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The Super-Kamiokande detector

A 50-kton water Cherenkov detector in Japan’s Kamioka mine

Super-Kamiokande
Gifu Prefecture, Japan

+ Located under Mt. Ikeno in Gifu
Prefecture, Japan

Shielded from cosmic ray activity by
~1,000 m (~3,300 ft)
under Mt. lkeno ~1 km of rock

Inner Detector: 11129 PMTs

+ Resolution: 50cm, 3 ns

Energy coverage: 4 MeV < ~TeV

+ Water constantly recirculated and
purified

SK phases I-V: ultrapure water

SK phases VI+ (starting summer
2020): water doped with Gadolinium

~50,000 tons of . .

ultra pure water sulfate, enhancing the signature of a
~13,000 .

T neutron in the detector

tubes (PMTs)
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An example SK event

High Energy: GeV Scale

« Energy: ~few GeV

+ 1000s of PMTs lit up

« Several photoelectrons produced at each PMT
+ Cherenkov cone pattern readily identifiable

« Event vertex heavily constrained



An example SK event

Low Energy: MeV Scale

+ Energy: ~few MeV

+ 10s of PMTs lit up

« Typically a single photoelectron per PMT hit

- Cherenkov ring pattern easily lost among noise

« Event vertex not readily constrained X



A low-energy search: the Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae
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- Detection and characterization would allow for the study of aggregate
properties of core-collapse supernovae, while probing the history of the
universe and neutrino properties

+ All flavors of neutrinos produced during CC SN, reaching Earth redshifted
- Expected signal is ~10s of MeVs and has so far proved elusive



The search for the DSNB at SK

Detection of DSNB 77; via Inverse Beta Decay (IBD) in water
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Prompt event reconstruction: the BONSAI algorithm

Branch Optimization Navigating Successive
Anneallng operations

Need to scan possible vertex across the entire
fiducial volume, correlating hits scattered
across the detector

Maximize vertex likelihood based on PMT hit
timing

Cherenkov cone opening angle 6¢ constrains
fitted event direction

Naive approaches computationally intensize
and prohibitively slow

Trace many branches of a search tree,
efficiently pruning for optimal performance

Highly effective for events within 10-100 MeV
Not reliable for <4 MeV




Delayed event: neutron tagging

A faint neutron capture signal amid a sea of low-energy background

Neutron tagging performance
Nositron neutron time -
_Lm 1100 000 900 100 1 M0 0 Wi .

SHE trigger [40 ps] AFT trigger [500 ps] [ T
I S 1 S B
10 ns time - time of flight ; .............................
+ 2.2 MeV neutron capture signal ol ew aw om o am om ow o
Sl Efcency

extremely weak; easily lost among

abundant low-energy backgrounds (4 + Maximally exploit correlations with

kHz PMT noise, radioactivity, flasher well-reconstructed primary vertex
events...): BONSAI not powerful - Use a BDT (a Machine Learning
enough method) to classify neutron

- Wide trigger scheme (540 s time candidates, achieving ~20%-30%
window), makes detection of neutron overall efficiency
captures in water (rcap ~ 20045) * Gd has recently been dissolved inside
feasible. the tank, producing brighter, 8 MeV

- Up to O(10*) reduction required after capture signals. Efficiency is

expected to increase to >80% for
future analyses.

candidate selection



Limitations of current strategy

Current algorithms treat prompt and delayed signals independently,
with no unified reconstruction

« Every new analysis potentially requires the development and tuning of
new discriminating observables for neutron tagging, despite the task
being conceptually similar across analyses

— Tagging neutrons in pure vs. Gd-Doped water

— Tagging neutrons produced at higher energies

— Tagging neutrons at Hyper-Kamiokande (near future!)
— etc...

Signal rarity means we need extremely powerful background rejection..
Could we be missing some correlations?

— Would like an algorithm able to be applied more generically to a
variety of low-E reconstruction tasks

— A possibility: using Deep Learning



Aside: Neural Networks

T, b

o\ W\

Broadly, neural networks work to -
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approximate any generic function o\ .
g 2 flb+ Tiw;
from input x; to output y; : \ !f f ;I s
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Inputs are connected to outputs via Zn)
intermediate "neurons” A examplaof a neuron showing he nput  x, - , ) thlr comasponding

weights (w, - w, ), a bias (b ) and the activation function £ applied to the
weighted sum of the inputs.

Each neuron associated with a set of
parameters: a weight for each input

and overall bias
During training all the parameters in
the network are tuned to fit the X1 —
desired function N sV
Deep Learning: neural network with
many intermediate layers and more X — Y2
g —=
\ /

complex architecture



Aside: Convolutional Neural Networks
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+ CNNs: deep learning applied to image analysis

- Each pixel is a single input for the function

 Look for spatial correlations between neighboring pixels

+ The networks learn to recognize abstract patterns from raw pixel data



Problem: an SK event is not at all a 2D image

2D image low-E SK event

LA

Simple euclidean geometry Non-trivial detector geometry
Translational invariance No translational invariance
Well-defined image edge Non-trivial region boundaries

Pixels correlate to immediate neighbors Pixels correlate across the detector
All pixels relevant Most pixels off (sparseness)



Graph Neural Networks

Generalize CNN to analysis of
graph data

Each node in the graph is an
input to the function

Look for correlations between
connected nodes

Each layer in the GNN preserves
the structure of the input graph
and applies a transformation to
the values of the nodes

Have been sucessfully applied to
neutrino detection (IceCube) and

irregular detector geometries
(Cms)

ArXiv:1809.06166,
ArXiv:1902.07987

Hidden layer Hidden layer



GNN architecture (simplified)
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« Network structure assumes very little about original graph:
high-level features inferred during training

- After graph convolution, high-level features are used in traditional
neural net classification
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GNN architecture: an alternative

Graph convolution  Graph convolution Node
layer layer classification
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+ Teach GNN to distinguish neutron captures from background at the

PMT-hit level (node classification) rather than at the event-level (graph
classification)

+ GNN is trained to distinguish signal from noise within the event, rather
than learning on noisy signal.
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GNN architecture: a further alternative

Graph convolution Node

Edge assignment layer classification
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- Start from a disconnected graph
- The graph structure itself can be inferred and optimizes by the GNN

- Demands highest level of abstraction from GNN, starting from truly
low-level hit information

» Most general tool with least prior assumptions



A first application: neutron tagging

- First goal: train a neutron tagging classifier that can compete with the current
algorithm

+ Classify a set of candidate hits associated with a primary vertex as a neutron
capture instance or background

Each PMT hit assigned to a node, with
relative position, relative time, and
charge information

.
[
-

Two nodes share an edge if they

could have originated from the same
Cherenkov cone, given the primary m ol E

vertex 5
+ First implementation: simple graph e B
classifier with no optimization e I
attempted. g ‘ e )
e gy P Xt
+ Very preliminary results; encouraging X T gy

for further study

15
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- Wide array of tools currently implemented for low-energy event
reconstruction at SK, from traditional to ML-based

+ Good performance is achieved but current algorithms are typically
limited in their scope and not readily compatible with each other

- Graph Neural Nets could open the door for more powerful and
broadly-applicable particle reconstruction at SK and HK

- Stay tuned for some early results in the near future!



Thanks for your time!



