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The Super-Kamiokande detector

A 50-kton water Cherenkov detector in Japan’s Kamioka mine

• Located under Mt. Ikeno in Gifu
Prefecture, Japan

• Shielded from cosmic ray activity by
∼1 km of rock

• Inner Detector: 11129 PMTs
• Resolution: 50cm, 3 ns
• Energy coverage: 4 MeV↔ ∼TeV
• Water constantly recirculated and
purified

• SK phases I-V: ultrapure water
• SK phases VI+ (starting summer
2020): water doped with Gadolinium
sulfate, enhancing the signature of a
neutron in the detector
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An example SK event

High Energy: GeV Scale

• Energy: ∼few GeV
• 1000s of PMTs lit up
• Several photoelectrons produced at each PMT
• Cherenkov cone pattern readily identifiable
• Event vertex heavily constrained 2



An example SK event

Low Energy: MeV Scale

• Energy: ∼few MeV
• 10s of PMTs lit up
• Typically a single photoelectron per PMT hit
• Cherenkov ring pattern easily lost among noise
• Event vertex not readily constrained
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A low-energy search: the Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae

J. Beacom

2-3 galactic supernovae/century
1 SN/s in the observable Universe

Y. Ashida

• Detection and characterization would allow for the study of aggregate
properties of core-collapse supernovae, while probing the history of the
universe and neutrino properties

• All flavors of neutrinos produced during CC SN, reaching Earth redshifted
• Expected signal is∼10s of MeVs and has so far proved elusive
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The search for the DSNB at SK

Detection of DSNB νe via Inverse Beta Decay (IBD) in water

• 5-20 events/year
Energy range: 12-80 MeV

• Need extremely powerful algorithms
to characterize spallation and
atmospheric backgrounds and
identify the neutrons

• Current analysis: uses runs from the
SK-IV data-taking era
(Sep 2008-May 2018)

• Reconstruction separates into:
1. Prompt event (e+) vertex
reconstruction

2. Delayed event (n) tagging

Prompt signal
12-80 MeV

Weak delayed signal

[Beacom and Vagins, Phys. Rev. Lett., 93:171101, 2004] 4
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Prompt event reconstruction: the BONSAI algorithm

• Branch Optimization Navigating Successive
AnnealIng operations

• Need to scan possible vertex across the entire
fiducial volume, correlating hits scattered
across the detector

• Maximize vertex likelihood based on PMT hit
timing

• Cherenkov cone opening angle θC constrains
fitted event direction

• Naive approaches computationally intensize
and prohibitively slow

• Trace many branches of a search tree,
efficiently pruning for optimal performance

• Highly effective for events within 10-100 MeV

• Not reliable for <4 MeV
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Delayed event: neutron tagging

A faint neutron capture signal amid a sea of low-energy background

• 2.2 MeV neutron capture signal
extremely weak; easily lost among
abundant low-energy backgrounds (4
kHz PMT noise, radioactivity, flasher
events...): BONSAI not powerful
enough

• Wide trigger scheme (540 µs time
window), makes detection of neutron
captures in water (τCAP ∼ 200µs)
feasible.

• Up to O(104) reduction required after
candidate selection

• Maximally exploit correlations with
well-reconstructed primary vertex

• Use a BDT (a Machine Learning
method) to classify neutron
candidates, achieving∼20%-30%
overall efficiency

? Gd has recently been dissolved inside
the tank, producing brighter, 8 MeV
capture signals. Efficiency is
expected to increase to >80% for
future analyses.
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Limitations of current strategy

• Current algorithms treat prompt and delayed signals independently,
with no unified reconstruction

• Every new analysis potentially requires the development and tuning of
new discriminating observables for neutron tagging, despite the task
being conceptually similar across analyses
→ Tagging neutrons in pure vs. Gd-Doped water
→ Tagging neutrons produced at higher energies
→ Tagging neutrons at Hyper-Kamiokande (near future!)
→ etc...

• Signal rarity means we need extremely powerful background rejection..
Could we be missing some correlations?

→ Would like an algorithm able to be applied more generically to a
variety of low-E reconstruction tasks

→ A possibility: using Deep Learning
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Aside: Neural Networks

• Broadly, neural networks work to
approximate any generic function
from input xi to output yi

• Inputs are connected to outputs via
intermediate ”neurons”

• Each neuron associated with a set of
parameters: a weight for each input
and overall bias

• During training all the parameters in
the network are tuned to fit the
desired function

• Deep Learning: neural network with
many intermediate layers and more
complex architecture

x1

x2

x3

y1

y2
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Aside: Convolutional Neural Networks

• CNNs: deep learning applied to image analysis

• Each pixel is a single input for the function

• Look for spatial correlations between neighboring pixels

• The networks learn to recognize abstract patterns from raw pixel data
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Problem: an SK event is not at all a 2D image

2D image low-E SK event

Simple euclidean geometry Non-trivial detector geometry
Translational invariance No translational invariance
Well-defined image edge Non-trivial region boundaries
Pixels correlate to immediate neighbors Pixels correlate across the detector
All pixels relevant Most pixels off (sparseness)
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Graph Neural Networks

• Generalize CNN to analysis of
graph data

• Each node in the graph is an
input to the function

• Look for correlations between
connected nodes

• Each layer in the GNN preserves
the structure of the input graph
and applies a transformation to
the values of the nodes

• Have been sucessfully applied to
neutrino detection (IceCube) and
irregular detector geometries
(CMS)

ArXiv:1809.06166,
ArXiv:1902.07987
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GNN architecture (simplified)

• Network structure assumes very little about original graph:
high-level features inferred during training

• After graph convolution, high-level features are used in traditional
neural net classification
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GNN architecture: an alternative

• Teach GNN to distinguish neutron captures from background at the
PMT-hit level (node classification) rather than at the event-level (graph
classification)

• GNN is trained to distinguish signal from noise within the event, rather
than learning on noisy signal.
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GNN architecture: a further alternative

• Start from a disconnected graph

• The graph structure itself can be inferred and optimizes by the GNN

• Demands highest level of abstraction from GNN, starting from truly
low-level hit information

• Most general tool with least prior assumptions
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A first application: neutron tagging

• First goal: train a neutron tagging classifier that can compete with the current
algorithm

• Classify a set of candidate hits associated with a primary vertex as a neutron
capture instance or background

• Each PMT hit assigned to a node, with
relative position, relative time, and
charge information

• Two nodes share an edge if they
could have originated from the same
Cherenkov cone, given the primary
vertex

• First implementation: simple graph
classifier with no optimization
attempted.

• Very preliminary results; encouraging
for further study
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Summary

• Wide array of tools currently implemented for low-energy event
reconstruction at SK, from traditional to ML-based

• Good performance is achieved but current algorithms are typically
limited in their scope and not readily compatible with each other

• Graph Neural Nets could open the door for more powerful and
broadly-applicable particle reconstruction at SK and HK

• Stay tuned for some early results in the near future!
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Thanks for your time!
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