Detection of CNO solar neutrinos with Borexino experiment

Dr. Davide Basilico on behalf of the Borexino collaboration

IRN Neutrino Meeting 2021 June 11

University of Milan, INFN Milan

UNIVERSITÀ DEGLI STUDI DI MILANO

Istituto Nazionale di Fisica Nucleare

Outline

- 1. Solar neutrinos and Borexino detector
- 2. CNO analysis
- 3. Astrophysical implications

Solar neutrinos

- Sun is powered by nuclear fusion reactions \rightarrow neutrino emission
- "Photography" of the Sun core
- Two sequences: pp-chain (primary in the Sun, ~99% lum.) and the secondary CNO cycle

pp chain

CNO cycle

Solar neutrinos

strict interplay between astrophysics and particle physics

Standard Solar Model

Describing the Sun evolution: from a protostar to the current star

Standard Solar Model

Describing the Sun evolution: from a protostar to the current star

Standard Solar Model

Describing the Sun evolution: from a protostar to the current star

Predictions: physical description of the global properties of the Sun including <u>solar neutrino fluxes</u> and sound speed profiles

Why are CNO-v interesting?

Why are CNO-v interesting?

Metallicity: abundance of elements heavier than He

Two scenarios: **high** metallicity (**HZ**; Z/X = 0.023) and **low** metallicity (**LZ**; Z/X=0.0165)

Solar v fluxes **depend on metallicity**, especially CNO (28% diff.) **An accurate CNO measurements would help to settle down the SMP**

Solar ν	Flux B16-GS98 (HZ) $[cm^{-2}s^{-1}]$	Flux B16-AGSS09met (LZ) $[cm^{-2}s^{-1}]$	% diff.
pp	$5.98(1.0\pm0.006)\cdot10^{10}$	$6.03(1.0\pm0.005)\cdot10^{10}$	0.83
$^{7}\mathrm{Be}$	$4.93(1.0 \pm 0.06) \cdot 10^9$	$4.50(1.0\pm0.06)\cdot10^{10}$	8.7
pep	$1.44(1.0 \pm 0.01) \cdot 10^8$	$1.46(1.0 \pm 0.009) \cdot 10^9$	1.4
$^{8}\mathrm{B}$	$5.45(1.0 \pm 0.12) \cdot 10^6$	$4.50(1.0\pm0.12)\cdot10^{6}$	17.4
hep	$7.98(1.0\pm0.30)\cdot10^{3}$	$8.25(1.0\pm0.12)\cdot10^3$	3.4
All CNO	$4.88(1.0\pm0.16)\cdot10^{8}$	$3.51(1.0\pm0.15)\cdot10^{8}$	28.1

Borexino detector

Hall C (Borexino)

Borexino detector

- Low-energy spectroscopy of solar v, located at LNGS
- Data-taking since 2007
- Active mass: 300t of ultrapure liquid scintillator
- Detection via elastic scattering

$$\boldsymbol{\nu}_{x} + \boldsymbol{e}^{-} \rightarrow \boldsymbol{\nu}_{x} + \boldsymbol{e}^{-}$$
$$x = \boldsymbol{e}, \boldsymbol{\mu}, \boldsymbol{\tau}$$

Scintillation

Graded shielding: buffer liquid and Gran Sasso

- Low radioactivity: ~10⁻¹⁹ g/g ²³⁸U, ~6·10⁻¹⁹ g/g ²³²Th
 - Radiopure materials

Borexino timeline

CNO-v analysis

Data selection

Standard cuts

Raw spectrum

 µ, cosmogenic, noise, delayed coincidences...

+ FV cut

- Selecting an innermost scintillator volume
- Excluding external bkg

+ TFC cut

- To identify cosmogenic ¹¹C events
- µ+n coincidence

Still background (β , γ) is present, indistinguishable from **v** signal on an event-by-event basis \rightarrow **multivariate fit**

Analysis dataset

- Data-set: Phase-III (July 2016 February 2020)
- Exposure: 1072 days x 71.3 t
- Fit energy range: 0.32 2.64 MeV

Analysis dataset

Spectral degeneracy between **expected CNO-** ν , **pep-** ν , ²¹⁰**Bi** background \rightarrow Strict anti-correlation for the three rates

CNO-v sensitivity studies

- Simulating Borexino Phase-III data taking: 10⁴ toy-MC experiments
- Multivariate fit performed, as we will do on data
- Rates distributions (diagonal plots) and correlations

Why a CNO-v measurement is challenging?

Borexino Phase-III energy spectrum

Why a CNO-v measurement is challenging?

The annoying ²¹⁰Bi background is constrained independently on the spectral fit \rightarrow secular equilibrium with its daughter ²¹⁰Po

Borexino CNO-v detection

"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun"

Borexino Collaboration, Nature 587 (2020) 577-582

https://arxiv.org/pdf/2005.12829.pdf https://inspirehep.net/literature/1803362

Borexino CNO-v measurement

Multivariate fit (below, the energy fit)

-2LnL CNO rate profile

Solar physics implications

- HZ/LZ discrimination
- C+N abundance in solar core

Borexino v results

ν source	$\Phi(BX) \ [cm^{-2}s^{-1}]$	$\Phi(\text{SSM}) [\text{cm}^{-2}\text{s}^{-1}]$	$\Delta\Phi/\Phi~[\%]$
CNO	$7.0\left(1^{+0.3}_{-0.2} ight)\cdot10^{8}$	$\begin{array}{l} 4.88(1\pm0.16)\cdot10^8~(\mathrm{HZ})\\ 3.51(1\pm0.14)\cdot10^8~(\mathrm{LZ}) \end{array}$	28%
⁷ Be	$4.99\left(1^{+0.06}_{-0.08}\right)\cdot10^9$	$\begin{array}{c} 4.93(1 \pm 0.06) \cdot 10^9 \text{ (HZ)} \\ 4.50(1 \pm 0.06) \cdot 10^9 \text{ (LZ)} \end{array}$	17%
⁸ B	$5.69\left(1^{+0.39}_{-0.41} ight)\cdot10^{6}$	$\begin{array}{c} 5.46(1\pm0.12)\cdot10^{6}~(\mathrm{HZ})\\ 4.50(1\pm0.12)\cdot10^{6}~(\mathrm{LZ})\end{array}$	8%

CNO reactions are catalyzed by metals \rightarrow CNO flux is strongly dependent on metallicity (~28% difference)

HZ vs LZ: hypothesis testing

$$\chi^{2} = \left(\Phi^{\text{data}} - \Phi^{\text{SSM}}\right)^{T} \left(\Sigma^{\text{tot}}\right)^{-1} \left(\Phi^{\text{data}} - \Phi^{\text{SSM}}\right)$$

HZ vs LZ: hypothesis testing

Borexino results	LZ disfavoring
 ⁷Be-v + ⁸B-v (Phase-II) "Comprehensive measurement of pp-chain solar neutrinos" Borexino Collaboration, Oct 24, 2018. Nature 562 (2018) 	1.8 0
CNO- ν + ⁷ Be- ν + ⁸ B- ν (Phase-III and Phase-II) "Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun" Borexino Collaboration, Jun 26, 2020, Nature 587 (2020)	2.1σ

- Borexino CNO rate = 7.2^{+3.0} cpd/100t,
 - compatible with both HZ-SSM and LZ-SSM (0.5 σ and 1.3 σ)
- Limiting factors:
 - 1) Experimental error (~23%) should be lowered to ~10% to impact on HZ/LZ testing.

2) Precision of the solar model predictions astrophysical S-factors S_{114} (CNO, 7.4%) S_{34} , (⁷Be, 3.4%), S_{17} (⁸B) \rightarrow nuclear cross section uncertainties

Determination of C+N core abundance

- CNO fluxes directly (and indirectly) depend on Carbon and Nitrogen content in solar core
- pp chain fluxes depend indirectly on metallicity, via T of solar core

Solar-*v* fluxes estimations \rightarrow **degeneracy** of metallicity + T_c + opacity **How to disentangle them to extract C and N content?**

Determination of C+N core abundance

⁸B- ν as a thermometer of solar core:

- CNO-v and ^8B-v fluxes depends on T_c by power-laws; $\Phi_i \sim T_c^{\gamma_i}$
- A fluxes ratio:
 - cancels out dependence on T_c
 - holds the C+N content dependence

$$\frac{N_{\rm C} + N_{\rm N}}{N_{\rm C}^{\rm SSM} + N_{\rm N}^{\rm SSM}} = \left(\frac{\Phi_{^{8}\text{B}}}{\Phi_{^{8}\text{B}}^{\rm SSM}}\right)^{-0.716} \times \frac{R_{\rm CNO}^{\rm BX}}{R_{\rm CNO}^{\rm SSM}} \times [1 \pm 0.5\%(\text{env})] \pm 9.1\%(\text{nucl}) \pm 2.8\%(\text{diff})]$$

Projected uncertainty for C+N abundance from a CNO-v measurement (HZ or LZ).

- Borexino CNO-*v* rate: **7.2**₋₁₇+2.9 cpd/100t
- Error dominated by experimental uncertainty
- Future measurement σ_{CNO} =0.5 cpd/100t (~10%)

\rightarrow	C+N	constrained	at	15%	level
(as	<u>photospheric</u>			techniques)	

Conclusions

- Throughout its history, Borexino has measured all the solar neutrino fluxes (except hep): pp chain and CNO cycle
- Analyzing 2016-20 data, first direct experimental evidence of CNO- ν (5.0 σ)
- The importance of CNO evidence: proof of theory about energy production in stars, pave the way for metallicity problem
 - \rightarrow dominant mechanism in older and more massive stars
 - \rightarrow complete framing of the fusion mechanisms
- Solar metallicity: combining Borexino CNO-ν + ⁷Be-ν + ⁸B-ν measurements, LZ scenario is mildly disfavoured (2.1σ)

Thank you!

Backup

HZ vs LZ: test statistics

$$\chi^{2}(\text{SSM}) = \left(\Phi^{\text{SSM}} - \Phi^{\text{Exp}}\right)^{\text{T}} \left(\Sigma^{\text{SSM}} + \Sigma^{\text{Exp}}\right)^{-1} \left(\Phi^{\text{SSM}} - \Phi^{\text{Exp}}\right)$$

Distributions of the test statistics t:

$$t = -2 \log \left[\mathcal{L}(\mathrm{HZ}) / \mathcal{L}(\mathrm{LZ}) \right] = \chi^2(\mathrm{HZ}) - \chi^2(\mathrm{LZ})$$

Median discovery power:

- $\sigma_{CNO} = 1.5 \text{ cpd}/100t (~30-40\%):$ $\sigma_{CNO} = 0.5 \text{ cpd}/100t (~10-14\%):$ 1.7σ
- 2.1σ

Power law fluxes-temperature

 $\Phi_i \sim T_c^{\gamma_i}$

	рр	⁷ Be	⁸ B	¹⁵ O	¹³ N
γ_i	-0.8	10.5	23	19.6	14.7

D. Fuschini & F. Villante, private communication J.N. Bahcall & A. Ulmer, *Phys. Rev. D* 53(8) (1996)