squared parameters which include

one flavor diagonal and two flavor changing ". Now we discuss the e↵ect of NC NSI on the cross section of CE⌫NS.

The di↵erential cross section of CE⌫NS, with respect to the nuclear recoil energy T , for neutrinos with flavor � and

energy E⌫ scattered o↵ a target nucleus (A,Z), can be written for T ⌧ M as [? ? ? ? ? ]
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Here M is mass of the target nucleus with Q2
W� its weak nuclear charge, and F (q2) is the nuclear form factor as a

function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form

factor F (q2) from ref. [? ], given by

F (q2) =
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Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.

The weak charge Q2
W� is expressed in terms of the proton number (Z), neutron number (N), standard vector

coupling constants gVp = 1/2� 2 sin2 ✓W 2, gVn = �1/2 and the NC NSI parameters "uV↵� and "dV↵� , as

Q2
W� =

⇥
Z(gVp + 2"uV�� + "dV�� ) +N(gVn + 2"dV�� + "uV�� )

⇤2
+
X

↵ 6=�

��Z(2"uV↵� + "dV↵� ) +N(2"dV↵� + "uV↵� )
��2 . (16)

2 We use the low energy value sin2 ✓W = 0.2387 [? ] for the analysis.

6

Fig. 1. Observed energy spectrum of COHERENT data in terms of photo-electrons together with the expected spectrum for

SM, CC NSI and NC NSI with three choices of the new CP-phases. For the case CC NSI, the moduli were all taken +0.074

or �0.074 while setting the NC NSI to zero. For the case NC NSI all parameters were taken +0.074 with three choices for the

CP-phases while setting all the CC NSI to zero.

As explained before, due to the hermiticity of the NC Lagrangian in eqs. (??) and (??) the diagonal parameters "qV��
are real, while the flavor-changing parameters "qV↵� are complex and can be written in terms of modulus and phase as

|"qV↵� | e
i�qV

↵� for ↵ 6= �. After expanding the terms, we can rewrite the weak charge in eq. (??) as

Q2
W� =

⇥
Z(gVp + 2"uV�� + "dV�� ) +N(gVn + 2"dV�� + "uV�� )

⇤2

+
X

↵ 6=�

⇥
(2Z +N)2|"uV↵� |2 + (Z + 2N)2|"dV↵� |2 + 2(2Z +N)(Z + 2N)|"uV↵� ||"dV↵� | cos(��↵�)

⇤
, (17)

where ��↵� = �uV
↵� � �dV
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Thus, in presence of NC NSI, the parameters to analyse are |"u/dVµµ |, |"u/dVee |, |"u/dVeµ |, |"u/dV⌧µ |, |"u/dV⌧e |,��eµ,��⌧µ,��⌧e.

We can now take a look at the observable e↵ects of the CC and NC NSI parameters including their CP-phases on

COHERENT’s energy spectrum. The result of this exercise is shown in fig. ??. The parameter values are ±0.074 for
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in each decay. One is a flavor diagonal interaction which interferes with the standard model process, and the others

are two flavor changing parameters for each decay. The contribution of the latter adds incoherently to the SM. After

adding both types of CC NSI e↵ects in each decay, the total di↵erential flux expression will change accordingly as
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where the standard fluxes for COHERENT read
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with, again, Npot = 5.71 ⇥ 1020 being the number of protons per day, L = 19.3 m is the baseline and r = 0.08

is the number of neutrinos per flavor per proton on target. In eq. (12), for each flux there are only two types of

parameters: twice the real part of the flavor diagonal NSI and the three modulus squared parameters which include

one flavor diagonal and two flavor changing ". Now we discuss the e↵ect of NC NSI on the cross section of CE⌫NS.

The di↵erential cross section of CE⌫NS, with respect to the nuclear recoil energy T , for neutrinos with flavor � and

energy E⌫ scattered o↵ a target nucleus (A,Z), can be written for T ⌧ M as [1, 2, 6, 8, 16]
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Here M is mass of the target nucleus with Q2
W� its weak nuclear charge, and F (q2) is the nuclear form factor as a

function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form

factor F (q2) from ref. [88], given by

F (q2) =
4⇡⇢0
Aq3

[sin(qRA)� qRA cos(qRA)]


1

1 + a2q2

�
. (15)

Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.

The weak charge Q2
W� is expressed in terms of the proton number (Z), neutron number (N), standard vector

coupling constants gVp = 1/2� 2 sin2 ✓W 2, gVn = �1/2 and the NC NSI parameters "uV↵� and "dV↵� , as

Q2
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⇥
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��2 . (16)

As explained before, due to the hermiticity of the NC Lagrangian in eqs. (7) and (9) the diagonal parameters "qV��
are real, while the flavor-changing parameters "qV↵� are complex and can be written in terms of modulus and phase as

|"qV↵� | e
i�qV

↵� for ↵ 6= �. After expanding the terms, we can rewrite the weak charge in eq. (16) as

2 We use the low energy value sin2 ✓W = 0.2387 [89] for the analysis.
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Here M is mass of the target nucleus with Q2
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function of q2 = 2MT , the momentum transfer in the scattering of neutrinos o↵ the nuclei. We take the nuclear form
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Here, ⇢0 is the normalized nuclear number density, A is the atomic number of CsI, RA = 1.2A1/3 fm is the nuclear

radius, and a = 0.7 fm is the range of the Yukawa potential.
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As explained before, due to the hermiticity of the NC Lagrangian in eqs. (7) and (9) the diagonal parameters "qV��
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in particular by scattering experiments. Indeed, CE⌫NS may be crucial here, already providing limits that disfavor

the LMA-Dark solution [19, 20, 25, 46, 55].

We will discuss in this paper two aspects of NSI in coherent scattering. These are (i) e↵ects of charged current NSI

in the production of neutrinos, and (ii) e↵ects of CP-phases of neutral current NSI in the detection of neutrinos. To

the best of our knowledge, charged current NSI were not studied in the context of CE⌫NS, and a dedicated paper

of CP-phases associated with e↵ective NC NSI does not exist either. Aspects of CP violation in coherent scattering

were discussed, though, but in a slightly di↵erent context. In ref. [81] a light vector boson with complex couplings

was considered, but no connection to oscillation physics was made. Ref. [79] mentions that the parameter values

explaining the T2K/NO⌫A discrepancy can be tested in CE⌫NS, but does not study e↵ects of the CP-phases in

CE⌫NS. Finally, ref. [82] provides global fits of oscillation and COHERENT data with focus on CP violation, but

fitted only the absolute values of the NSI parameters when using COHERENT data. Our goal here is to present a

formalism which takes into account CC NSI in pion and muon decay at the spallation neutron source relevant for

COHERENT, as well as NC NSI along with the new CP-phases for the detection process. We will confront this setup

with the COHERENT data that used a CsI[Na] target [3–5]. Limits are presented on CC NSI parameters. E↵ects of

CP-phases from NC NSI require that at least two di↵erent flavor-changing NSI terms are present. We will demonstrate

that in this case the constraints on the NSI parameters depend crucially on the values of the new CP-phases. We show

as a further example that in this case COHERENT can set complementary limits to the parameter space relevant for

the T2K/NO⌫A discrepancy. Finally, we will estimate how the exclusion level of LMA-Dark is reduced in case CC

NSI and/or CP violating NC NSI are present.

This paper is organized as follows. In section II we begin by introducing the fitting procedure and develop the

formalism to describe NC and CC at source and detector. In section III we discuss our results for CP violating NC

NSI, and CC NSI, before summarizing in section IV.

II. FORMALISM

A. Experimental details and fitting procedure

In this section we provide details of the COHERENT data that we will fit, and on our fitting procedure. The

COHERENT experiment measures coherent elastic neutrino-nucleus scattering. Neutrinos are provided from pions

decaying at rest, which in turn are produced from the spallation neutron source. The data we will use in this paper

was collected with a total number of 1.76⇥ 1023 of protons on target (pot) delivered to liquid mercury [3–5]. Mono-

energetic muon neutrinos (⌫µ) at E⌫ = 29.8 MeV are produced isotropically from pion decay at rest (⇡+ ! µ+⌫µ)

followed by a delayed isotropic flux of electron neutrinos (⌫e) and muon anti-neutrinos (⌫̄µ) produced subsequently by

muon-decay at rest (µ+ ! ⌫ee+⌫̄µ). All three flavors are intercepted by a CsI[Na] detector at a distance of L = 19.3 m
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d�⌫↵(E⌫)
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1 Recently new data was provided by COHERENT indicating at about 3� a non-zero CE⌫NS cross section with argon [83].
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where d�/dT (E⌫ , T ) is the di↵erential cross section of CE⌫NS with respect to nuclear recoil, and d�⌫↵(E⌫)/dE⌫ is the

flux with respect to neutrino energy. Further, t = 308.1 days is the run time of the experiment, N = (2mdet/MCsI)NA

is the total number of target nucleons, mdet = 14.57 kg, NA is Avogadro’s number, MCsI is the molar mass of CsI,

Emin
⌫ =

p
MT/2, M is the mass of the target nucleus, Emax

⌫ is the upper limit of the neutrino energy which is 52.8

MeV for the delay signal and 29.8 MeV for the prompt signal. We take a recoiled energy window of 4 to 25 keV for

the analysis.

Our fitting procedure follows closely our earlier work [36]. In particular, we apply here a recent measurement from

ref. [84], which includes energy-dependence of the quenching factor. The following relation between the nuclear recoil

energy and the number of photo-electrons (p.e.) is used:
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◆
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where fQ(T ) is the new quenching factor and 0.0134 is the average yield of the scintillation light in the detector by

a single electron per MeV; both values were taken from ref. [84]. The expected number of events in the i-th bin,

therefore, is
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dT, (3)

where the nuclear recoil energy limits of the integration (T i, T i+1) for i-th bin are related to the corresponding limits

in terms of number of photo-electrons by eq. (2). For the fitting analysis of the parameters we use the following

�2-function
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where N i
obs is the observed event rate in the i-th energy bin, N i

exp is the expected event rate given in eq. (1) integrated

over the recoiled energy corresponding to each flavor, and Bi is the estimated background event number in the i-th

energy bin extracted from Fig. S13 of ref. [3]. The statistical uncertainty in the i-th energy bin is �i, and ↵, � are pull

parameters related to the signal systematic uncertainty and the background rates. The corresponding uncertainties

of the pull parameters are �↵ = 0.135 [84] and �� = 0.25. We calculate �↵ by adding uncertainties related to flux

(10%), neutron capture (5%), acceptance (5%) and quenching factor (5.1%) in quadrature.

Having established the fitting procedure, we will now give the fluxes and the cross sections in the new physics

scenarios that we are interested in, namely charged current non-standard interactions and neutral current non-standard

interactions including new CP-phases. The former will modify the flux, d�⌫↵(E⌫)/dE⌫ , while the latter will modify

the cross section, d�/dT (E⌫ , T ).

B. E↵ective Lagrangians and the NSI notations

Neutrinos for the COHERENT setup originate from charged current (CC) reactions in pion (⇡+) and muon (µ+)

decays and are detected via neutral current (NC) interactions through coherent elastic scattering on the CsI[Na]

target. At the source, on top of the standard model weak interaction, there can be CC non-standard interactions

(NSI) in the ⇡+ and µ+ decays. Those are described by e↵ective dimension-6 terms [61, 64, 85–87] as

L⇡+

CC = �GFp
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where N i
obs is the observed event rate in the i-th energy bin, N i

exp is the expected event rate given in eq. (1) integrated

over the recoiled energy corresponding to each flavor, and Bi is the estimated background event number in the i-th
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where N i
obs is the observed event rate in the i-th energy bin, N i

exp is the expected event rate given in eq. (1) integrated

over the recoiled energy corresponding to each flavor, and Bi is the estimated background event number in the i-th

energy bin extracted from Fig. S13 of ref. [3]. The statistical uncertainty in the i-th energy bin is �i, and ↵, � are pull

parameters related to the signal systematic uncertainty and the background rates. The corresponding uncertainties

of the pull parameters are �↵ = 0.135 [84] and �� = 0.25. We calculate �↵ by adding uncertainties related to flux

(10%), neutron capture (5%), acceptance (5%) and quenching factor (5.1%) in quadrature.

Having established the fitting procedure, we will now give the fluxes and the cross sections in the new physics

scenarios that we are interested in, namely charged current non-standard interactions and neutral current non-standard

interactions including new CP-phases. The former will modify the flux, d�⌫↵(E⌫)/dE⌫ , while the latter will modify

the cross section, d�/dT (E⌫ , T ).
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decays and are detected via neutral current (NC) interactions through coherent elastic scattering on the CsI[Na]

target. At the source, on top of the standard model weak interaction, there can be CC non-standard interactions

(NSI) in the ⇡+ and µ+ decays. Those are described by e↵ective dimension-6 terms [61, 64, 85–87] as
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• Relation	between	the	nuclear	recoil	(T)	and	the	photo-electrons	(𝒏𝒑.𝒆)	

• Integrated	events	in	each	energy	bin:
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D.	Akimov et	al.	(COHERENT),	Science	357,	1123	(2017)All	information	are	from:
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obs is the observed event rate in the i-th energy bin, N i

exp is the expected event rate given in eq. (1) integrated

over the recoiled energy corresponding to each flavor, and Bi is the estimated background event number in the i-th
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⌫ is the upper limit of the neutrino energy which is 52.8

MeV for the delay signal and 29.8 MeV for the prompt signal. We take a recoiled energy window of 4 to 25 keV for
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Fig. 4. Allowed regions of the CC NSI parameters relevant for the COHERENT setup considered in this work. In each figure,

the index ↵ of the label on y-axis corresponds to e, µ or ⌧ . Each figure corresponds to one of the three fluxes, ⌫µ (left),

⌫̄µ (middle) and ⌫e (right) as defined in eq. (??).

parameter COHERENT (this work) other bounds

Re("udAµµ ) [�0.9, 0.9] [�0.007, 0.012] (Br.)

"udAµ↵ [�1.3, 1.3] [�0.118, 0.118] (Br.)

Re("µeL
µµ ) [�0.3, 0.5] [�0.030, 0.030] (Kin.)

"eµL
µ↵ [�1.1, 1.1] [�0.087, 0.087] (Osc.)

Re("µeL
ee ) [�0.5, 0.7] [�0.025, 0.025] (Osc.)

"µeL
e↵ [�1.2, 1.2] [�0.030, 0.030] (Kin.)

TABLE I. One parameter at-a-time constraints at 90% C.L. from this work for the CC NSI derived from fig. ?? and defined in

eq. (??) compared to other studies [? ? ]. The subscript ↵ in the 1st column and 3rd, 5th, 7th row stands for e, µ, ⌧ . In the

column “other bounds” the abbreviation “Br.” stands for branching ratios, “Osc.” stands for oscillations, “Kin.” stands for

kinematics.

[? ] presented a revised analysis and concluded that there is still room for the LMA-Dark solution which cannot be

excluded by the CE⌫NS data. Very recently, ref. [? ] has shown that LMA-Dark is disfavored by 2.2� in the presence

of an extra phase for the corresponding flavor diagonal NSI parameters.

In our following analysis, we will show how the significance level of the exclusion of the LMA-Dark solution gets

a↵ected in the presence of CC-NSI parameters and the new CP-phases. This is meant only as an illustration of the

impact of a possible simultaneous presence of those. In principle one should fit the solar neutrino data in the presence

of those parameters as well, which is beyond the scope of this work. From fig. ??, one can see that after including the

CC NSI and the CP-phases, the allowed boundaries extend towards the LMA-Dark region, which implies worsening

of the exclusion significance of the LMA-Dark solution. A more concrete statement would require fitting solar and

other oscillation data in combination with coherent scattering data, which is beyond the scope of this work.

Here we want to analyse the following aspects. First, we want to see the impact of the CC NSI parameters on the

given flavor-conserving NC NSI in the fit. Second, we want to see e↵ect of CP-phases on the given NC NSI parameters.

1 parameter	
at-a-time	limits

Other	bounds	
If	𝑆𝑈(2)W invariance	
is	presumed!

50%	/flux 31%	/flux19%	/flux

o In	general	weaker	constraints	due	to	 1 + 𝜀 ∝ 𝑓𝑙𝑢𝑥 ∗ 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
o See	the	factor	of	“2”	effects	in	the	real	part	of	1+	2𝑅𝑒(𝜀66)
o Improve	with	larger	flux	and	long	exposure
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the CC parameters given in eq. (??) and 0.074 for the modulus of the NC parameters in eqs. (??) and (??) with three

choices of the relative CP-phases. As can be seen in eq. (??), the CP-terms are responsible for di↵erent interference

e↵ects in each case. When �� = 0, there is constructive interference, when �� = ⇡, there is destructive interference,

while for �� = ⇡/2 the interference e↵ects are zero.

One can expect that the constraints on the CC NSI parameters will be significantly worse than on the NC NSI. The

main reason for this is that as soon as "uV↵� or "dV↵� are switched on, the proton number appears in the weak charge in

eqs. (??, ??), which otherwise is very much suppressed due to the accidentally small gVp / 1� 4 sin2 ✓W . In contrast,

CC NSI parameters appear as an overall (1 + ") contribution to the flux, and hence there is less sensitivity to them.

III. RESULTS AND DISCUSSION

In this section, we will present the fits of the CC and NC parameters in the framework sat up so far.

A. Impact of CP-violating phases on the NC NSI parameter spaces

To discuss the CP-e↵ects more conveniently, we ignore first the flavor-diagonal terms and rewrite the cross section

in terms of only the flavor-changing NSI parameters and their relative phases as

d��

dT
(E⌫ , T ) '

G2
FM

⇡
[(ZgVp +NgVn )2 +

X

↵ 6=�

[(2Z +N)2|"uV↵� |2 + (Z + 2N)2|"dV↵� |2 (20)

+2(2Z +N)(Z + 2N)|"uV↵� ||"dV↵� | cos(��↵�)]]

✓
1� MT

2E2
⌫

◆
F 2(q2) .

There are three relevant relative CP-phases, that is, ��eµ, ��⌧µ and ��⌧e, occurring only in the flavor-changing

terms. The phase ��eµ is related to "uVeµ and "dVeµ , and similarly ��⌧µ is related to "uV⌧µ and "dV⌧µ and ��ud
⌧e to "uV⌧e

and "dV⌧e .

For the fit we set one of the three " to zero and fit the other two for three extreme choices of the corresponding

relative CP-phases, that is, �� = 0,⇡/2 and⇡. The obtained results for the three parameter sets are shown in fig. ??.

In each case, the result for the choice corresponding to �� = 0 was tacitly obtained before and reported in several

previous papers, while the other two choices �� = ⇡/2,⇡ are presented for the first time in this work.
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3

mixing matrix definition, the elements of the matrix K are complex in general, and we write Keµ = |Keµ|exp(iφeµ)
and Keτ = |Keτ |exp(iφeτ ). Our electron antineutrino propagation amplitude now reads, taking Kee = 1,

Āee = (Uea + |Keµ|eiφeµUµa + |Keτ |eiφeτUτa)e
−2ixa(U∗

ea + |Keµ|e−iφeµU∗
µa + |Keτ |e−iφeτU∗

τa). (5)

The oscillation probability factor, P̄ = Ā∗Ā can now be computed straightforwardly. We will display only the
leading order terms in Ks in our explicit formulas below, since the flavor violating coefficients are constrained by
experimental searches to be of order 0.05 or less [10]. The results we quote are valid to accuracies better than
experimental uncertainties so long as no special choices between the standard mixing, CP-violating phase δ and the
NSI phases reduce the linear terms to values much less than the absolute magnitudes of the NSI parameters. Since
only the real part of the parameter Kee contributes to the disappearance probability, and its value is bounded to be
more than an order of magnitude smaller than the flavor violating parameters Keµ and Keτ [10], we do not include
it in the first order formulas. Strictly speaking, the terms in Pν̄e→ν̄e should be normalized, but the normalization
affects only higher order terms in the Kij parameters [37].
Sketching the organization of the ν̄e disappearance propagation probability with NSI at source and detector, we

write the generic form of the modulus of the propagation amplitude as

|Āee| = |A11 +A21e
−2ix21 +A31e

−2ix31 |, (6)

where xij = xi − xj = ∆m2
ijL/4E, with ∆m2

ij = m2
i −m2

j . In Eq. (6), the quantities Aij are all real. Judiciously
using double angle formulas for cosines and sines and the fact that A11 + A21 + A31 = 1 in our case, one finds the
expression [38]

|Āee|2 = P̄ee = 1− (P21 sin
2 x21 + P31 sin

2 x31 + P32 sin
2 x32). (7)

In Eq. (7) we define P21 = 4A11A21, P31 = 4A11A31 and P32 = 4A21A31. Using ∆m2
32 = ∆m2

31 −∆m2
21, we rewrite

Eq. (7) in a form that is more transparent for discussing the MH question [22], which reads

P̄ee = 1− [(P21 + cos(2x31)P32) sin
2 x21 + (P31 + P32) sin

2 x31 −
1

2
P32 sin(2x21) sin(2x31)], (8)

where the last term is sensitive to the sign of x31 and potentially provides a handle on the MH [39]. To the approxi-
mation we are working in the NSI formalism, Eqs. (5) and (6) lead to the identifications

A11 = c213c
2
12 − c13 sin(2θ12)c23K− − c212 sin(2θ13)c23K+, (9)

A21 = c213s
2
12 + c13 sin(2θ12)c23K− − s212 sin(2θ13)c23K+, (10)

A31 = s213 + sin(2θ13)c23K+, (11)

with the conventions for the standard mixing model (SMM) parameters c12 ≡ cos(θ12) etc. as defined in [40]. It is
evident from Eqs. (9−11) that there are effectively two NSI parameters in the problem, which we have defined in
terms of Keµ, Keτ and mixing parameters and δ, the standard mixing CP-violating phase, as [41]

c23K+ ≡ |Keµ| cos(δ + φeµ)s23 + |Keτ | cos(δ + φeτ )c23, (12)

c23K− ≡ |Keµ| cosφeµc23 − |Keτ | cosφeτs23. (13)

We will write expressions in terms of these two parameters from now on, factoring out c23 for convenience. This
makes explicit the reduction of the overall strength of the NSI term by a factor c23 # s23 # 1/

√
2. The coefficients

that appear in Eqs. (7) and (8), namely P21, P31 and P32, are then given at first order in the K parameters by the
expressions

P21 = sin2(2θ12)c
4
13 + 4c313 sin(2θ12) cos(2θ12)c23K− − 4c313s13 sin

2(2θ12)c23K+, (14)

P31 = sin2(2θ13)c
2
12 − 4s213c13 sin(2θ12)c23K− + 4c212 cos(2θ13) sin(2θ13)c23K+, (15)

and

P32 = sin2(2θ13)s
2
12 + 4s213c13 sin(2θ12)c23K− + 4s212 cos(2θ13) sin(2θ13)c23K+. (16)

Taking the parameters Keµ and Keτ one at a time, commonly done in setting NSI bounds, costs little generality. K+

and K− are still independent of each other, because K+ depends on the real part of Keµ, the imaginary part of Keµ

and the standard mixing phase δ, while K− depends only on the real part of Keµ, and similarly for Keτ . The only loss
is the possibility of enhancements or cancellations that could allow a larger range of possible values than the quoted
one-at-a-time bounds in the literature [10].
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Complementarity to Oscillation Experiments
• Survival	probability	for	reactor	experiments

4

for the average over one cycle of the probability function. For example, the electron survival averaged probability
is hPiee = (c12c13)4 + (s12c13)4 + s4

13, in the most commonly used basis and notation [41], where sij ⌘ sin qij and
cij ⌘ cos qij.

C. The NSI effects at the source with oscillations

For the case where there are NSIs only at the source, which in the solar neutrino case means the semi-leptonic, or
#udL parameters, we can write the matrix form of the amplitude A as

Aab = [(1 + #udL)UXU†]ab. (9)

After averaging over an oscillation length to get the oscillation average probability for our application, we have

hPiNSI
ab = |[(1 + #udL)U]aa|2|Uba|2

= (|Uaa|2 + 2 Re(Uaa#udL⇤
ag U⇤

ga) + |#udL
ag Uga|2)|Uba|2. (10)

The low-energy n survival probability3 from the solar core to Earth is then

hPiNSI
ee = (|Uea|2 + 2 Re(Uea#udL⇤

ee U⇤
ea + Uea#udL⇤

eµ U⇤
µa + Uea#udL⇤

et U⇤
ta)

+|#udL
ee Uea|2 + |#udL

eµ Uµa|2 + |#udL
et Uta|2)|Uea|2.

Working to linear order in the FC #udL
ab parameters, the expression for the electron neutrino survival probability is

found to be

hPiNSI
ee = (1 + 2 Re #udL

ee + |#udL
ee |2)hPiSMM

ee � (c23#�)c3
13 sin 2q12 cos 2q12

+(c23#+)(
1
2

c2
13 sin 2q13 sin2 2q12 � sin 2q13 cos 2q13), (11)

where hPiSMM
ee is the average standard oscillation probability as given below Eq. (8). The parameter combinations

c23#+ and c23#� are defined as

c23#+ ⌘
���#udL

eµ

��� cos(feµ + dCP)s23 +
���#udL

et

��� cos(fet + dCP)c23

c23#� ⌘
���#udL

eµ

��� cos feµc23 �
���#udL

et

��� cos fets23, (12)

which are the two observable FC parameters that appear at linear order, which is why we focus on them in the
present work as we did for the medium-baseline experimental set up in Ref. [35]. As Eq. (12) reminds us, when
the NSI are present the CP violating phase d of the SMM appears in Pee inextricably intwined with the the NSI CP-
violating phases [35, 38, 42, 43]. We will return to this point in our discussion of the Borexino constraints on source
NSI parameters in Sec. V.

The coefficients of the NSI in all of the above equations involve the oscillation mixing angles, which leads in
some applications to ambiguities between the roles of the two parameter sets [35, 36]. This is especially clear in
the linear, FC terms in Eq. 11. In our numerical work we will set the mixing parameters to their central values in
the 2016 Particle Data Group review [41]. We return to this point in Sec. VII, where we describe several ways that
degeneracies can be constrained and give an example.

3 When flavor-violating NSI are active, hPiNSI
ee means the probability that a neutrino produced with a positron at the source arrives as a ne to

produce a recoiled electron at the detector.

4

for the average over one cycle of the probability function. For example, the electron survival averaged probability
is hPiee = (c12c13)4 + (s12c13)4 + s4

13, in the most commonly used basis and notation [41], where sij ⌘ sin qij and
cij ⌘ cos qij.

C. The NSI effects at the source with oscillations

For the case where there are NSIs only at the source, which in the solar neutrino case means the semi-leptonic, or
#udL parameters, we can write the matrix form of the amplitude A as

Aab = [(1 + #udL)UXU†]ab. (9)

After averaging over an oscillation length to get the oscillation average probability for our application, we have

hPiNSI
ab = |[(1 + #udL)U]aa|2|Uba|2

= (|Uaa|2 + 2 Re(Uaa#udL⇤
ag U⇤

ga) + |#udL
ag Uga|2)|Uba|2. (10)

The low-energy n survival probability3 from the solar core to Earth is then

hPiNSI
ee = (|Uea|2 + 2 Re(Uea#udL⇤

ee U⇤
ea + Uea#udL⇤

eµ U⇤
µa + Uea#udL⇤

et U⇤
ta)

+|#udL
ee Uea|2 + |#udL

eµ Uµa|2 + |#udL
et Uta|2)|Uea|2.

Working to linear order in the FC #udL
ab parameters, the expression for the electron neutrino survival probability is

found to be

hPiNSI
ee = (1 + 2 Re #udL

ee + |#udL
ee |2)hPiSMM

ee � (c23#�)c3
13 sin 2q12 cos 2q12

+(c23#+)(
1
2

c2
13 sin 2q13 sin2 2q12 � sin 2q13 cos 2q13), (11)

where hPiSMM
ee is the average standard oscillation probability as given below Eq. (8). The parameter combinations

c23#+ and c23#� are defined as

c23#+ ⌘
���#udL

eµ

��� cos(feµ + dCP)s23 +
���#udL

et

��� cos(fet + dCP)c23

c23#� ⌘
���#udL

eµ

��� cos feµc23 �
���#udL

et

��� cos fets23, (12)

which are the two observable FC parameters that appear at linear order, which is why we focus on them in the
present work as we did for the medium-baseline experimental set up in Ref. [35]. As Eq. (12) reminds us, when
the NSI are present the CP violating phase d of the SMM appears in Pee inextricably intwined with the the NSI CP-
violating phases [35, 38, 42, 43]. We will return to this point in our discussion of the Borexino constraints on source
NSI parameters in Sec. V.

The coefficients of the NSI in all of the above equations involve the oscillation mixing angles, which leads in
some applications to ambiguities between the roles of the two parameter sets [35, 36]. This is especially clear in
the linear, FC terms in Eq. 11. In our numerical work we will set the mixing parameters to their central values in
the 2016 Particle Data Group review [41]. We return to this point in Sec. VII, where we describe several ways that
degeneracies can be constrained and give an example.
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produce a recoiled electron at the detector.

• Survival	probability	for	solar	experiments

A. Khan et al, PRD 88,113006, (2013)
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ℰ ≡ 𝐾
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+ O(s3
13) + O

(

ε
[∆m2

21

∆m2
31

]2)

+ O
(

εs̃13
∆m2

21

∆m2
31

)

+ O(εs2
13) + O(ε2). (30)

The corresponding expression for the near detector is

P vac,ND
νs

µ→νd
e

= |εs
µe|2 + |εd

µe|2 + 2|εs
µe||εd

µe| cos(φs
µe − φd

µe)

+ O
(∆m2

31L

4E

)

+ O(ε3). (31)

If the baseline is longer, as is the case e.g. in NOνA, mat-
ter effects are important. To keep the notation concise
in this case, we define the effective 13-mixing angle in
matter, which is given to lowest order by

s̃13 ≡
∆m2

31

∆m2
31 − aCC

s13 + O(s2
13). (32)

The oscillation probability is then

Pmat
νs

µ→νd
e

= 4s̃2
13s

2
23 sin2 (∆m2

31 − aCC)L

4E

+
(∆m2

21

∆m2
31

)2
c2
23s

2
2×12

(∆m2
31

aCC

)2
sin2 aCCL

4E

−
∆m2

21

∆m2
31

s̃13s2×12s2×23 cos δCP
∆m2

31

aCC

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
+ sin2 (∆m2

31 − aCC)L

4E

]

−
1

2

∆m2
21

∆m2
31

s̃13s2×12s2×23 sin δCP
∆m2

31

aCC

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

− 4|εs
µe|s̃13s23 cos(φs

µe + δCP) sin2 (∆m2
31 − aCC)L

4E

− 2|εs
µe|s̃13s23 sin(φs

µe + δCP) sin
(∆m2

31 − aCC)L

2E

+ 4|εd
µe|s̃13s23 cos(φd

µe + δCP)

[

c2
23 sin2 aCCL

4E
− c2

23 sin2 ∆m2
31L

4E
+ s2

23 sin2 (∆m2
31 − aCC)L

4E

]

+ 2|εd
µe|s̃13s23 sin(φd

µe + δCP)

[

c2
23 sin

aCCL

2E
− c2

23 sin
∆m2

31L

2E
− s2

23 sin
(∆m2

31 − aCC)L

2E

]

− 4|εd
τe|s̃13s

2
23c23 cos(φd

τe + δCP)

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
− sin2 (∆m2

31 − aCC)L

4E

]

− 2|εd
τe|s̃13s

2
23c23 sin(φd

τe + δCP)

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

− 4|εm
eµ|s̃13s23c

2
23 cos(φm

eµ + δCP)

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
+ sin2 (∆m2

31 − aCC)L

4E

]

− 2|εm
eµ|s̃13s23c

2
23 sin(φm

eµ + δCP)

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

+ 8|εm
eµ|s̃13s

3
23 cos(φm

eµ + δCP)
aCC

∆m2
31 − aCC

sin2 (∆m2
31 − aCC)L

4E

+ 4|εm
eτ |s̃13s

2
23c23 cos(φm

eτ + δCP)

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
+ sin2 (∆m2

31 − aCC)L

4E

]

+ 2|εm
eτ |s̃13s

2
23c23 sin(φm

eτ + δCP)

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

+ 8|εm
eτ |s̃13s

2
23c23 cos(φm

eτ + δCP)
aCC

∆m2
31 − aCC

sin2 (∆m2
31 − aCC)L

4E

+ 2|εs
µe|

∆m2
21

∆m2
31

s2×12c23 cosφs
µe

∆m2
31

aCC
sin2 aCCL

4E

− |εs
µe|

∆m2
21

∆m2
31

s2×12c23 sin φs
µe

∆m2
31

aCC
sin

aCCL

2E

• Conversion	probability	for	long	baseline	experiments
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+ O(s3
13) + O

(

ε
[∆m2

21

∆m2
31

]2)

+ O
(

εs̃13
∆m2

21

∆m2
31

)

+ O(εs2
13) + O(ε2). (30)

The corresponding expression for the near detector is

P vac,ND
νs

µ→νd
e

= |εs
µe|2 + |εd

µe|2 + 2|εs
µe||εd

µe| cos(φs
µe − φd

µe)

+ O
(∆m2

31L

4E

)

+ O(ε3). (31)

If the baseline is longer, as is the case e.g. in NOνA, mat-
ter effects are important. To keep the notation concise
in this case, we define the effective 13-mixing angle in
matter, which is given to lowest order by

s̃13 ≡
∆m2

31

∆m2
31 − aCC

s13 + O(s2
13). (32)

The oscillation probability is then

Pmat
νs

µ→νd
e

= 4s̃2
13s

2
23 sin2 (∆m2

31 − aCC)L

4E

+
(∆m2

21

∆m2
31

)2
c2
23s

2
2×12

(∆m2
31

aCC

)2
sin2 aCCL

4E

−
∆m2

21

∆m2
31

s̃13s2×12s2×23 cos δCP
∆m2

31

aCC

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
+ sin2 (∆m2

31 − aCC)L

4E

]

−
1

2

∆m2
21

∆m2
31

s̃13s2×12s2×23 sin δCP
∆m2

31

aCC

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

− 4|εs
µe|s̃13s23 cos(φs

µe + δCP) sin2 (∆m2
31 − aCC)L

4E

− 2|εs
µe|s̃13s23 sin(φs

µe + δCP) sin
(∆m2

31 − aCC)L

2E

+ 4|εd
µe|s̃13s23 cos(φd

µe + δCP)

[

c2
23 sin2 aCCL

4E
− c2

23 sin2 ∆m2
31L

4E
+ s2

23 sin2 (∆m2
31 − aCC)L

4E

]

+ 2|εd
µe|s̃13s23 sin(φd

µe + δCP)

[

c2
23 sin

aCCL

2E
− c2

23 sin
∆m2

31L

2E
− s2

23 sin
(∆m2

31 − aCC)L

2E

]

− 4|εd
τe|s̃13s

2
23c23 cos(φd

τe + δCP)

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
− sin2 (∆m2

31 − aCC)L

4E

]

− 2|εd
τe|s̃13s

2
23c23 sin(φd

τe + δCP)

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

− 4|εm
eµ|s̃13s23c

2
23 cos(φm

eµ + δCP)

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
+ sin2 (∆m2

31 − aCC)L

4E

]

− 2|εm
eµ|s̃13s23c

2
23 sin(φm

eµ + δCP)

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

+ 8|εm
eµ|s̃13s

3
23 cos(φm

eµ + δCP)
aCC

∆m2
31 − aCC

sin2 (∆m2
31 − aCC)L

4E

+ 4|εm
eτ |s̃13s

2
23c23 cos(φm

eτ + δCP)

[

sin2 aCCL

4E
− sin2 ∆m2

31L

4E
+ sin2 (∆m2

31 − aCC)L

4E

]

+ 2|εm
eτ |s̃13s

2
23c23 sin(φm

eτ + δCP)

[

sin
aCCL

2E
− sin

∆m2
31L

2E
+ sin

(∆m2
31 − aCC)L

2E

]

+ 8|εm
eτ |s̃13s

2
23c23 cos(φm

eτ + δCP)
aCC

∆m2
31 − aCC

sin2 (∆m2
31 − aCC)L

4E

+ 2|εs
µe|

∆m2
21

∆m2
31

s2×12c23 cosφs
µe

∆m2
31

aCC
sin2 aCCL

4E

− |εs
µe|

∆m2
21

∆m2
31

s2×12c23 sin φs
µe

∆m2
31

aCC
sin

aCCL

2E
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We also point out that JUNO’s measurement of the MO,
which has almost no dependence on the matter e↵ect,
will determine the MO independent of NSI.

We can see clearly from e.g. eq. 9 that in order to
measure NSI with long-baseline neutrinos, one needs to
either compare two di↵erent experiments or use a broad
band beam such as that which DUNE will have [98]. If
this hint for CPV NSI persists, T2HK will find a similar
value for � as T2K has, while DUNE should be able to
see some evidence for NSI directly.

To summarize, we have shown that the tension of the
recent NOvA and T2K data can be resolved in a BSM
scenario with the introduction of CP-violating NSI pa-
rameters, which can be further probed with near-future
experiments. It would be interesting to see if other new
physics models could also explain the discrepancy, such
as the presence of sterile neutrinos, decoherence, or neu-

trino decay.
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LMA-Dark solution re-visited

restricted to flavor diagonal NSI with f ¼ u quarks.
Oscillation data only constrain the difference ϵf;Vee − ϵf;Vμμ ,
and therefore two separate bands in this plane are allowed
by the data: one corresponding to the LMA and a second
one corresponding to the LMA-D solution. Conversely, the
COHERENT experiment constrains the combination given
in Eq. (6), and therefore its results project onto an ellipse in
this plane.

V. RESULTS

Our final results for the combined fit of oscillations and
COHERENT data are given in Fig. 1, where we show as
full lines the total Δχ2 ¼ Δðχ2OSC þ χ2COHÞ as a function of
the NSI parameters ϵf;Vαβ , for f ¼ u (upper panels) and f ¼
d (lower panels) after marginalization over the undisplayed
oscillation and NSI parameters in each panel. While the
LMA-D solution is perfectly compatible with oscillation
data alone, we find that, once COHERENT data are
included in the fit, it is disfavored with respect to LMA
with Δχ2 ≥ 9.6 (12.6) for f ¼ u (f ¼ d), which corre-
sponds to 3.1σ (3.6σ) for 1 dof.
When oscillation parameters are marginalized within the

“standard” LMA region, the global analysis slightly favors
nonvanishing diagonal NSI. The reason for this lies in the
2σ tension between the determination of Δm2

21 from
KamLAND and solar neutrino experiments (see, for
example, Ref. [1] for the latest status on this issue).
In order to stress the effect of COHERENT in the fit with

respect to the constraints already provided by oscillation
data, the results for the diagonal NSI parameters are shown
in Fig. 1 for the differences ϵf;Vee − ϵf;Vμμ and ϵf;Vττ − ϵf;Vμμ , to
which oscillations are sensitive. Notice, however, that the
inclusion of COHERENT data allows one to set indepen-
dent bounds on all ϵf;Vαα , since COHERENT depends on a

different combination of ϵf;Vee and ϵf;Vμμ . We show the
projection of the marginalized Δχ2 for each flavor diagonal
NSI in Fig. 3. As can be seen, the combined fit of
COHERENTand oscillation data is capable of constraining
the individual flavor diagonal NSI up to Δχ2 ∼ 12. Beyond
that level, oscillation data dominate, and only the two
differences relevant for oscillations are effectively bounded,
which leads to the flattening of the marginalized Δχ2 as a
function of the individual diagonal NSI.
The 90%C.L. allowed ranges for the NSI parameters from

our global analysis are given in Table I. The addition of
COHERENT data allows one to derive competitive con-
straints on each of the diagonal parameters separately. This is
especially relevant for ϵf;Vττ for which the newbound−0.09 <
ϵu;Vττ < 0.38 (−0.075 < ϵd;Vττ < 0.33) at 90% C.L. represents
the first direct bound on NC vector interactions of ντ

FIG. 2. Allowed regions in the plane of ϵu;Vee and ϵu;Vμμ from the
COHERENT experiment shown together with the allowed
regions from the global oscillation analysis. Diagonal shaded
bands correspond to the LMA and LMA-D regions as indicated,
at 1σ, 2σ, 3σ [2 degrees of freedom (dof)]. The COHERENT
regions are shown at 1σ and 2σ only because the 3σ region
extends beyond the boundaries of the figure.
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FIG. 3. Bounds on the flavor diagonal NSI parameters from the
global fit to oscillation plus COHERENT data. Blue lines
correspond to the LMA solution (θ12 < π=4), while the red lines
correspond to the LMA-D solution (θ12 > π=4).

TABLE I. Allowed ranges at 90% C.L. for the NSI parameters
ϵf;Vαβ for f ¼ u, d, as obtained from a global fit to oscillation and
COHERENT data. The results for each NSI parameter are
obtained after marginalizing over all oscillation and the other
NSI parameters.

f ¼ u f ¼ d

ϵf;Vee [0.028, 0.60] [0.030, 0.55]

ϵf;Vμμ ½−0.088; 0.37& ½−0.075; 0.33&
ϵf;Vττ ½−0.090; 0.38& ½−0.075; 0.33&
ϵf;Veμ ½−0.073; 0.044& ½−0.07; 0.04&
ϵf;Veτ ½−0.15; 0.13& ½−0.13; 0.12&
ϵf;Vμτ ½−0.01; 0.009& ½−0.009; 0.008&
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Fig. 5. CC, NC NSI and CP-phases together: 2-dimensional allowed regions for the flavor diagonal NC NSI parameters

relevant for the LMA-Dark solution in solar data. For guidance of the best-fit values and the 90% C.L. projections, we also

provide one parameter at-a-time ��2 distribution for each fitting parameter in the top and right-side panels. Contour plots

for case (a) (red), (b) (green), (c) (orange), case (d) (blue) were obtained at 90% C.L. with ��2 for 1 dof while case (e) (black)

was obtained at 3� for 2 dof C.L. The red and green stars corresponds to one of the two best-fit points for case (a) and (b),

respectively. For case (c), (d) and (e), the minima are flat as can also be seen in the one-dimensional plots. The legend colors

for cases (a) � (d) corresponds to both 2-dimensional and 1-dimension plots. See text for further details about the five cases

and the fitting procedure. The 3� diagonal band shows the LMA-Dark solution in solar data taken from ref. [20].

solution. We emphasize that we are not interested in fitting of all the NC NSI parameters in this study, which can be

found in several other works, e.g. in refs. [44, 47]. Here we consider the following analysis as an example of how the

above four motivations could be tested. To this aim we fit the two parameters ("uVee and "uVµµ ) with the following five

choices:

(a) Setting all the other NSI parameters equal to zero. (b) Marginalizing over all the real CC parameters in the

range (�0.1, 0.1) and absolute parameters in the range (0.0, 0.1), while setting all the NC NSI parameters equal to

zero. (c) Marginalizing over all real NC parameters in the range (�0.1, 0.1) and absolute parameters in the range

(0.0, 0.1) with the three relative CP-phases in the range (0, 2⇡) while setting all the CC NSI parameters equal to

O. Miranda et al, JHEP, 10 008 (2006)

o Four	cases	were	studied	with	constrained	fits
in	the	ranges:	absolutes ∈ 0,−0.1 ,	

reals	 ∈ 	 −0.1, 0.1 , phases ∈ [0, 2𝜋]
o The	CC	NSI	and	the	CP-phases	are	included	in	the	fits
o CC	NSI	effects	in	red and	green &	in	orange &	blue
o Including	the	NC	loses	the	absolute	minimum	

requiring	more	data+	time	information	and	Argon	data	
might	improve.

o Currently,	the	CC	and	CP-phases	worsen	the	3	𝜎
LMA-Dark	exclusion.	

Our	analysis

𝜃�< < 45∘ 𝜃�< > 45∘
Fig.	1 Fig.	2

Fig.	3



Conclusion & Future Outlook

o 𝐶𝐸𝜈𝑁𝑆 proves	to	be	a	promising	way	of	BSM	testing.	

o A	detailed	statistical	analysis	(Argon	+	timing	info)	is	needed	
when	all	the	source	(CC) and	detector	(NC) NSI	&	CP-phases	are	taken
into	account.	All	the	limits	needs	to	be	derived	again.

o A	detailed	analysis	is	needed	for	the	CP-phases	and	limits	
on	them	from	COHERENT	and	how	are	they	related	to	the
individual	oscillation	experiments.

o The	LMA-Dark	solution	should	be	revisited	with	a	
quantitative	treatment	in	presence	of	source	and	detector	NSI	
discussed	here	in	combination	with	the	solar	data.



Thanks!

24


