

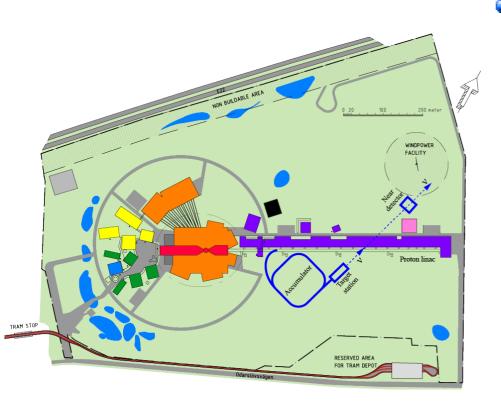
Funded by the Horizon 2020 Framework Programme of the European Union

Neutrino Beam Optimization for the ESSvSB Experiment

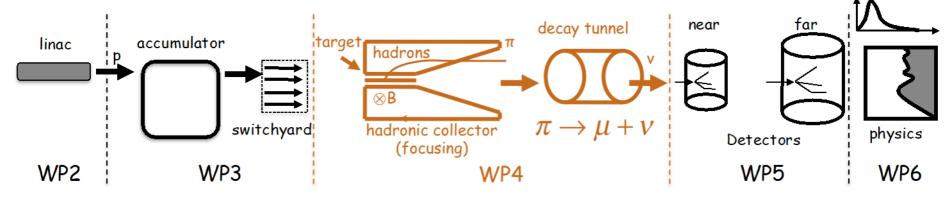
 $\label{eq:loris} Loris\ D'Alessi^1$ On behalf of the ESSvSB Collaboration

¹IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France

loris.dalessi@iphc.cnrs.fr


IRN Neutrino

10 - 11.06.2021


The ESSvSB Project

ESSvSB is a project, currently in a Design Study phase funded by EU-H2020, which aims at the production of an intense neutrino beam by using the ESS linac, under construction in Lund (Sweden).

- Upgrading of the linac for an additional 5 MW, 14 Hz rep rate, 2.5 GeV proton beam, with $\sim 1.5 \ \mu s$ pulse duration at the level of the target station.
- High precision measurement of CP violating neutrino oscillation phase δ_{CP} .

11.06.2021

L. D'Alessi - IRN Neutrino 2021

[1] E. Baussan et al., Nucl. Phys. B, 885:127-149 (2014)

[2] M. Dracos et al., PoS, NuFact2019:024 (2020)

The ESSvSB Project

5000

4000

Events 0000

2000

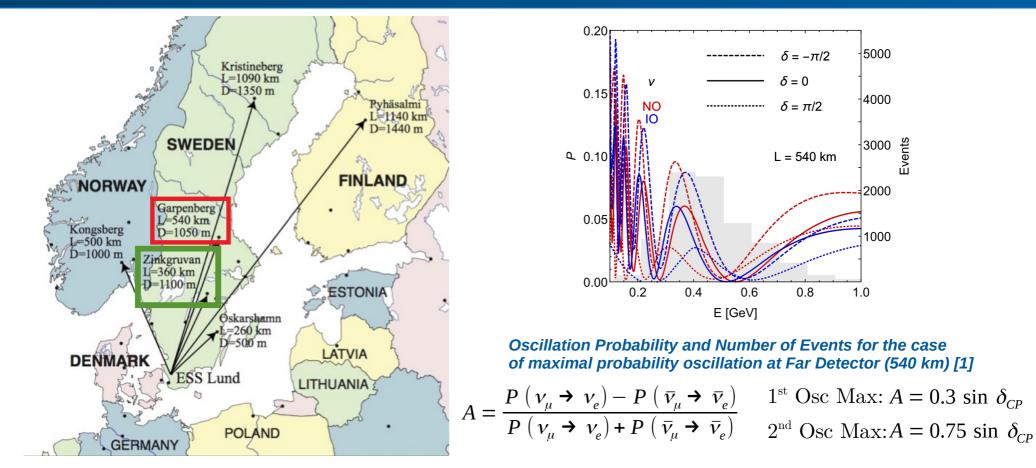
1000

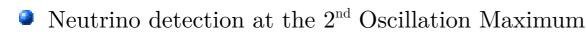
1.0

 $\delta = -\pi/2$

 $\delta = 0$

 $\delta = \pi/2$


L = 540 km


0.8

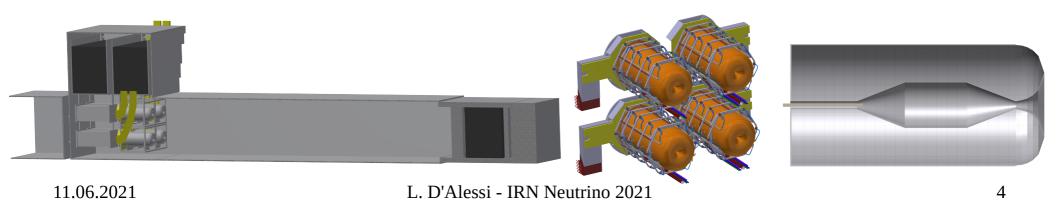
0.6

E [GeV]

0.4

- Less statistics than 1st oscillation maximum, but less contribution from systematics.
- 2 locations under consideration: Garpenberg (current baseline) and Zinkgruvan.
- Statistics achievable from the neutrino beam is therefore a key ingredient of the experiment.

11.06.2021


L. D'Alessi - IRN Neutrino 2021

References:

[1] M. Blennow et al., Eur. Phys. J. C80:190 (2020)

- Main components of the Target Station:
 - 4 target/horn system for hadron production/collection.
 - Each target consists of a packed bed of titanium spheres. The total radius and length of the proposed target is 1.5 cm and 78 cm, respectively.
 - Each horn has a MiniBooNE-like shape of about 60 cm radius and 2.5 m length each, in the current baseline.
 - The magnetic field is generated by a 350 kA half sinusoidal current pulse in the horn.
 - Pions produced and collected are let to decay in flight in a decay tunnel (4 m x 4 m x 25 m).
 - The hadrons and muons are then absorbed by a beam dump at the end of the decay tunnel.

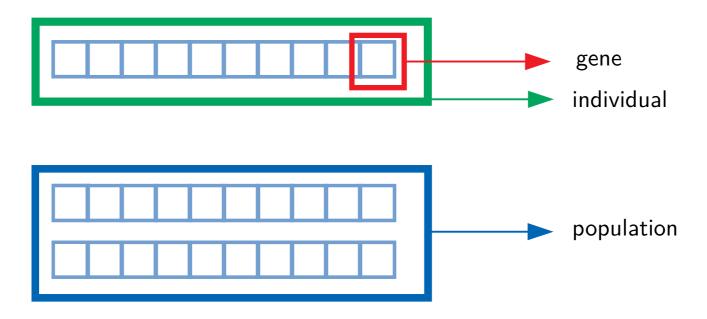
The Genetic Algorithm as Optimization Technique for the ESSvSB Neutrino Beam

- A Genetic Algorithm driven optimization has been developed for the design of the ESSvSB target station
 [1].
- The software used for the Genetic Algorithm calculations is the Python toolkit DEAP [2].
- The Genetic Algorithm (GA) optimization method has been already used for the design of other neutrino beam experiments, such as LBNO [3] and DUNE [4].
- In this work, different realizations of the 4 target/horn system and decay tunnel are produced and let to evolve by using the Genetic Algorithm to find the optimal configuration.
 - The neutrino flux is obtained with a FLUKA [5] code with a simplified geometry of the target station consisting of the 4 target/horn system and the decay tunnel.
 - The neutrino fluxes are used to calculate with GloBES [6] the fraction of range of δ_{CP} values which can be reached at 5 σ C.L.. This represents the FoM of our system.
 - At a given generation, after which no significant improvements in the optimization procedure are observed, the configuration with the maximum of fraction of $\delta_{\rm CP}$ values covered is considered as the optimal configuration.

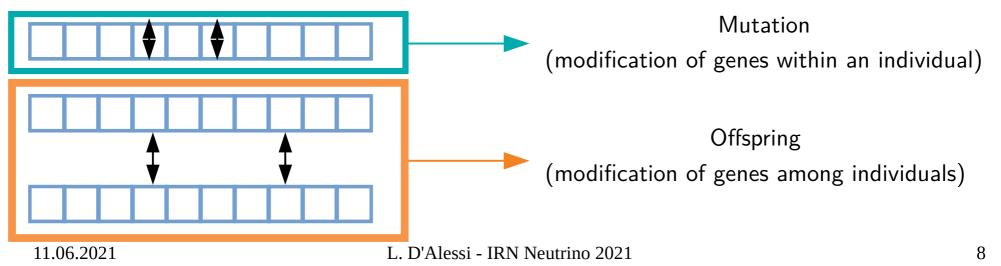
References:

- [1] L. D'Alessi *et al.* [ESSvSB], "Optimization of the Target Station for the ESSvSB Project Using the Genetic Algorithm", NeuTel Conference 2021.
- [2] F. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné, Journal of Machine Learning Research, 13:2171-2175 (2012).
- [3] M. Calviani, S. Di Luise, V. Galymov, and P. Velten, Nucl. Part. Phys. Proc., 273-275:2681–2683 (2016).
- [4] R. Acciarri et al., FERMILAB-DESIGN-2016-02, arXiv: 1512.06148 [physics.ins-det] (2016).

^[5] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranflt, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN-TC-05-11, SLAC-R-773, V. Vlachoudis, FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, 2009.

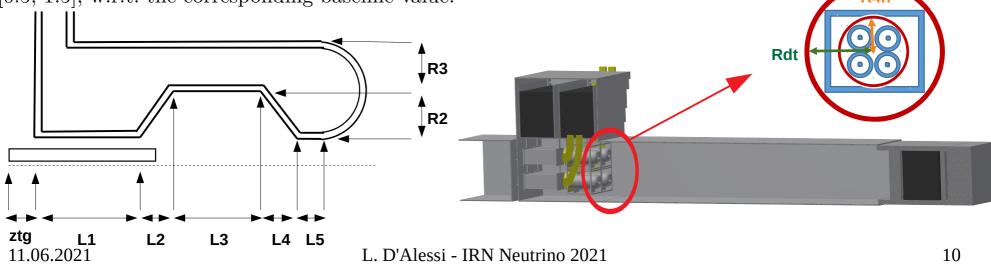

^[6] P. Huber et al, Comput. Phys.Commun. 167 195 (2005) [arXiv:hep-ph/0407333], P. Huber et al, Comput. Phys. Commun. 177432–438 (2007) [arXiv:hep-ph/0701187].

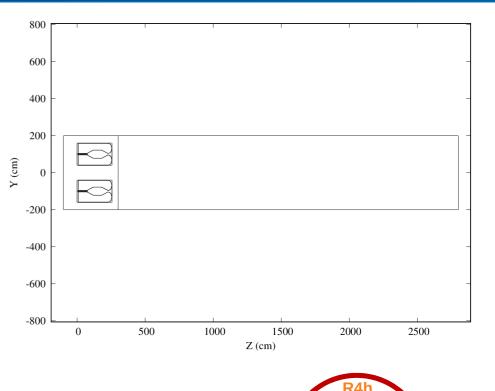
- The Genetic Algorithm (GA) is a method for optimization studies based on evolutionary algorithms and it is inspired by the processes of natural selection.
 - The goal of the GA is to find a set of parameters of a system for which the value of a given Figure of Merit (FoM) is optimal.



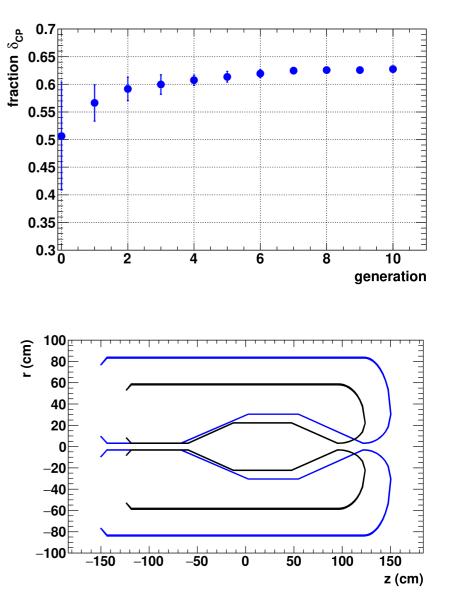
- The Genetic Algorithm (GA) is a method for optimization studies based on evolutionary algorithms and it is inspired by the processes of natural selection.
 - The goal of the GA is to find a set of parameters of a system for which the value of a given Figure of Merit (FoM) is optimal.
- The constituent elements on which the GA operates are the following:
 - The **individual**, which is represented by a set of parameters (**genes**) which span the parametric space on which the optimization study is performed.
 - The **population**, which is a set of individuals.

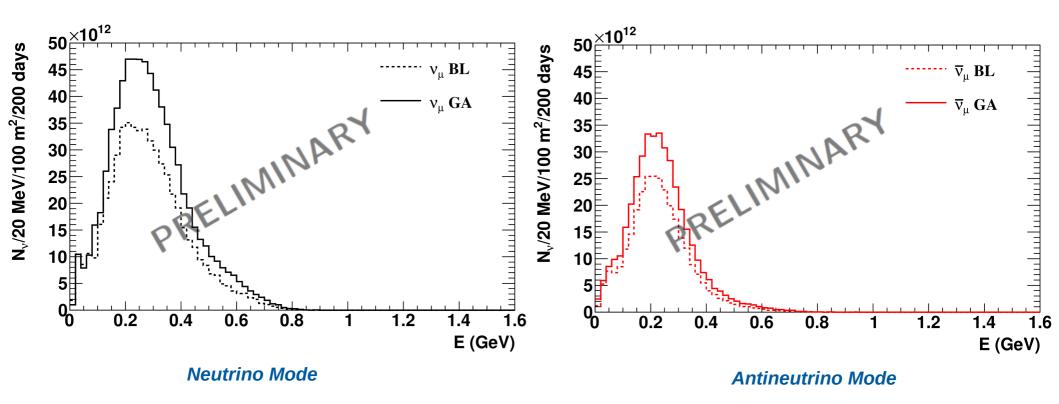
- The Genetic Algorithm (GA) is a method for optimization studies based on evolutionary algorithms and it is inspired by the processes of natural selection.
 - The goal of the GA is to find a set of parameters of a system for which the value of a given Figure of Merit (FoM) is optimal.
- The constituent elements on which the GA operates are the following:
 - The **individual**, which is represented by a set of parameters (**genes**) which span the parametric space on which the optimization study is performed.
 - The **population**, which is a set of individuals.
- The GA operates on the configuration of the genes of the individuals through modification of the genes on the individual (**mutations**) or on genes between two or more individuals (**offspring**) and proceeds with the evaluation of the FoM on the modified individuals.

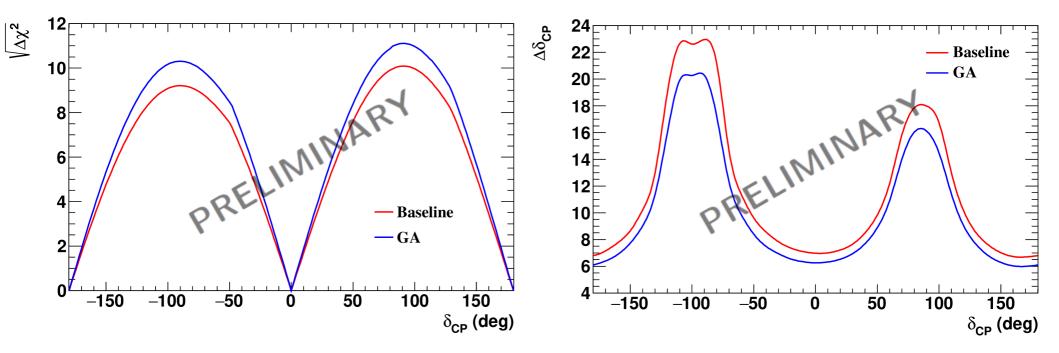



- The Genetic Algorithm (GA) is a method for optimization studies based on evolutionary algorithms and it is inspired by the processes of natural selection.
 - The goal of the GA is to find a set of parameters of a system for which the value of a given Figure of Merit (FoM) is optimal.
- The constituent elements on which the GA operates are the following:
 - The **individual**, which is represented by a set of parameters (**genes**) which span the parametric space on which the optimization study is performed.
 - The **population**, which is a set of individuals.
- The GA operates on the configuration of the genes of the individuals through modification of the genes on the individual (**mutations**) or on genes between two or more individuals (**offspring**) and proceeds with the evaluation of the FoM on the modified individuals.
- The set of the modified individuals and unmodified ones represents the population of the next **generation**.
 - Only individuals with best fit values are kept for the population of the next generation.

The Genetic Algorithm Applied to the Design of the Target Station Components


- The starting point of the Genetic Algorithm (GA) applied to the ESSvSB experiment is the current baseline of the Magnetic Horn (MH) and Decay Tunnel (DT) geometry.
- For our work, the following parameters of the horn and decay tunnel have been considered:
 - L1, L2, L3, L4, R2, R3, ztg, Ldt (Length of Decay Tunnel).
 - The radius of the Decay tunnel is calculated so that the ratio Rdt/R4h is constant.
- The value of the i-th parameter has been rescaled by a scale factor, which value is included in the range [0.5, 1.5], w.r.t. the corresponding baseline value.


- The code converges already after few generations.
 - For the optimization of this system, the convergence refers more on the evolution to a populations in which many individuals tends to have same performance (the std calculated on the population is smaller).
- According to our results, a larger shape of the horn (with fine tuning of the parameters of the inner region of the horn) is preferred.
- The results showed also that the GA tends to prefer longer decay tunnel lengths.



As a first consequence of the performance of the new 4horn/decay tunnel system, the statistics in the right sign neutrinos is improved.

- Furthermore, the sensitivity results improved as well.
- \bigcirc Results here shown refers to the neutrinos detected at 540 km (Garpenberg)
 - NH, SO
 - Systematic errors on signal/background: 5/10% .
- Further details in future publications.

Conclusions

- The Genetic Algorithm provides a powerful tool to scan the parameter space for the optimized design of the target station components.
- The code shows fast convergence and the optimized geometry of the hadron collector and decay tunnel provides enhanced Physics performance of the experiment.
- Studies are currently on going to determine the feasibility of the horn geometry suggested by the optimization study, from the mechanical point of view.
- Soon results will be published on the improved sensitivity of the ESSvSB experiment.

Acknowledgement

The ESSvSB project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419.

Thank You for Your Attention!